
Synthesis and Veri�cation of Uniform Strategies

for Multi-Agent Systems

Jerzy Pilecki1, Marek A Bednarczyk2,3, and Wojciech Jamroga4,5

1 Systems Research Institute, Polish Academy of Sciences
2 Polish-Japanese Institute of Information Technology

3 Institute of Computer Science, Polish Academy of Sciences
4 CSC & SnT, University of Luxembourg

5 Department of Informatics, Clausthal University of Technology

Abstract. We present a model checking algorithm for alternating-time
temporal logic (ATL) with imperfect information and imperfect recall.
This variant of ATL is arguably most appropriate when it comes to
modeling and speci�cation of multi-agent systems. The related variant
of model checking is known to be theoretically hard (∆P

2 - to PSPACE-
complete, depending on the assumptions), but virtually no practical at-
tempts at it have been proposed so far. Our algorithm searches through
the set of possible uniform strategies, utilizing a simple reduction tech-
nique. In consequence, it not only veri�es existence of a suitable strategy
but also produces one (if it exists). We validate the algorithm experi-
mentally on a simple scalable class of models, with promising results.

Keywords: model checking, alternating-time logic, imperfect information, strat-
egy synthesis

1 Introduction

There is a growing number of works that study syntactic and semantic vari-
ants of strategic logics, in particular the alternating-time temporal logic ATL.
Conceptually, the most interesting strand builds upon reasoning about temporal
patterns and outcomes strategic play, limited by information available to the
agents. The contributions are mainly theoretical, and include results concerning
the conceptual soundness of a given semantics of ability [20, 1, 12], meta-logical
properties [7], and the complexity of model checking [20, 11, 10]. However, there
is very little research on actual use of the logics, in particular on practical algo-
rithms for reasoning and/or veri�cation.

This is somewhat easy to understand, since model checking of ATL variants
with imperfect information has been proved ∆P

2 - to PSPACE-complete for
agents playing positional (a.k.a. memoryless) strategies [20, 11] and undecidable
for agents with perfect recall of the past [9]. Moreover, the imperfect information
semantics of ATL does not admit �xpoint equivalences [7], which makes incre-
mental synthesis of strategies impossible, or at least cumbersome. Still, some

other results [10, 21] suggest that practical model checking of strategies with im-
perfect information might not be actually that harder than the standard perfect
information case, for which successful algorithms and model checkers already
exist [6, 3, 13, 17, 16]. Either way, we believe that the scienti�c approach requires
an extensive study of the practical hardness of the problem. This paper is our
�rst step in that direction.

We propose a novel model checking algorithm for a fragment of alternating-
time temporal logic with imperfect information and memoryless strategies (ATLir).
When model checking a formula of type 〈〈a〉〉γ, the algorithm tries to synthesize
an executable (i.e., uniform) strategy for agent a that would enforce property γ.
The task requires to search through exponentially many strategies in the worst
case; however, we build on some observations that lead to a reduction of the
search space for certain instances of the problem. In consequence, a signi�cant
decrease in complexity is possible for many practical instances.

Our algorithm comes in two variants: one based on exhaustive search through
the space of all uniform strategies, and another one based on a simple construc-
tive heuristic. The latter variant tries to construct the strategy by �blindly�
following a single path in the model. We evaluate both variants experimentally
on a simple scalable class of models. In terms of comparison to existing results
we have faced a di�cult problem, since there are virtually no results to compare
with. The only existing tool for MAS that veri�es existence of executable strate-
gies under imperfect information is an experimental version of MCMAS [19]. We
compare the performance of our algorithm to that version, with very promising
results. Moreover, some model checkers admit imperfect information models but
use perfect information (i.e., possibly non-executable) strategies in the seman-
tics [3, 17, 16]. We compare the performance of our algorithm to one of those
tools (the standard version of MCMAS [16]) in order to get a grip on how im-
perfect information changes the practical veri�cation complexity. The only other
model checking algorithm for ATLir that we know of [8] has been studied in [18],
with results that suggested bad performance.

2 Preliminaries

We begin by presenting the syntax and semantics of alternating-time temporal
logic, as well as de�ning the model checking problem formally.

2.1 ATL: What Agents Can Achieve

Alternating-time temporal logic (ATL) was proposed in [4, 5] for reasoning about
abilities of agents in multi-agent systems. Intuitively, formula 〈〈A〉〉ϕ expresses
that the group of agents A has a collective strategy to enforce ϕ. The formal
syntax of ATL is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉X ϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕU ϕ.

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push
pu

sh
,w

ai
t

push,wait

w
ait,push

push,w
ait

wait,push
w

ai
t,p

us
h

pos2

(a)

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait
w

ait,push
push,w

ait

wait,push

w
ai

t,p
us

h

pos2

1

2

(b)

Fig. 1. Robots and carriage: (a) concurrent game structure M1; (b) iCGS M2

where p is an atomic proposition, A is a subset of agents, and the operators X ,
G , and U stand for �in the next state�, �always from now on�, and �strong until�,
respectively. Additional operator F (�eventually�) can be de�ned as F ϕ ≡ >U ϕ.

ATL is interpreted in a variant of transition systems where transitions are
labeled with combinations of actions, one per agent. Formally, a concurrent game
structure is a tuple M = 〈Σ,Q,Π, π, d, δ〉, where: Σ = {1, . . . , k} is a �nite
nonempty set of players (also called agents), Q is a �nite nonempty set of states,
π : Q → 2Π is the labeling function. Moreover, for each player a ∈ {1, . . . , k}
and state q ∈ Q, da(q) ≥ 1 gives the number of moves available to a at q; we
identify the moves of a at q with the numbers 1, . . . , da(q). For each state q ∈ Q,
a move vector at q is a tuple 〈j1, . . . , jk〉 such that 1 ≤ ja ≤ da(q) for each
player a. Furthermore, D(q) denotes the set {1, . . . , d1(q)}× . . .×{1, . . . , dk(q)}
of move vectors. Finally, δ is the deterministic transition function that returns
a state q′ = δ(q, j1, . . . , jk) for each q ∈ Q and 〈j1, . . . , jk〉 ∈ D(q).

The meaning of ATL formulae is based on the notion of a strategy. A mem-
oryless strategy for player a ∈ Σ is a function sa : Q → N that maps every
state q in the model to an action label sa(q) ≤ da(q).

6 A collective strategy for
agents A ⊆ Σ is simply a tuple of strategies, one per agent in A. Each collective
strategy SA induces a set of computations (paths, runs). Formally, by out(q, SA)
we will denote the set of in�nite sequences of states that can occur from state q
on when the players in A follow strategy SA and the other players are free to do
any actions. The semantic relation for ATL is de�ned inductively as follows:

� M, q |= p, for proposition p ∈ Π, i� p ∈ π(q)
� M, q |= ¬ϕ i� M, q 6|= ϕ
� M, q |= ϕ1 ∨ ϕ2 i� M, q |= ϕ1 or M, q |= ϕ2

� M, q |= 〈〈A〉〉Xϕ i� there exists a collective strategy SA such that for all
computations λ ∈ out(q, SA), we have M,λ[1] |= ϕ

� M, q |= 〈〈A〉〉Gϕ i� there exists a collective strategy SA such that for all
computations λ ∈ out(q, SA), and all positions i ≥ 0, we have M,λ[i] |= ϕ.

6 We depart from the assumption in [4, 5] that agents have perfect recall of past
situations. Note that both types of strategies (memoryless and perfect recall) yield
equivalent semantics in case of standard ATL [5, 20].

� M, q |= 〈〈A〉〉ϕ1Uϕ2 i� there exists SA such that for all λ ∈ out(q, SA) there
is i ≥ 0 with M,λ[i] |= ϕ2 and for all 0 ≤ j < i we have M,λ[j] |= ϕ1.

Example 1. An example concurrent game structure is depicted in Figure 1a.
Some ATL formulae that hold in state q0 of the model are: 〈〈1, 2〉〉F pos1 (robots
1 and 2 have a collective strategy to make the carriage eventually reach position
1), ¬〈〈1〉〉F pos1 (robot 1 cannot bring about it on its own), 〈〈1〉〉G¬pos1 (on the
other hand, robot 1 can singlehandedly avoid position 1 forever).

2.2 Abilities under Imperfect Information

The assumption that agents know the entire state of the system at each step of
its execution is usually unrealistic; similarly, assuming perfect recall is not always
practical [20, 1, 12]. The tension between perfect and imperfect information, as
well as between perfect and imperfect recall, gives rise to the four �classical�
semantic variants of ATL from [20]. On the level of models, we extend concurrent
game structures to imperfect information concurrent game structures (iCGS) by
adding indistinguishability relations ∼a⊆ Q × Q, one per a ∈ Σ. Intuitively
q ∼a q′ i� a cannot distinguish q from q′. Then, local states of agent a can be
de�ned as equivalence classes of the indistinguishability relation, denoted [q]∼a

.
In this paper, we are interested in the imperfect information + imperfect re-

call variant (ATLir), with the following semantics. First, we require strategies to
be uniform, i.e., to specify the same choices in indistinguishable states; formally:
if q ∼a q′ then sa(q) = sa(q

′). This ensures that the choice of an action does not
depend on information that is inaccessible to the agent. Secondly, a collective
strategy is uniform i� it consists only of uniform individual strategies. Thirdly,
we update the semantic clauses from Section 2.1 by requiring all strategies to be
uniform. Note that this semantics di�ers slightly from the one in [20] in that it
looks only at the outcome paths starting from the current objective state of the
system. We refer the interested reader to [7, 2] for the philosophical discussion,
and point out that it does not a�ect our performance results in Section 5, as
the models in the experiments have a relatively small number of global states
indistinguishable from the objective initial state. Moreover, model checking in
the �subjective� semantics from [20] can be easily simulated in our �objective�
semantics by having the environment agent inject nondeterminism on the �rst
transition. We omit further details for lack of space.

Example 2. An example iCGS is depicted in Figure 1b. Now, formula 〈〈1〉〉G¬pos1
does not hold in q0 anymore: in order to avoid state q1, robot 1 should wait in
q0 and push in q1, which is not allowed in a uniform strategy.

2.3 Model Checking Problem

The decision problem of local model checking is typically de�ned as follows. Given
a model M , an initial state q in the model, and a formula ϕ, determine whether
M, q |= ϕ. Model checking of ATL with perfect information is known to be

linear wrt the length of the formula and the number of global transitions in the
model [4, 5]. Model checking of ATLir is much harder, namely ∆P

2 -complete [20,
11]. Moreover, for formulae with a single non-negated coalitional modality it
becomes NP-complete [20]. This is mainly because �xpoint characterizations
of strategic modalities do not hold under imperfect information [7], and hence
purely incremental synthesis of winning strategies is not possible for ATLir.

3 Towards ATLir Model Checking

As the starting point of our approach, we take the simple nondeterministic al-
gorithm from [20] that model-checks formula 〈〈A〉〉ϕ in M, q:

1. Guess nondeterministically a collective uniform strategy SA;
2. Perform CTL model checking of Aϕ (�for all paths ϕ�) in M † SA, q, where
M † SA denotes model M �trimmed� according to strategy SA.

For nested strategic modalities, the algorithm proceeds recursively (bottom-up).
In order to construct a working version of the algorithm, we need to determine

the order in which the space of solutions (i.e., strategies) will be searched. The
key to such determinization is a heuristic. With a good heuristic, we can hope
to achieve acceptable computation time at least for instances where a solution
exists. This has been experimentally observed for several classes of computation-
ally hard problems, most notably SAT. Our heuristic is based on three factors.
First, we reduce the search space by exploring some equivalences between strate-
gies. Secondly, we de�ne a representation of strategies that minimizes the cost
of storing and processing a strategy, but even more importantly makes the al-
gorithm try simpler solutions �rst. Thirdly, we de�ne a subclass of strategies
that are relatively simple to construct and verify � which yields an incomplete
but reasonably e�cient variant of the model checking algorithm. We present the
ideas in detail in the remainder of this section.

3.1 Restricting the Search Space

In case of ATLir model checking, the solutions are strategies that a coalition can
use to enforce a property.7 Since the space of solutions is computationally large,
it is crucial for the algorithm to limit the search space as much as possible. We
limit the search space by identifying some equivalences between solutions.

De�nition 1. For a modelM and strategy S for coalition A, we de�ne a trimmed
model MS as a restriction of model M , where agents from coalition A have their
choices restricted by S. QS ⊆ Q will denote the set of states reachable in MS.
We will call QS the proper domain of strategy S in model M .

We also consider strategies that are not completely speci�ed.

7 From now on, when referring to strategies, we mean uniform memoryless strategies.

De�nition 2. An incomplete strategy is a strategy represented by a partial
rather than total function, i.e., s : Q ⇀ N. As usual, the domain of s (dom(s))
is the subset of Q where the value of s is de�ned. The de�nitions of trimmed
model and proper domain can be easily extended to incomplete strategies.

In the naive approach, we can take the domain of a strategy to be the whole
Q. Note, however, that the assignment of actions for states in Q \QS does not
have any signi�cance, because those states are never reached with strategy S.
We observe that strategies S1, S2 that assign identical actions in the same proper
domain QS1 = QS2 can be considered equivalent, regardless of actions assigned
in Q\QS1

. The equivalence class can be represented by a partial function which
is only de�ned for the relevant states in Q, i.e., for states in QS .

De�nition 3. An incomplete strategy s is proper i� dom(s) = Qs.

Since only proper strategies are worth considering, we can signi�cantly limit
the searched strategy space by treating all strategies equivalent to S as a single
proper strategy. This single proper strategy can be viewed a representative of
an equivalence class of strategies. The size of each such equivalence class can be
described as ∏

a∈A

∏
[q]∼a∈[Q\QS]∼a

Act([q]∼a
)

where Act([q]∼a
) denotes the number of actions available for agent a in the

equivalence class of states [q]∼a
.

3.2 Representation of Partial Strategies

Proper strategies are incomplete in the sense that they leave the actions at
unreachable states unde�ned. Still, in their proper domain, they are completely
deterministic. In many cases it is worth considering partial strategies that leave
some choices open, even in the reachable zone. The intuition is: in some states,
all choices work equally well, and thus it is not necessary to �x a deterministic
choice in those states.

De�nition 4. A partial strategy for agent a in model M is a nondeterministic,
possibly incomplete strategy sa : Q ⇀ 2N such that, for each q ∈ dom(s), we have
either sa(q) = da(q) or sa is a singleton.

The explicit part of a partial strategy sa is the part of sa where sa(q) is
always a singleton. The implicit part of a partial strategy sa is the part of sa
where sa(q) = d(q). We will refer to the explicit and implicit parts of sa as
expl(sa) and impl(sa), respectively. Also, we will sometimes call dom(expl(s))
the explicit domain of s, and dom(impl(s)) the implicit domain of s.

De�nition 5. We de�ne the size of a strategy s as the number of indistin-
guishability classes of states contained in dom(s). A partial strategy s is empty
i� expl(s) has size 0. Conversely, s is fully determined i� impl(s) has size 0.

In a modelM , the move functionD determines the sets of actions available to
an agent in any state. A partial strategy can be seen as a possible restriction on
the function. An empty strategy is just a strategy that imposes no restriction. A
fully determined strategy, on the other hand, assigns a concrete action to every
relevant state. All other partial strategies have explicit assignments for some
states, and implicit for the others (according to the move function D).

Example 3. Consider a model with 2 states Q = {color, noColor}, with a sin-
gle agent with 2 actions Act = {push,wait}. The move function in the model
permits the execution of both actions in both states.

An empty strategy ES is equivalent to the move function, i.e. it permits the
execution of both actions in both states as well. An example fully determined
strategy CS de�ned in the following way: CS(x) = {push if x = color, wait if x =
noColor} assigns a single action for all states in QS , leaving the implicit strategy
empty (of size 0). An example partial strategy PS de�ned in the explicit part
in the following way: PSexplicit(x) = {push if x = color} must have the implicit
domain cover the rest of states in QS , and therefore the implicit strategy is:
PSimplicit(x) = {{push, wait} if x = noColor}.

The above concepts are so far only speci�ed for individual strategies. This
can be easily extended to coalitional strategies. A partial strategy for A ⊆ Σ is
simply a tuple of partial strategies for a ∈ A. It is empty i� all its components
are empty, fully determined i� all its components are determined, etc.

3.3 Looking for Strategies on a Path

As we will see in Section 5, restricting the search to proper strategies and starting
the synthesis from the empty partial strategy brings considerable computational
bene�ts. In many cases, however, the space of potential solutions is still huge.
In this section, we propose to consider a strict subclass of strategies that �x
deterministic choices on a single path only, and leave choices o� the path open.
Our ultimate heuristic will be to look at such strategies only, which should work
well for models with a limited degree of nondeterminism.

De�nition 6. We call a sequence of states (q1, . . . , qn) a lasso in M i�: (a)
there is a transition in M between every qi and qi+1, and (b) there is a transition
between qn and some qi, 1 ≤ i ≤ n. Note that a lasso implicitly de�nes an in�nite
path that starts with (q1, . . . , qn) and then cycles in the periodic part.

We call (q1, . . . , qn) a line i� condition (a) is satis�ed.

De�nition 7. A partial strategy S is path-based i� dom(expl(S)) is a lasso in
MS. Moreover, S is bounded path-based i� dom(expl(S)) is a line in MS.

4 The SMC Model Checker

SMC (Strategic Model Checker) is a software tool designed for model checking
ATLir and synthesis of uniform strategies. The current version of SMC can

model-check ATLir formulae that contain at most a single coalitional modality.
More precisely, the following formulae classes are supported:

� ϕ

� 〈〈A〉〉Gϕ
� 〈〈A〉〉Fϕ
� 〈〈A〉〉Xϕ
� 〈〈A〉〉ϕUϕ′

where ϕ,ϕ′ are boolean formulae. Extension to the full logic of ATLir is planned
as the next step. We note, however, that the importance of formulae with nested
modalities is rather limited. For instance, formula 〈〈A〉〉F 〈〈B〉〉G p refer to A'a
ability to enable some ability of B � in this case, to maintain p forever. This
kind of properties is speci�ed rather seldom; much more often, one wants to
make sure that some agents A can bring about a factual state of a�airs p (e.g.,
by specifying and verifying formula 〈〈A〉〉F p).

In this section, we present the algorithm behind SMC. We start with a general
description, then provide a more detailed description of the most important step,
and eventually an in-depth description of that step.

4.1 High-Level Description of the Algorithm

The general structure of the algorithm is as follows:

1. For formula of type 〈〈C〉〉ϕ, synthesize a previously unveri�ed strategy SC to
be veri�ed;

2. Model-check the CTL formula Aϕ in the trimmed model M † SC ;
3. If step 2 returns true then terminate returning true together with the strat-

egy SC ;

4. If all strategies have been veri�ed, return false and terminate;

5. Else, return to start.

Step 1 (strategy synthesis step) is the most signi�cant, as step 2 can be
performed with the well-known �xpoint model checking algorithm for CTL, with
a slightly modi�ed pre-image function that operates on iCGS's. Points 3�5 are
simple binary decision steps. Thus, our next move is to elaborate on step 1:

1. Start with an empty partial strategy and with the initial state;

2. In a loop, generate potential partial strategies by �xing actions for newly dis-
covered states that do not have already �xed actions. These newly discovered
states are required to be reachable with the employment of this strategy;

3. Continue the above step until a successful strategy is found or all strategies
have been explored.

4.2 Low-Level Description of Strategy Synthesis

In order to implement the strategy synthesis step, we de�ne the following struc-
tures. A strategy task ST = 〈F,U, S〉 consists of:

1. The set of �xed states F . For any state in F we have already assigned actions
for all agents in the explicit domain of the partial strategy S;

2. The set of unchecked states U . States in U may have no explicit actions
assigned in S yet for some or all of the agents;

3. The partial strategy S.

A strategy tasks list STL is a list of strategy tasks. We will implement STL as
a sequential data structure (e.g. queue or stack) that stores the strategy tasks
to be processed in the future.
The list is initialized with STL0 = {〈∅, {initialState}, emptyPartialStrategy〉}.

The strategy synthesis algorithm proceeds as follows:

1. If STL = ∅, terminate with answer no strategy found. Otherwise remove a
strategy task from STL in order to process it. This current strategy task
will be referred to as CST = 〈F,U, S〉;

2. Fix a current state CS ∈ U and do F = F ∪ {CS}, U = U \ {CS};
3. Generate all possible children strategies for S, reachable by �xing a previ-

ously un�xed action for the current state CS. (Note: This step generates
strategies if at least one of the agents in the checked coalition has an un�xed
action in the current state CS. We do not �x actions for agents that already
have a �xed action in this state.)

4. If there were no new strategies generated in step 3, generate a new strategy
task 〈F,U, S〉. (Note: the strategy is still S, but we have changed F and U
in step 2.) Add this strategy task to STL if U 6= ∅. Assume S as current
strategy;

5. If there were new strategies generated in step 3, process the �rst strategy as
the current strategy. Postpone processing all other strategies except the �rst
one by adding appropriate strategy tasks to STL. Do U = ∅ if path-centric
synthesis is enabled. Add to U the successors (states reachable in a single
step) of CS, that are not present in F ∪ U .

6. If only unbounded (complete) strategies veri�cation is enabled, ignore this
step unless the current strategy is an unbounded (respectively, complete)
strategy. Otherwise, pass the current strategy to the veri�cation step (done
by means of CTL �x-point model checking of the trimmed model M † S). If
the veri�cation yields true result, terminate with answer strategy found and
return the current strategy as witness;

7. Return to step 1.

In order to ensure that the algorithm is well-understood, some further ex-
planations are needed. As stated in the high-level description, the crucial point
is that we extend partial strategies by adding a single entry into the explicit
domain of a partial strategy. For any agent in the checked coalition, we add a

single entry that �xes the action in this state, unless such an action is already
�xed. The possibility of this action being �xed in a previously unchecked global
state stems from the presence of imperfect information. While this global state
has certainly not been checked before, it might be indistinguishable for this par-
ticular agent with a state that has been checked before. In such a situation this
agent has an action for the equivalence class containing both those states al-
ready �xed. Step 4 describes a very special case of such an event, where we have
a previously unchecked global state that has already �xed actions for all agents
in the coalition. Step 5 on the other hand describes a situation where at least one
of the agents has no �xed action for this current global state, therefore has the
possibility to extend his partial strategy by adding a new entry in the explicit
domain of the strategy.
In step 5, if path-centric synthesis is enabled, the algorithm only considers as
sources of strategy re�nement states reachable from the current state (CS). This
is achieved by doing U = ∅. Essentially, always only one successor of the current
state CS is used to extend a strategy, then all other successors are forgotten.
This leads to path-centric strategies.

4.3 Discussion

Our approach enables the capability of constructing strategies of limited explicit
strategy size. To illustrate the idea that fully determined strategies with a large
domain are not always required, we present an example where a partial strategy
with the explicit domain size 1 is su�cient.

Example 4. Consider a model of a game of checkers with two players, a and
b. The formula is 〈〈a〉〉FplayerAHasLessPiecesThanCurrently. The meaning of this
formula is that agent a has a strategy to enforce himself having in the future at
least one piece less than he currently has. The initial state of the model is an
already started game where a move for a exists that forces b to capture a piece
in the next transition of the system. Therefore there exists a successful partial
strategy to satisfy the veri�ed formula where the explicit domain of this strategy
has size 1. In other words, a successful partial strategy that just assigns a single
action in the initial state is possible to be constructed.

This example demonstrates that it is not necessary to build fully deter-
mined nor unbounded strategies sometimes. The output of this example can be
a bounded path-based strategy of size 1, as the explicit part su�ces as output.
On the other hand, generating a fully determined strategy could easily require
a domain size of 103 or more.

A proper partial strategy can be described by the explicit strategy part. This
part can often be of small size, what the example above illustrates. Example
bene�ts of smaller size of strategy domains are improved readability for humans
and reduced memory/processing requirements for computers.

4.4 Variants of the Algorithm

In the experiments, we will use three di�erent versions of the SMC algorithm.
SMC with branching strategy search searches through all the proper strategies,
which usually requires �xing choices for multiple successors of a given state
(hence the �branching� moniker). SMC with path-based strategy search searches
only through path-based strategies, and SMC with bounded path-based strategy
search searches only through bounded path-based strategies.

We call a variant of SMC sound i� SMC(M, q, 〈〈A〉〉ϕ) = true implies
M, q, 〈〈A〉〉 |= ϕ. Conversely, the variant of SMC is complete i� M, q, 〈〈A〉〉 |= ϕ
implies SMC(M, q, 〈〈A〉〉ϕ) = true. The following claims are straightforward:

Theorem 1. SMC with branching strategy search is sound and complete.

Theorem 2. SMC with (bounded or unbounded) path-based strategy search is
sound but not necessarily complete.

5 Experimental Results

In this section, we present experimental results obtained by running the SMC
model checker on a parameterized class of models. All the tests have been con-
ducted on a notebook with an Intel Core i7-3630QM CPU with dynamic clock
speed of 2.4 GHz up to 3.4 GHz. The clock speed observed in the conducted tests
was 3.2 GHz. The computer was equipped with 8 GB of RAM (two modules
DDR3 PC3-12800, 800 MHz bus clock, e�ective data rate 1600 MT/s, in dual-
channel con�guration). The experiments with SMC were conducted on Windows
7 OS, the experiments with MCMAS on Linux Ubuntu 12.04.2.

5.1 Working Example: Castles

For the experiments, we designed a simple scalable model called Castles. The
model consists of one agent called Environment that keeps track of the health
points of three castles, plus a number of agents called Workers each of whom
works for the bene�t of a castle. Health points (HP, ranging from 0 to 3) represent
the current condition of the castle; 0 HP means that the castle is defeated.

Workers can execute the following actions:

1. attack a castle they do not work for,
2. defend the castle they do work for, or
3. do nothing.

Doing nothing is the only available action to a Worker of a defeated castle. No
agent can defend its castle twice in a row, it must wait one step before being
able to defend again. A castle gets damaged if the number of attackers is greater
than the number of defenders, and the damage is equal to the di�erence. For
example, if castle 3 is attacked by two agents, it loses 2 HP if not defended, or

1 HP if defended by a single agent. In the initial state, all the castles have 3 HP
and every Worker can engage in defending its castle.

The indistinguishability relations for Workers are de�ned as follows. Every
Worker knows if it can currently engage in defending its castle, and can observe
for each castle if it is defeated or not. This de�nes 4 observable (boolean) vari-
ables for the agent. Now, q ∼a q′ i� q, q′ have the same values of the variables.

The model is parameterized by the number of agents and the allocation of
Workers. For example, an instance with 1 worker assigned to the �rst castle,
3 workers assigned to the second and 4 to the third castle will be denoted by
9 (1, 3, 4).

5.2 Performance Results

We begin by presenting some performance results for the formula
ϕ1 ≡ 〈〈c12〉〉F castle3Defeated

saying that the agents working for castles 1 and 2 have a collective strategy
to defeat castle 3, no matter what the other agents do. Note that the formula
is true in all the models that we have tested. We used the SMC variant with
(unbounded) path-based strategy search. The timeout was set to 10 minutes.

N Total time (ms) 1st step (ms) 2nd step (ms) Peak memory (MB)

4 (1 1 1) 130 100 29 15
5 (1 1 2) 6 686 336 6 349 198
6 (2 1 2) 4 508 548 3 957 606
7 (2 2 2) 3 366 2 637 728 77
8 (3 2 2) 255 549 27 040 228 505 454

The table presents results for a sequence of models of various size. The
columns should be interpreted in the following way (from left to right):

1. The scalability factor N : the total number of agents (incl. Environment),
followed by the number of agents working for Castles 1, 2, 3 respectively;

2. Total �wall clock� time taken by the model checking algorithm in milliseconds
(excluding the input parsing time);

3. �Wall clock� time taken by the �rst step of the algorithm (strategy synthesis);
4. �Wall clock� time taken by the second step (CTL veri�cation);
5. Peak memory usage observed during the execution of the program in megabytes.8

5.3 Number of Generated Strategies

The table below presents the number of strategies processed by the algorithm,
which might be of an even greater interest than raw performance times. The SMC
variant, parameters of tests, and the formula are the same as in Section 5.2.

8 Note that the default Java Virtual Machine makes it hard to determine the real
maximum usage, as memory is freed nondeterministically.

N Agents Potential strategies Proper strategies Tested strategies

4 (1 1 1) 2 4.3 ∗ 108 283 1
5 (1 1 2) 2 4.3 ∗ 108 229 4
6 (2 1 2) 3 8.9 ∗ 1012 3 507 3
7 (2 2 2) 4 1.8 ∗ 1017 4, 4 ∗ 105 1
8 (3 2 2) 5 3.8 ∗ 1021 not calculated 3

The columns are interpreted as follows (left to right):

1. The scalability factor N ;
2. The number of agents in the coalition for which a strategy is constructed;
3. The total number of potential strategies;
4. The total number of proper unbounded path-based strategies;
5. The number of strategies processed by the algorithm.

5.4 Comparison to MCMAS

The only tool for ATLir model checking that we are aware of is an experimental
version of MCMAS [19], not yet released publicly at the time of writing this
paper. Thanks to the authors of MCMAS who kindly provided us with the
experimental version, we could compare the output of both model checkers. All
the parameters of the experiments were like in Sections 5.2�5.3, except for the
timeout (set to 120 minutes). Moreover, we used the following two formulae:
ϕ1 ≡ 〈〈c12〉〉F castle3Defeated (same as before; true in the tested models)

ϕ2 ≡ 〈〈w12〉〉F allDefeated (false in the tested models)
Formula ϕ2 says that Workers 1 and 2 have a collective strategy to enforce that
all the castles become defeated, no matter what the other agents do. The tables
below compare the performance of both model checkers.

N Formula MCMAS execution time SMC execution time

4 (1 1 1) ϕ1 72 s 0.1 s
5 (2 1 1) ϕ1 > 120 mins. (interrupted) 0.2 s

4 (1 1 1) ϕ2 78 s 5.4 s
5 (2 1 1) ϕ2 error 51 s

N Formula MCMAS tested strategies SMC tested strategies

4 (1 1 1) ϕ1 ≈ 20 000 1
5 (2 1 1) ϕ1 > 2 ∗ 106 (interrupted) 1

4 (1 1 1) ϕ2 ≈ 20 000 283
5 (2 1 1) ϕ2 error 106

It is important to note that MCMAS and SMC implement slightly di�erent
semantics of ATLir. While for SMC a strategy is successful if it succeeds on the
paths starting from the actual initial state, MCMAS requires the strategy to suc-
ceed also on all the paths starting from indistinguishable states. For coalitional

indistinguishability, MCMAS uses the �everybody knows� epistemic relation. A
quick calculation shows that the initial epistemic class of a Worker contains
33 ∗ 2W−1 states, where W is the number of Workers in the model. For a coali-
tion of two Workers, there are 27 ∗ 2W−1 + 27 ∗ 2W−1 − 27 ∗ 2W−2 = 81 ∗ 2W−2
indistinguishable states. Thus, MCMAS needs to check 162 times more paths
than SMC for N = 4(1 1 1), and 324 times more paths for N = 5(2 1 1).

5.5 Perfect vs. Imperfect Information Strategies

In this work, we also wanted to compare how model checking of abilities under
imperfect information compares to the standard ATL case. To this end, we have
compared the performance of SMC and the experimental version to the standard
version of MCMAS [16]. The table reports model checking times (in milliseconds)
for formula ϕ1 in various instances of the Castles class.

N perfect info (MCMAS) imperfect info (SMC) imperfect info (MCMAS)

4 (1 1 1) 43 130 72 000
5 (1 1 2) 70 6 686 timeout
6 (2 1 2) 250 4 508 timeout
7 (2 2 2) 954 3 366 timeout
8 (3 2 2) 1 996 255 549 timeout

5.6 Path-Based vs. Branching Strategy Search

So far, we have only presented experimental results for the (sound but incom-
plete) SMC variant using path-based strategy search. Here, we compare its per-
formance to the complete variant, i.e., one that searches all the proper partial
strategies. The table below gives the model checking times (in milliseconds) for
formula ϕ1 in di�erent instances of the class of models.

N Path-based strategy search Branching strategy search

4 (1 1 1) 130 769
5 (1 1 2) 6 686 13 630
6 (2 1 2) 4 508 72 419
7 (2 2 2) 3 366 261 704
8 (3 2 2) 255 549 timeout

5.7 Example Output of Strategy Synthesis

One of the most interesting features of SMC is that it not only veri�es exis-
tence of a suitable strategy, but also returns the strategy. Thus, SMC can be
potentially used as a multi-agent planner. To conclude the section, we present
some strategies produced by SMC for our working example. We use the model
with N = 5(1, 1, 2) and the formula ϕ3 ≡ 〈〈c12〉〉F castle3Damaged which says

that Workers 1 and 2 have a collective strategy to decrease the HP of castle 3.
For presentation purposes we have shortened the representation of agents' local
states, e.g., we write �FFF� instead of �Environment.castle1Defeated = false,
Environment.castle2Defeated = false, Environment.castle3Defeated = false�.

While performing veri�cation with (unbounded) path-based strategy search,
the following solution was found after 2 attempts:

Agent Worker1 - Generated strategy:

(FFF, Worker1.canDefend = true): {defend}

(FFF, Worker1.canDefend = false): {attack3}

(TFT, Worker1.canDefend = true): {doNothing}

Agent Worker2 - Generated strategy:

(FFF, Worker2.canDefend = true): {attack3}

(TFF, Worker2.canDefend = true): {defend}

(TFT, Worker2.canDefend = true): {doNothing}

We also performed veri�cation with bounded path-based strategy search. The
following solution was found after 12 attempts:

Agent Worker1 - Generated strategy:

(FFF, Worker1.canDefend = true): {attack3}

Agent Worker2 - Generated strategy:

(FFF, Worker2.canDefend = true): {attack3}

6 Conclusions

Veri�cation of strategic abilities under imperfect information has been exten-
sively studied theoretically, but at the same time ignored as far as practical al-
gorithms and tools are concerned. This paper reports our �rst step towards �lling
the gap. We propose and implement an algorithm for model checking ATLir, i.e.,
the variant of alternating-time logic based on uniform positional strategies. The
experimental results are encouraging. In particular, our algorithm signi�cantly
outperformed the only other existing tool (an experimental version of MCMAS),
despite the fact that MCMAS uses symbolic model checking techniques based
on OBDD's, and our SMC operates purely on explicit representations of states.

Our algorithm enables speedup coming from two potential sources. First, it
considers only so called proper strategies which are in fact equivalence classes of
concrete strategies. A variant of SMC restricts the search even further by consid-
ering only so called path-based strategies. Secondly, strategies are sought incre-
mentally, starting from simplest ones. In many scenarios, whenever a successful
strategy exists, it can be found among the relatively simple ones. In those cases,
our algorithm �nds a good strategy after a number of attempts vastly smaller
than the number of all proper strategies in the model. In the experiments, the
�rst kind of speedup yielded reductions of the search space by order of 106 times
up to 1012 times. The second kind of speedup yielded solutions after no more
than 10 attempts for problems where the number of proper strategies ranged
from order of 102 to 105. As a result, the strategy veri�cation sub-routine was

called only around 100 = 1 times, yielding a speedup of the veri�cation stage of
order of 102 up to 105.

Despite the promising experimental results, our tests showed also that the
problem itself is computationally di�cult. We observed an overwhelming gap
in performance between veri�cation of strategic abilities for perfect vs. imper-
fect information strategies. On the other hand, there is still much room for im-
provement. In particular, we plan to employ symbolic model checking techniques
(based on OBDD's and/or translation to SAT solvers) as well as parallelization
using e.g. the DACFrame, Akka, or GridGain platforms for parallel computation
(cf. also [15]). Further future work includes extending the syntax accepted by
SMC to all ATLir formulae in negation normal form, more experiments with
various benchmark models and formulae, and an extensive case study on an ex-
ample of practical interest, e.g., veri�cation of privacy and noninterference in
a voting protocol. For the last task, an appropriate abstraction will have to be
developed, possibly along the lines of [14].

Acknowledgements. This contribution has been supported by the Foundation for
Polish Science under International PhD Projects in Intelligent Computing; project
�nanced from The European Union within the Innovative Economy Operational Pro-
gramme 2007-2013 and European Regional Development Fund. Wojciech Jamroga
acknowledges the support of the FNR (National Research Fund) Luxembourg un-
der project GALOT � INTER/DFG/12/06. We gratefully acknowledge the help of
Hongyang Qu and Alessio Lomuscio who kindly provided us with the latest experi-
mental version of MCMAS, as well as MCMAS model generators.

References

1. T. Ågotnes. A note on syntactic characterization of incomplete information in
ATEL. In Procedings of Workshop on Knowledge and Games, pages 34�42, 2004.

2. T. Ågotnes, V. Goranko, W. Jamroga, and M. Wooldridge. Knowledge and ability.
In W. van der Hoek H.P. van Ditmarsch, J.Y. Halpern and B.P. Kooi, editors,
Handbook of Logics for Knowledge and Belief. Springer, 2014. To appear.

3. R. Alur, L. de Alfaro, R. Grossu, T.A. Henzinger, M. Kang, C.M. Kirsch, R. Ma-
jumdar, F.Y.C. Mang, and B.-Y. Wang. jMocha: A model-checking tool that
exploits design structure. In Proceedings of ICSE, pages 835�836, 2001.

4. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic.
In Proceedings of the 38th Annual Symposium on Foundations of Computer Science
(FOCS), pages 100�109. IEEE Computer Society Press, 1997.

5. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic.
Journal of the ACM, 49:672�713, 2002.

6. R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, and S. Tasiran.
MOCHA user manual. In Proceedings of CAV'98, volume 1427 of Lecture Notes in
Computer Science, pages 521�525, 1998.

7. N. Bulling and W. Jamroga. Comparing variants of strategic ability. Journal of
Autonomous Agents and Multi-Agent Systems, 28(3):474�518, 2014.

8. J. Calta, D. Shkatov, and B.-H. Schlinglo�. Finding uniform strategies for multi-
agent systems. In Proceedings of CLIMA, volume 6245 of Lecture Notes in Com-
puter Science, pages 135�152. Springer, 2010.

9. C. Dima and F.L. Tiplea. Model-checking atl under imperfect information and
perfect recall semantics is undecidable. CoRR, abs/1102.4225, 2011.

10. W. Jamroga and T. Ågotnes. Modular interpreted systems: A preliminary report.
Technical Report IfI-06-15, Clausthal University of Technology, 2006.

11. W. Jamroga and J. Dix. Model checking ATLir is indeed ∆P
2 -complete. In Pro-

ceedings of EUMAS'06, 2006.
12. W. Jamroga and W. van der Hoek. Agents that know how to play. Fundamenta

Informaticae, 63(2�3):185�219, 2004.
13. M. Kacprzak and W. Penczek. Unbounded model checking for Alternating-time

Temporal Logic. In Proceedings of AAMAS-04, 2004.
14. M. Köster and P. Lohmann. Abstraction for model checking modular interpreted

systems over ATL. In Proceedings of AAMAS, pages 1129�1130, 2011.
15. M. Kwiatkowska, A. Lomuscio, and H. Qu. Parallel model checking for temporal

epistemic logic. In Proceedings of ECAI, pages 543�548, 2010.
16. A. Lomuscio, H. Qu, and F. Raimondi. MCMAS : A model checker for the veri�-

cation multi-agent systems. In Proceedings of CAV, volume 5643 of Lecture Notes
in Computer Science, pages 682�â��688, 2009.

17. A. Lomuscio and F. Raimondi. MCMAS : A model checker for multi-agent systems.
In Proceedings of TACAS, volume 4314 of LNCS, pages 450�454, 2006.

18. P. Papalamprou. Logic-based veri�cation of games with imperfect information.
Master thesis, University of Luxembourg, 2013.

19. H. Qu, A. Lomuscio, and F. Raimondi. MCMAS with uniform strategies. Personal
communication, 2014.

20. P. Y. Schobbens. Alternating-time logic with imperfect recall. Electronic Notes in
Theoretical Computer Science, 85(2):82�93, 2004.

21. W. van der Hoek, A. Lomuscio, and M. Wooldridge. On the complexity of practical
ATL model checking. In P. Stone and G. Weiss, editors, Proceedings of AAMAS'06,
pages 201�208, 2006.

