
Easy Yet Hard:
Model Checking Strategies of Agents

Wojciech Jamroga

Department of Informatics, Clausthal University of Technology, Germany
wjamroga@in.tu-clausthal.de

Abstract. I present an overview of complexity results for model check-
ing of temporal and strategic logics. Unfortunately, it is possible to ma-
nipulate the context so that different complexity results are obtained for
the same problem. Among other things, this means that the results are
often distant from the “practical” complexity which is encountered when
one tries to use the formalisms in reality.

1 Introduction

A study of computational complexity is nowadays almost obligatory in a paper
on logic in AI. Authors usually study the complexity of model checking and/or
satisfiability checking of their logic in order to back the usefulness of the proposal
with a formal argument. Unfortunately, the results are often far from the “prac-
tical” complexity which is encountered when one tries to use the formalisms in
reality. Moreover, it is possible to manipulate the context so that different com-
plexity results are obtained for the same problem. In this paper, I present a brief
overview of complexity results for model checking temporal and strategic logics.
Three logics are discussed here, namely computation tree logic ctl, alternating-
time temporal logic atl, and alternating-time logic with imperfect information
and imperfect recall atlir. For these logics, I show how the complexity class of
the model checking problem changes when we change the way we represent input
and/or measure its size.

Does it mean that theoretical complexity results are not worth anything in
practice? Not necessarily – but certainly one needs to take these results with a
grain of salt. In most cases, only a more extensive study (carried out from several
different perspectives) can give us a meaningful picture of the real computational
difficulty behind the problem.

2 The Logics

2.1 CTL: Branching Time and Temporal Evolution

Computation tree logic ctl [4, 6] explicitly refers to patterns of properties that
can occur along a particular temporal path, as well as to the set of possible
time series. The first dimension is captured by temporal operators: “ g” (“in the

next state”), 2 (“always from now on”) and U (“until”). Additional operator 3

(“sometime from now on”) can be defined as 3ϕ ≡ >U ϕ. The second dimension
is handled by so called path quantifiers: E (“there is a path”) and A (“for all
paths”). In ctl, every occurrence of a temporal operator is preceded by exactly
one path quantifier.1 Formally, the recursive definition of ctl formulae is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | E gϕ | E2ϕ | EϕU ϕ.

A is derived from E in the usual way (cf., e.g., [13]).
The semantics of ctl is defined over unlabeled transition systems, i.e., tuples

M = 〈St,R,Π, π〉 where St is a nonempty set of states (or possible worlds), R ⊆
St×St is a serial transition relation on states, Π is a set of atomic propositions,
and π : Π → 2St is a valuation of propositions. A path (or computation) in
M is an infinite sequence of states that can result from subsequent transitions,
and refers to a possible course of action. Let λ[i] denote the ith position in
computation λ (starting from i = 0). The meaning of ctl formulae is given by
the following clauses:

M, q |= p iff q ∈ π(p) (where p ∈ Π);
M, q |= ¬ϕ iff M, q 6|= ϕ;
M, q |= ϕ ∧ ψ iff M, q |= ϕ and M, q |= ψ;
M, q |= E gϕ iff there is a path λ such that λ[0] = q and M,λ[1] |= ϕ;
M, q |= E2ϕ iff there is a path λ such that λ[0] = q and M,λ[i] |= ϕ for every
i ≥ 0;

M, q |= EϕU ψ iff there is a path λ with λ[0] = q, and position i ≥ 0 such
that M,λ[i] |= ψ and M,λ[j] |= ϕ for each 0 ≤ j < i.

Example 1 (Robots and Carriage). Consider the scenario depicted in Figure 1.
Two robots push a carriage from opposite sides. As a result, the carriage can
move clockwise or anticlockwise, or it can remain in the same place – depending
on who pushes with more force (and, perhaps, who refrains from pushing). To
make our model of the domain discrete, we identify 3 different positions of the
carriage, and associate them with states q0, q1, and q2. The arrows in transition
system M0 indicate how the state of the system can change in a single step.
We label the states with propositions pos0, pos1, pos2, respectively, to allow for
referring to the current position of the carriage in the object language.

As an example ctl property, we have M0, q0 |= E3pos1: in state q0, there is
a path such that the carriage will reach position 1 sometime in the future. Of
course, the same is not true for all paths, so we also have thatM0, q0 |= ¬A3pos1.

2.2 ATL: A Logic of Strategic Ability

Atl [2, 3] is a generalization of ctl, in which path quantifiers are replaced with
so called cooperation modalities. Formula 〈〈A〉〉ϕ expresses that coalition A has
1 This variant of the language is sometimes called “vanilla” ctl. The broader language

of ctl*, where no such restriction is imposed, is not discussed here.

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1pos2

Fig. 1. Two robots and a carriage: a schematic view (left) and a transition system M0

that models the scenario (right).

a collective strategy to enforce ϕ. The recursive definition of atl formulae is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 gϕ | 〈〈A〉〉2ϕ | 〈〈A〉〉ϕU ϕ.
The semantics of atl is defined in a variant of transition systems where

transitions are labeled with combinations of actions, one per agent. Formally, a
concurrent game structure (cgs) is a tuple M = 〈Agt, St,Π, π,Act, d, o〉 which
includes a nonempty finite set of all agents Agt = {1, . . . , k}, a nonempty set of
states St, a set of atomic propositions Π and their valuation π, and a nonempty
finite set of (atomic) actions Act. Function d : Agt×St→ 2Act defines nonempty
sets of actions available to agents at each state, and o is a (deterministic) tran-
sition function that assigns the outcome state q′ = o(q, α1, . . . , αk) to state q
and a tuple of actions 〈α1, . . . , αk〉, αi ∈ d(i, q), that can be executed by Agt in
q. So, it is assumed that all the agents execute their actions synchronously; the
combination of the actions, together with the current state, determines the next
transition of the system.

A strategy of agent a is a conditional plan that specifies what a is going to
do in each possible state. Thus, a strategy can be represented with a function
sa : St→ Act, such that sa(q) ∈ da(q). A collective strategy for a group of agents
A = {a1, ..., ar} is simply a tuple of strategies sA = 〈sa1 , ..., sar

〉, one per agent
from A.2 By sA[a], we will denote agent a’s part of the collective strategy sA.
Function out(q, sA) returns the set of all paths that may occur when agents A
execute strategy sA from state q onward:

2 This is an important deviation from the original semantics of atl [2, 3], where strate-
gies assign agents’ choices to sequences of states. While the choice of one or another
notion of strategy affects the semantics of most extensions of atl (e.g. for abilities
under imperfect information), it should be pointed out that both types of strategies
yield equivalent semantics for “pure” atl [17].

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

Fig. 2. The robots and the carriage: a concurrent game structure M1.

out(q, sA) = {λ = q0q1q2... | q0 = q and for each i = 1, 2, ... there exists a tuple of
agents’ decisions 〈αi−1

a1
, ..., αi−1

ak
〉 such that αi−1

a ∈ da(qi−1) for every a ∈ Agt,
and αi−1

a ∈ sA[a](qi−1) for every a ∈ A, and o(qi−1, α
i−1
a1

, ..., αi−1
ak

) = qi}.

The semantics of cooperation modalities is defined through the clauses below.
Informally speaking, M, q |= 〈〈A〉〉Φ iff there exists a collective strategy sA such
that Φ holds for all computations from out(q, sA).

M, q |= 〈〈A〉〉 gϕ iff there is a collective strategy sA such that, for each path
λ ∈ out(sA, q), we have M,λ[1] |= ϕ;

M, q |= 〈〈A〉〉2ϕ iff there exists sA such that, for each λ ∈ out(sA, q), we have
M,λ[i] |= ϕ for every i ≥ 0;

M, q |= 〈〈A〉〉ϕU ψ iff there exists sA such that, for each λ ∈ out(sA, q), there
is i ≥ 0 for which M,λ[i] |= ψ, and M,λ[j] |= ϕ for each 0 ≤ j < i.

Example 2 (Robots and Carriage, ctd.). Transition system M0 enabled us to
study the evolution of the system as a whole. However, it did not allow us to
represent who can do what, and how the possible actions of the agents interact.
Concurrent game structure M1, presented in Figure 2, fills the gap. We assume
that each robot can either push (action push) or refrain from pushing (action
wait). Moreover, they both use the same force when pushing. Thus, if the robots
push simultaneously or wait simultaneously, the carriage does not move. When
only one of the robots is pushing, the carriage moves accordingly.

As the outcome of each robot’s action depends on the current action of the
other robot, no agent can make sure that the carriage moves to any particu-
lar position. So, we have for example that M1, q0 |= ¬〈〈1〉〉3pos1. On the other
hand, the agent can at least make sure that the carriage will avoid particular po-
sitions. For instance, it holds that M1, q0 |= 〈〈1〉〉2¬pos1, the right strategy being
s1(q0) = wait, s1(q2) = push (the action that we specify for q1 is irrelevant).

Note that the ctl path quantifiers A and E can be embedded in atl in the
following way: Aϕ ≡ 〈〈∅〉〉ϕ and Eϕ ≡ 〈〈Agt〉〉ϕ.

2.3 Strategic Abilities under Imperfect Information

Atl and its models include no way of addressing uncertainty that an agent
or a process may have about the current situation. Here, we take Schobbens’
atlir [17] as the “core”, minimal atl-based language for strategic ability un-
der imperfect information. Atlir includes the same formulae as atl, only the
cooperation modalities are presented with a subscript: 〈〈A〉〉ir to indicate that
they address agents with imperfect information and imperfect recall. Models of
atlir, imperfect information concurrent game structures (i-cgs), can be seen
as concurrent game structures augmented with a family of indistinguishability
relations ∼a⊆ St × St, one per agent a ∈ Agt. The relations describe agents’
uncertainty: q ∼a q

′ means that, while the system is in state q, agent a considers
it possible that it is in q′. Each ∼a is assumed to be an equivalence. It is also
required that agents have the same choices in indistinguishable states: if q ∼a q

′

then d(a, q) = d(a, q′).
Again, a strategy of an agent a is a conditional plan that specifies what a is

going to do in each possible state. An executable (deterministic) plan must pre-
scribe the same choices for indistinguishable states. Therefore atlir restricts the
strategies that can be used by agents to the set of so called uniform strategies.
A uniform strategy of agent a is defined as a function sa : St→ Act, such that:
(1) sa(q) ∈ d(a, q), and (2) if q ∼a q′ then sa(q) = sa(q′). A collective strat-
egy is uniform if it contains only uniform individual strategies. Again, function
out(q, sA) returns the set of all paths that may result from agents A executing
strategy sA from state q onward. The semantics of cooperation modalities in
atlir is defined as follows:

M, q |= 〈〈A〉〉
ir

gϕ iff there exists a uniform collective strategy sA such that,
for each a ∈ A, q′ such that q ∼a q′, and path λ ∈ out(sA, q

′), we have
M,λ[1] |= ϕ;

M, q |= 〈〈A〉〉
ir
2ϕ iff there is a uniform sA such that, for each a ∈ A, q′ such

that q ∼a q
′, and λ ∈ out(sA, q

′), we have M,λ[i] |= ϕ for each i ≥ 0;
M, q |= 〈〈A〉〉

ir
ϕU ψ iff there exists a uniform strategy sA such that, for each

a ∈ A, q′ such that q ∼a q′, and λ ∈ out(sA, q
′), there is i ≥ 0 for which

M,λ[i] |= ψ, and M,λ[j] |= ϕ for every 0 ≤ j < i.

That is, 〈〈A〉〉
ir
Φ if agents A have a uniform strategy such that, for each path

that can possibly result from execution of the strategy according to at least one
agent from A, Φ is the case.

Example 3 (Robots and Carriage, ctd.). We refine the scenario from Examples 1
and 2 by restricting perception of the robots. Namely, we assume that robot 1 is
only able to observe the color of the surface on which it is standing, and robot
2 perceives only the texture (cf. Figure 2.3). In consequence, the first robot can
distinguish between position 0 and position 1, but positions 0 and 2 look the
same to it. Likewise, the second robot can distinguish between positions 0 and
2, but not 0 and 1. We also assume that the agents are memoryless: every time

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

1

2

Fig. 3. Two robots and a carriage: a schematic view (left) and an imperfect information
concurrent game structure M2 that models the scenario (right).

they come back to the same position, their knowledge of the current situation is
limited in the same way as before.

With its observational capabilities restricted in such way, no agent can make
the carriage reach or avoid any selected states singlehandedly. E.g., we have that
M2, q0 |= ¬〈〈1〉〉

ir
2¬pos1; note in particular that strategy s1 from Example 2

cannot be used here because it is not uniform (indeed, the strategy tells robot
1 to wait in q0 and push in q2 but both states look the same to it). The robots
cannot even be sure to achieve the task together: M2, q0 |= ¬〈〈1, 2〉〉ir 2pos1 (when
in q0, robot 2 considers it possible that the current state of the system is q1,
in which case all the hope is gone). So, do the robots know how to play to
achieve anything? Yes, for example they know how to make the carriage reach a
particular state eventually: M2, q0 |= 〈〈1, 2〉〉

ir
3pos1 etc. – it suffices that one of

the robots pushes all the time and the other waits all the time.

3 A Survey of Model Checking Complexity Results

3.1 Model Checking Is Easy

It has been known for a long time that formulae of ctl can be checked in time
linear with respect to the size of the model and the length of the formula. One
of the main results concerning atl states that its formulae can also be model-
checked in deterministic linear time.

Theorem 1 ([5]). Model checking ctl is P-complete, and can be done in time
O(ml), where m is the number of transitions in the model and l is the length of
the formula.

Theorem 2 ([3]). Model checking atl is P-complete, and can be done in time
O(ml), where m is the number of transitions in the model and l is the length of
the formula.

function mcheck(M,ϕ).
Returns the set of states in model M = 〈Agt, St,Π, π, o〉 for which formula ϕ holds.
case ϕ ∈ Π : return π(p)
case ϕ = ¬ψ : return St \mcheck(M,ψ)
case ϕ = ψ1 ∨ ψ2 : return mcheck(M,ψ1) ∪mcheck(M,ψ2)
case ϕ = 〈〈A〉〉 fψ : return pre(M,A,mcheck(M,ψ))
case ϕ = 〈〈A〉〉2ψ :
Q1 := St; Q2 := mcheck(M,ψ); Q3 := Q2;
while Q1 6⊆ Q2

do Q1 := Q2; Q2 := pre(M,A,Q1) ∩Q3 od;
return Q1

case ϕ = 〈〈A〉〉ψ1 U ψ2 :
Q1 := ∅; Q2 := mcheck(M,ψ1);
Q3 := mcheck(M,ψ2);
while Q3 6⊆ Q1

do Q1 := Q1 ∪Q3; Q3 := pre(M,A,Q1) ∩Q2 od;
return Q1

end case

function pre(M,A,Q).
Auxiliary function; returns the exact set of states Q′ such that, when the system is in
a state q ∈ Q′, agents A can cooperate and enforce the next state to be in Q.
return {q | ∃αA∀αAgt\A o(q, αA, αAgt\A) ∈ Q}

Fig. 4. The atl model checking algorithm from [3]

The atl model checking algorithm from [3] is presented in Figure 4. The
algorithm uses the well-known fixpoint characterizations of strategic-temporal
modalities:

〈〈A〉〉2ϕ↔ ϕ ∧ 〈〈A〉〉 g〈〈A〉〉2ϕ
〈〈A〉〉ϕ1 U ϕ2 ↔ ϕ2 ∨ ϕ1 ∧ 〈〈A〉〉 g〈〈A〉〉ϕ1 U ϕ2

and computes a winning strategy step by step (if it exists). That is, it starts with
the appropriate candidate set of states (∅ for U and St for 2), and iterates over
A’s one-step abilities until the set gets stable. It is easy to see that the algorithm
needs to traverse each transition at most once per subformula of ϕ.

In contrast, analogous fixpoint characterizations do not hold for atlir modal-
ities because the choice of a particular action at state q has non-local conse-
quences: it automatically fixes choices at all states q′ indistinguishable from q
for the coalition A. Moreover, agents’ ability to identify a strategy as winning
also varies throughout the game in an arbitrary way (agents can learn as well as
forget). This suggests that winning strategies cannot be synthesized incremen-
tally, which is indeed confirmed by the following (rather pessimistic) result.

Theorem 3 ([17, 11]). Model checking atlir is ∆P
2 -complete in the number of

transitions in the model and the length of the formula.

Still, model checking ctl and atl appear to be tractable. So... let’s model
check! Unfortunately, it turns out to be not as easy as it seems.

3.2 Model Checking Is Harder

The results from [5, 3] are certainly attractive, but it should be kept in mind
that they are only relative to the size of models and formulae, and these can be
very large for most application domains. Indeed, it is known that the number of
states in a model is usually exponential in the size of a higher-level description
of the problem domain for both ctl and atl models. We will discuss this case in
more detail in Section 3.3. In this section, we still consider model checking with
respect to transition systems, concurrent game structures, and i-cgs’s,3 but we
measure the size of the input in a slightly different way.

The size of a model has been defined as the number of transitions (m). Why
not states then? For ctl this would not change the picture much. Let us denote
the number of states by n; then, for any unlabeled transition system we have
that m = O(n2). In consequence, ctl model checking is in P also with respect
to the number of states in the model (and the length of the formula). For atl,
however, the situation is different.

Observation 1 ([3, 10]) Let n be the number of states in a concurrent game
structure M . The number of transitions in M is not bounded by n2, because
transitions are labeled with tuples of agents’ choices.

Let k denote the number of agents, and d the maximal number of available
decisions per agent per state. Then, m = O(ndk). In consequence, the atl model
checking algorithm from [3] runs in time O(ndkl), and hence its complexity is
exponential if the number of agents is a parameter of the problem.

As we see, the complexity of O(ml) may (but does not have to) include
potential intractability even on the level of explicit models if the size of models
is defined in terms of states rather than transitions, and the number of agents is
a parameter of the problem.

Corollary 1 (of Theorem 1). Ctl model checking is P-complete, and can be
done in time O(n2l).

Theorem 4 ([10, 14]). Model checking atl is ∆P
3 -complete with respect to the

number of states and agents, and the length of the formula.

It also turns out that model checking of abilities under imperfect information
looks no harder than perfect information from this perspective.

Theorem 5 ([11]). Model checking atlir is ∆P
3 -complete with respect to the

number of states and agents, and the length of the formula.
3 Such structures are sometimes called explicit models [15] because global states and

global transitions are represented explicitly in them.

3.3 Model Checking Is Hard

Sections 3.1 and 3.2 presented complexity results for model checking ctl, atl,
and atlir with respect to explicit models. Most multi-agent systems, however,
are characterized by an immensely huge state space and transition relation. In
such cases, one would like to define the model in terms of a compact higher-level
representation, plus an unfolding procedure that defines the relationship between
representations and actual models of the logic (and hence also the semantics of
the logic with respect to the compact representations). Of course, unfolding
a higher-level description to an explicit model involves usually an exponential
blowup in its size.

Consider, for example, a system whose state space is defined by r Boolean
variables (binary attributes). Obviously, the number of global states in the
system is n = 2r. A more general approach is presented in [12], where the
“higher level description” is defined in terms of so called concurrent programs,
that can be used for simulating Boolean variables, but also processes or agents
acting in parallel. A concurrent program P is composed of k concurrent pro-
cesses, each described by a labeled transition system Pi = 〈Sti, Acti,Ri,Πi, πi〉,
where Sti is the set of local states of process i, Acti is the set of local actions,
Ri ⊆ Sti × Acti × Sti is a transition relation, and Πi, πi are the set of lo-
cal propositions and their valuation. The behavior of program P is given by
the product automaton of P1, ..., Pk under the assumption that processes work
asynchronously, actions are interleaved, and synchronization is obtained through
common action names.

Theorem 6 ([12]). Model checking ctl in concurrent programs is PSPACE-
complete with respect to the number of local states and agents (processes), and
the length of the formula.

Concurrent programs seem sufficient to reason about purely temporal prop-
erties of systems, but not quite so for reasoning about agents’ strategies and
abilities. For the latter kind of analysis, we need to allow for more sophisti-
cated interference between agents’ actions (and enable modeling agents that
play synchronously). Here, we use modular interpreted systems [9, 8], that draw
inspiration from interpreted systems [7], reactive modules [1], and are in many
respects similar to ispl specifications [16]. A modular interpreted system (mis)
is defined as a tuple s = 〈Agt, env,Act, In〉, where Agt = {a1, ..., ak} is a set of
agents, env is the environment, Act is a set of actions, and In is a set of sym-
bols called interaction alphabet. Each agent has the following internal structure:
ai = 〈Sti, di, outi, ini, oi,Πi, πi〉, where:

– Sti is a set of local states,
– di : Sti → 2Act defines local availability of actions; for convenience of

the notation, we additionally define the set of situated actions as Di =
{〈qi, α〉 | qi ∈ Sti, α ∈ di(qi)},

– outi, ini are interaction functions; outi : Di → In refers to the influence
that a given situated action (of agent ai) may possibly have on the external

world, and ini : Sti × Ink → In translates external manifestations of the
other agents (and the environment) into the “impression” that they make on
ai’s transition function depending on the local state of ai,

– oi : Di × In→ Sti is a (deterministic) local transition function,
– Πi is a set of local propositions of agent ai where we require that Πi and Πj

are disjunct when i 6= j, and
– πi : Πi → 2Sti is a valuation of these propositions.

The environment env has the same structure as an agent except that it does not
perform actions.

The unfolding of a mis s to a concurrent game structure follows by the syn-
chronous product of the agents (and the environment) in s, with interaction
symbols being passed between local transition functions at every step. The un-
folding can also determine indistinguishability relations as 〈q1, ..., qk, qenv〉 ∼i

〈q′1, ..., q′k, q′env〉 iff qi = q′i, thus yielding a full icgs. This way semantics of both
atl and atlir is extended to mis. Regarding model checking complexity, the
following holds.

Theorem 7 ([18, 8]). Model checking atl in modular interpreted systems is
EXPTIME-complete with respect to the number of local states and agents, and
the length of the formula.

Theorem 8 ([9, 8]). Model checking atlir in modular interpreted systems is
PSPACE-complete with respect to the number of local states and agents, and
the length of the formula.

3.4 Summary of the Results

A summary of complexity results for model checking temporal and strategic
logics is given in the table below. Symbols n,m stand for the number of states
and transitions in an explicit model; k is the number of agents in the model; l is
the length of the formula, and nlocal is the number of local states in a concurrent
program or a modular interpreted system.

m, l n, k, l nlocal, k, l

CTL P-complete [5] P-complete [5] PSPACE-complete [12]
ATL P-complete [3] ∆P

3 -compl. [10, 14] EXPTIME-compl. [18, 8]
ATLir ∆P

2 -compl. [17, 11] ∆P
3 -complete [11] PSPACE-complete [9, 8]

Note that the results for atl and atlir form an intriguing pattern. When we
compare model checking agents with perfect vs. imperfect information, the first
problem appears to be much easier against explicit models measured with the
number of transitions; next, we get the same complexity class against explicit
models measured with the number of states and agents; finally, model check-
ing imperfect information turns out to be easier than model checking perfect
information for modular interpreted systems. Why can it be so?

The amount of available strategies (relative to the size of input parameters)
is the crucial factor here. The number of all strategies is exponential in the
number of global states; for uniform strategies, there are usually much less of
them but still exponentially many in general. Thus, the fact that perfect infor-
mation strategies can be synthesized incrementally has a substantial impact on
the complexity of the problem. However, measured in terms of local states and
agents, the number of all strategies is doubly exponential, while there are “only”
exponentially many uniform strategies – which settles the results in favor of im-
perfect information. It must be also noted that representation of a concurrent
game structure by a mis can be in general more compact than that of an icgs.
In the latter case, the mis is assumed to encode the epistemic relations explicitly.
In the case of cgs, the epistemic aspect is ignored, which gives some extra room
for encoding the transition relation more efficiently.

4 Conclusions

This paper recalls some important complexity results for model checking tem-
poral and strategic properties of multi-agent systems. But, most of all, it tells a
story with a moral. A single complexity result is often not enough to understand
the real difficulty of the decision problem in question. When the perspective
changes, so does the complexity class in which the problem belongs, and some-
times even its relative complexity with respect to other problems. Does it mean
that theoretical complexity studies are worthless? Of course not, but the com-
putational difficulty of a problem is usually more intricate than most computer
scientists suspect.

There is yet another moral, too. Experimental studies where performance of
algorithms and tools is measured in practice are no less needed than theoretical
analysis.

References

1. R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System Design,
15(1):7–48, 1999.

2. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic.
In Proceedings of the 38th Annual Symposium on Foundations of Computer Science
(FOCS), pages 100–109. IEEE Computer Society Press, 1997.

3. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic.
Journal of the ACM, 49:672–713, 2002.

4. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skele-
tons using branching time temporal logic. In Proceedings of Logics of Programs
Workshop, volume 131 of Lecture Notes in Computer Science, pages 52–71, 1981.

5. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244–263, 1986.

6. E.A. Emerson and J.Y. Halpern. "sometimes" and "not never" revisited: On
branching versus linear time temporal logic. Journal of the ACM, 33(1):151–178,
1986.

7. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press: Cambridge, MA, 1995.

8. W. Jamroga and T. Ågotnes. Modular interpreted systems: A preliminary report.
Technical Report IfI-06-15, Clausthal University of Technology, 2006.

9. W. Jamroga and T. Ågotnes. Modular interpreted systems. In Proceedings of
AAMAS’07, pages 892–899, 2007.

10. W. Jamroga and J. Dix. Do agents make model checking explode (computation-
ally)? In M. Pĕchouc̆ek, P. Petta, and L.Z. Varga, editors, Proceedings of CEEMAS
2005, volume 3690 of Lecture Notes in Computer Science, pages 398–407. Springer
Verlag, 2005.

11. W. Jamroga and J. Dix. Model checking abilities of agents: A closer look. Theory
of Computing Systems, 42(3):366–410, 2008.

12. O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM, 47(2):312–360, 2000.

13. F. Laroussinie. About the expressive power of CTL combinators. Information
Processing Letters, 54(6):343–345, 1995.

14. F. Laroussinie, N. Markey, and G. Oreiby. Expressiveness and complexity of ATL.
Technical Report LSV-06-03, CNRS & ENS Cachan, France, 2006.

15. K.L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. Kluwer Academic Publishers, 1993.

16. F. Raimondi. Model Checking Multi-Agent Systems. PhD thesis, University College
London, 2006.

17. P. Y. Schobbens. Alternating-time logic with imperfect recall. Electronic Notes in
Theoretical Computer Science, 85(2), 2004.

18. W. van der Hoek, A. Lomuscio, and M. Wooldridge. On the complexity of practical
ATL model checking. In P. Stone and G. Weiss, editors, Proceedings of AAMAS’06,
pages 201–208, 2006.

