
Strategic Planning through Model Checking of

ATL Formulae

Wojciech Jamroga

Parlevink Group, University of Twente, Netherlands
jamroga@cs.utwente.nl

http://www.cs.utwente.nl/∼jamroga

Abstract. Model checking of temporal logic has already been proposed
for automatic planning. In this paper, we introduce a simple adaptation
of the ATL model checking algorithm that returns a strategy to achieve
given goal. We point out that the algorithm generalizes minimaxing, and
that ATL models generalize traditional game trees. The paper ends with
suggestions about other game theory concepts that can be transfered to
ATL-based planning.

Keywords: multi-agent systems, multi-agent planning, model checking,
minimaxing.

1 Introduction

Logic-based approaches to Artificial Intelligence seem to be presently underval-
ued by most AI practitioners. This owes much to the fact that logic was believed
to deliver the ultimate solution for all basic AI problems for a long time, and
the disappointment which came after that. Indeed, it is hard to claim now that
we can use logic (the way neural networks or genetic algorithms are used, for
instance) to obtain agents that behave in a satisfying way. Despite recent devel-
opment of logic-based tools for multi-agent systems, their applications restrict
mainly to artificial “toy worlds”, as opposed to the real world which is usually
fuzzy, noisy and, most of all, hard to characterize with a simple mathematical
model. However, we believe that mathematical logic – while probably not the
best tool for engineering – should still be important in AI research for at least
two reasons.

First, it provides us with a vocabulary for talking about systems, and gives
the vocabulary precise meaning via models and semantic rules.1 More impor-
tantly, mathematical models provide a conceptual apparatus for thinking about
systems, that can be as well used outside mathematical logic. The second reason
is that creating a formal model of a problem makes one realize many (otherwise

1 We do not mean here the crispness of predicates themselves (which might be seen
as a weakness as well, and certainly a reason why logic is less successful than soft
computing methods in many areas), but rather the precision on the meta-level for-
mulation of the language.

implicit) assumptions underlying his or her approach to this problem. The as-
sumptions are often given a simplistic treatment in the model, (otherwise the
models get too complex to be dealt with), yet their implications are usually
worth investigating even in this form. Moreover, having made them explicit, one
can strive to relax some of them and still use a part of the formal and conceptual
machinery – instead of designing solutions completely ad hoc.

1.1 Model Checking

Model checking is an interesting idea that emerged from the research on logic
in computer science. The model checking problem asks whether a particular
formula ϕ holds in a particular model M , which is often more interesting than
satisfiability checking (i.e. looking for a model M in which ϕ holds) or theorem

proving (i.e. proving that ϕ follows from some set of axioms), simply because
in many cases the designer can come up with a precise model of the system
behavior (e.g. a graph with all the actions that may be effected). only the model
is too large to check on the fly whether it fulfills the design objectives. This
seems especially useful in the case of dynamic or temporal logics, whose models
can be interpreted as game models, transition systems, control flow charts, data
flow charts etc. Moreover, model checking turns out to be relatively cheap in
computational terms. while satisfiability checking and theorem proving is often
intractable or even undecidable.

It has been already proposed that the model checking of computation tree
logic (CTL) formulae can be used for generating plans in deterministic as well
as non-deterministic domains [6, 7]. Alternating-time temporal logic ATL is an
extension of CTL that includes notions of agents, their abilities and strategies
(conditional plans) explicitly in its models. Thus, ATL seems even better suited
for planning, especially in multi-agent systems, which was already suggested
in [8]. In this paper, we introduce a simple adaptation of the ATL model check-
ing algorithm from [1] that – besides checking if a goal can be achieved – returns
also an appropriate strategy to achieve it. We point out that this algorithm gen-
eralizes the well-known search algorithm of minimaxing, and that ATL models
generalize turn-based transition trees from game theory. The paper ends with
some suggestions that the contribution can be bilateral, and that more game
theory concepts can contribute to modal logic-based models and algorithms for
multi-agent systems.

2 Multi-Agent Planning through ATL Model Checking

Alternating-time Temporal Logic ATL [1] is an extension of CTL [3], and inherits
from the latter several operators for describing temporal properties of systems: A

(for all paths), E (there is a path), g(at the next moment), 3 (sometime), 2 (al-
ways) and U (until). Typically, paths are interpreted as sequences of successive
states of computations. An example CTL model (transition system), together
with the tree of possible computations, is displayed in Figure 1. A CTL formula

q0 q1

q3 q2
win

halt

start

q0

q q0 0 q q0 1

q q q0 1 0 q q q0 1 2q q q0 0 0 q q q0 0 1

....

win

Fig. 1. Transition system and the tree of possible computations.

A3halt, for instance, expresses the property that the the system is bound to
terminate (which is true if the initial state is either q2 or q3, but false for q1
and q2). Another formula, E(¬halt)Uwin, means that it is possible achieve a
winning position before the system halts (which is true for all states except q4).

ATL replaces E and A with a class of cooperation modalities 〈〈A〉〉 (where A
is a group of agents). The common-sense reading of 〈〈A〉〉Φ is: “The group of

agents A have a collective strategy to enforce Φ regardless of what all the other

agents do”. ATL models include a set of playersΣ, a set of (global) system states
Q, valuation of propositions π (specifying which propositions are true in which
states), and decisions available to every player at each particular state; finally, a
complete tuple of decisions and a state imply a deterministic transition according
to the transition function δ. We will be writing δ(q, σA, σΣ\A) to denote the
system transition from state q when the agents from A decide to proceed with
(collective) action σA, and σΣ\A is the collective choice from their opponents.2

It is worth noting that the complexity of ATL model checking is linear
(O(nml), where n is the number of states in the model, m the number of tran-
sitions, and l – length of the tested formula), so the checking should terminate
in a sensible time even for huge models and formulae.

2.1 Planning Algorithm

In this section, a simple modification of the ATL model checking algorithm [1] is
proposed, as shown in Figure 2. Function pre is used here to go “one step back”
while constructing a plan for some coalition of agents. Thus, pre(A,Q1) takes
as input a coalition A and a set of states Q1 ⊆ Q and returns as output the set
Q2 of all states such that when the system is in one of the states from Q2, the
agents A can cooperate and force the next state to be one of Q1 (together with

2 Note that – although the transitions must be deterministic in a concurrent game
system – modeling nondeterminism is in fact easy. It suffices to add another player
(nature or environment) and attribute our uncertainty about the outcome of agents’
actions to decisions of this new player.

function plan(ϕ).
Returns a subset of Q for which formula ϕ holds, together with a (conditional)
plan to achieve ϕ. The plan is sought within the context of concurrent
game structure S = 〈Σ,Q,Π, π, δ〉.

case ϕ ∈ Π : return {〈q,−〉 | ϕ ∈ π(q)}
case ϕ = ¬ψ : P1 := plan(ψ); return {〈q,−〉 | q /∈ states(P1)}
case ϕ = ψ1 ∨ ψ2 :

P1 := plan(ψ1); P2 := plan(ψ2);
return {〈q,−〉 | q ∈ states(P1) ∪ states(P2)}

case ϕ = 〈〈A〉〉 fψ : return pre(A, states(plan(ψ)))
case ϕ = 〈〈A〉〉2ψ :

P1 := plan(true); P2 := plan(ψ); Q3 := states(P2);
while states(P1) 6⊆ states(P2)
do P1 := P2|states(P1); P2 := pre(A, states(P1))|Q3

od;
return P2|states(P1)

case ϕ = 〈〈A〉〉ψ1 Uψ2 :

P1 := ∅; Q3 := states(plan(ψ1)); P2 := plan(true)|states(plan(ψ2));
while states(P2) 6⊆ states(P1) do P1 := P1 ⊕ P2; P2 := pre(A,states(P1))|Q3

od;
return P1

end case

Fig. 2. Adapted model checking algorithm for ATL formulae. Cases of ψ1 ∨ ψ2 and
〈〈A〉〉3ψ are omitted, because the first can be re-written as ¬(¬ψ1 ∨ ¬ψ2), and the
latter as 〈〈A〉〉trueUψ.

A’s collective choices that accomplish this). Function states(P) returns all the
states for which plan P is defined. P1 ⊕P2 refers to augmenting plan P1 with all
new subplans that can be found in P2; finally P |Q1

denotes plan P restricted to
the states from Q1 only. More formally:

– pre(A,Q1) = {〈q, σA〉 | ∀σΣ\Aδ(q, σA, σΣ\A) ∈ Q1};
– states(P) = {q ∈ Q | ∃σ〈q, σ〉 ∈ P};
– P1 ⊕ P2 = P1 ∪ {〈q, σ〉 ∈ P2 | q /∈ states(P1)};
– P |Q1

= {〈q, σ〉 ∈ P | q /∈ Q1}.

Note that the algorithm returns a (non-empty) plan only if the outmost op-
erator of the checked formula is a cooperation modality (i.e. it specifies explicitly
who is to execute the plan and what is the objective). In consequence, our ap-
proach to negation is not constructive: for ¬〈〈A〉〉Φ, the algorithm will not return
a strategy for the rest of agents to actually avoid Φ (although ¬〈〈A〉〉Φ implies
that such a strategy exists). Similar remark applies to alternative, conjunction,
and nesting of strategic formulae. This approach is more natural than it seems
at the first glance – even if the subformulae refer to the same set of agents for
whom plans are needed. Consider, for instance, the transition system from Fig-
ure 1, and suppose that there is only one agent a in the system, who executes the
transitions. Formula 〈〈a〉〉2start∧〈〈a〉〉3halt is obviously true in q1; however, it
is hard to see what plan should be generated in this case. True, a has a plan to

nofuel
atRL

atCL
fuelOK
atRL

atCL
nofuel
atRP

atCL
fuelOK
atRP

atCL

nofuel
atRL

inCR
fuelOK
atRL

nofuel
atRP

fuelOK
atRP

nofuel
atRL

atCP
fuelOK
atRL

atCP
nofuel
atRP

atCP
fuelOK
atRP

atCP

inCR inCR inCR

< >nop,nop,nop
< >load,unload,nop
< >nop,unload,load

< >nop,nop,load
< >load,nop,load

< >load,unload,load

< >load,nop,nop

< >nop,nop,tank

< >load,nop,tank

1

5 6

2

3 4

87

9 10 1211

Fig. 3. A version of the Simple Rocket Domain. States of the system are labeled with
natural numbers. All the transitions for state 1 (the cargo and the rocket are in London,
no fuel in the rocket) are labeled. Output of agents’ choices for other states is analogous.

remain in q1 for ever, and he has a plan to halt the system eventually, but these
are different plans and cannot be combined. Similarly, 〈〈a〉〉2〈〈a〉〉3win holds in
q0, but it does not mean that a has a plan to win infinitely many times. He can
always see a way to win; however, if he chooses that way, he will be unable to
win again!

2.2 Rocket Example

As an example, consider a modified version of the Simple Rocket Domain from [2].
The task is to ensure that a cargo eventually arrives in Paris (proposition atCP);
there are three agents with different capabilities who can be involved, and a
single rocket that can be used to accomplish the task. Initially, the cargo may
be in Paris, at the London airport (atCL) or it may lie inside the rocket (inCR).
Accordingly, the rocket can be moved between London (atRL) and Paris (atRP).

There are three agents: x who can load the cargo, unload it, or move the
rocket; y who can unload the cargo or move the rocket, and z who can load the
cargo or supply the rocket with fuel (action fuel). Every agent can also decide
to do nothing at a particular moment (the nop – “no-operation” action). The
agents act simultaneously. The “moving” action has the highest priority (so, if
one agent tries to move the rocket and another one wants to, say, load the cargo,

then only the moving is executed). “Loading” is effected when the rocket does
not move and more agents try to load than to unload. “Unloading” works in a
similar way (in a sense, the agents “vote” whether the cargo should be loaded or
unloaded). If the number of agents trying to load and unload is the same, then
the cargo remains where it was. Finally, “fueling” can be accomplished alone or
in parallel with loading or unloading. The rocket can move only if it has some
fuel (fuelOK), and the fuel must be refilled after each flight. We assume that all
the agents move with the rocket when it flies to another place. The concurrent
game structure for the domain is shown in Figure 3.

plan(〈〈x〉〉3atCP) = { 〈9,−〉, 〈10,−〉, 〈11,−〉, 〈12,−〉 } (1)

plan(〈〈x, y〉〉3atCP) = { 〈2, x : load·y :nop〉, 〈6, x :move·y :nop〉, (2)

〈7, x :unload·y :unload〉, 〈8, x :unload·y :unload〉,

〈9,−〉, 〈10,−〉, 〈11,−〉, 〈12,−〉 }

plan(〈〈x, z〉〉3atCP) = { 〈1, x : load·z : load〉, 〈2, x : load·z : load〉, (3)

〈3, x :nop·z :fuel〉, 〈4, x :move·z :nop〉,

〈5, x : load·z :fuel〉, 〈6, x :move·z :nop〉,

〈7, x :unload·z :nop〉, 〈8, x :unload·z :nop〉,

〈9,−〉, 〈10,−〉, 〈11,−〉, 〈12,−〉 }

Plans to eventually achieve atCP – for x alone, x with y, and x with z,
respectively – are shown above. In the first case, x cannot guarantee to deliver
the cargo to Paris (unless the cargo already is there), because y and z may
prevent him from unloading the goods (1). The coalition of x and y is more
competent: they can, for instance, deliver the cargo from London if only there is
fuel in the rocket (2). However, they have no infallible plan for the most natural
case when 1 is the initial state. Finally, {x, z} have an effective plan for any
initial situation (3).

2.3 Minimaxing as Model Checking

It is easy to see that the algorithm from Figure 2 can be used for emulating
the well known search algorithm of minimaxing. To find the best plan for A,
we should label the final positions with the payoff values p1, p2, ..., then check
which plan(〈〈A〉〉3pi) returns a decision for the initial state, and pick the one
for maximal pi. The resulting procedure is still linear in the number of states,
transitions and different payoff values. Note that the algorithm proposed here
is more general than the original minimaxing: the latter can be applied only to
finite turn-based game trees (i.e. systems in which the number of states is finite,
there are no cycles, and players cannot act simultaneously), while the model
checking-based approach deals also with models in which players act in parallel,
and with infinite trees that can be generated by a finite transition system.

Let us also observe that the planning algorithm, proposed in this paper,
looks for a plan that must be successful against every line of events – hence the

algorithm generalizes minimaxing in zero-sum (i.e. strictly competitive) games.
It can be interesting to model the non-competitive case within the scope of ATL
as well: while checking 〈〈A〉〉ϕ, the opponents Σ \ A may be assumed different
goals than just to prevent A from achieving ϕ. Then, assuming optimal play
from Σ \ A, we can ask whether A have a strategy to enforce ϕ provided that
Σ \A intend (or desire) to bring about ψ.

3 Conclusions and Future Work

In this paper, a simple adaptation of ATL model checking from [1] is proposed.
The algorithm proposed here looks for infallible conditional plans to achieve
objectives that can be defined via ATL formulae. The algorithm generalizes
minimaxing in zero-sum games, extending its scope to (possibly infinite) games
in which the agents can act in parallel.

It seems that the link between model checking and minimaxing can be ex-
ploited to enrich the framework of ATL, too. First (as already mentioned in
the previous section), ATL might be extended so that it can be used to model
non-competitive games. Next, efficient pruning techniques exist for classical min-
imaxing – it may be interesting to transfer them to ATL model checking. More-
over, game theory has developed more sophisticated frameworks, like games with
incomplete information and games with probabilistic outcomes (including tem-
poral models, best defense criteria etc.). Investigation of similar concepts in
the context of ATL can prove worthwhile, and lead to new research questions,
concerning phenomena like non-locality [4] and design of efficient suboptimal
algorithms [5] in the scope of logics for multi-agent systems.

References

1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49:672–713, 2002.

2. A. L. Blum and M. L. Furst. Fast planning through graph analysis. Artificial
Intelligence, 90:281–300, 1997.

3. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 995–1072. Elsevier, 1990.

4. I. Frank and D. Basin. Search in games with incomplete information : A case study
using bridge card play. Artificial Intelligence, 100(1-2):87–123, 1998.

5. I. Frank, D.A. Basin, and H. Matsubara. Finding optimal strategies for imperfect
information games. In Proceedings of AAAI/IAAI, pages 500–507, 1998.

6. F. Giunchiglia and P. Traverso. Planning as model checking. ECP, pp. 1–20, 1999.
7. M. Pistore and P. Traverso. Planning as model checking for extended goals in

non-deterministic domains. In Proceedings of IJCAI, pages 479–486, 2001.
8. W. van der Hoek and M. Wooldridge. Tractable multiagent planning for epistemic

goals. In Proceedings of AAMAS-02, pages 1167–1174. ACM Press, 2002.

