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Abstract
Verification of strategic ability under imperfect in-
formation is challenging, with complexity rang-
ing from NP-complete to undecidable. This is
partly because traditional fixpoint equivalences fail
in this setting. Some years ago, an interesting idea
of fixpoint approximation was proposed for model
checking of ATLir, i.e., the logic of strategic abil-
ity for agents with imperfect information and im-
perfect recall. In this paper, we propose a new vari-
ant of the approximation, that uses the agent’s lo-
cal model rather than the global model of the sys-
tem. We prove correctness of the construction, and
demonstrate its effectiveness through experimental
results on scalable models of voting.

1 Introduction
Logics of strategic ability. Many relevant properties of
multi-agent systems (MAS) refer to strategic abilities of
agents and their groups. Such properties can be conve-
niently specified in modal logics of strategic ability, in partic-
ular Alternating-time Temporal Logic ATL [Alur et al., 2002;
Schobbens, 2004] and Strategy Logic SL [Mogavero et al.,
2010; Mogavero et al., 2014; Berthon et al., 2017]. For exam-
ple, the ATL formula ⟨⟨taxi⟩⟩G¬fatality expresses that the
autonomous cab can drive in such a way that no one gets ever
killed. Similarly, ⟨⟨taxi, passg⟩⟩F destination says that the
cab and the passenger have a joint strategy to arrive at the
destination, no matter what the other agents do.

Verification of strategic ability. Specifications in agent
logics can be used as input to algorithms and tools for model
checking, that have been in constant development for over
20 years [Alur et al., 1998; Alur et al., 2001; Kacprzak
and Penczek, 2004; Lomuscio and Raimondi, 2006; Chen
et al., 2013; Busard et al., 2014; Pilecki et al., 2014;
Huang and van der Meyden, 2014; Cermak et al., 2014;
Lomuscio et al., 2017; Cermák et al., 2015; Belardinelli et
al., 2017; Belardinelli et al., 2017; Jamroga et al., 2019;
Kurpiewski et al., 2019; Kurpiewski et al., 2021; Kaminski
et al., 2024]. However, model checking of strategic abili-
ties is hard, both theoretically and in practice. First, it suf-
fers from the well-known state/transition-space explosion.

Moreover, the space of possible strategies is at least expo-
nential on top of the state-space explosion, and incremen-
tal synthesis of strategies is not possible in general – espe-
cially in the realistic case of agents with partial observability.
Even for the more restricted (and computation-friendly) logic
ATL, model checking of its imperfect information variants
is ∆P

2 - to PSPACE-complete for agents playing memory-
less strategies [Bulling et al., 2010; Schobbens, 2004] and
EXPTIME-complete to undecidable for agents with per-
fect recall [Dima and Tiplea, 2011; Guelev et al., 2011]. The
theoretical results concur with outcomes of empirical studies
on benchmarks [Busard et al., 2015; Jamroga et al., 2019;
Lomuscio et al., 2017], as well as attempts at verification
of real-life multi-agent scenarios [Jamroga et al., 2020b;
Kim et al., 2022; Kurpiewski et al., 2023].

Fixpoint approximation. An interesting idea was pro-
posed in [Jamroga et al., 2019] for model checking of ATLir,
i.e., the variant of ATL for agents with imperfect informa-
tion and imperfect recall. There, we provided a translation
of ATLir formulas to alternating epistemic µ-calculus, such
that, whenever the translation of ϕ was true in a given model
M , the original formula must also hold there. Thus, in a sense
the translation provides a lower bound for the optimal out-
put of verification. The approximation proved conclusive and
relatively efficient in many instances of benchmarks [Jam-
roga et al., 2019], including models of real-life voting pro-
cedures [Kurpiewski et al., 2022]. Still, it operates on the
global model of the system, which means that it still suffers
from the state- and transition-space explosion.

Contribution. We observe that, for asynchronous MAS,
one can leverage the additional information coming from the
modular representation of the system [Jamroga et al., 2020a].
In particular, the fixpoint approximation algorithm in [Jam-
roga et al., 2019], has the property that, with most fixpoint
iterations, it adds or removes whole epistemic classes, rather
than arbitrary subsets of global states. Since epistemic classes
in the global model correspond to local states in the modular
representation, one can equivalently do the fixpoint computa-
tion on the (exponentially smaller) local model(s) of the given
agent(s). We formalize the idea through a translation to ap-
propriate µ-calculus formulas interpreted in the local model,
prove its correctness, and evaluate its efficiency through ex-
periments on two scalable benchmarks.
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Figure 1: ASV2
1: agents Voter1 (left) and Coercer (right)

In this paper, we only consider individual abilities and ob-
servable reachability/safety goals. The case of proper coali-
tions and non-observable goals is left for future work.

2 Preliminaries
We start by introducing representations of asynchronous
MAS, their models, and the relevant logical formalisms. In
our presentation, we follow [Jamroga et al., 2021].

2.1 Models of Asynchronous Interaction
Definition 1 (Asynchronous MAS). An asynchronous
multi-agent system (AMAS) S consists of n agents
A = {1, . . . , n}, each associated with a tuple Ai =
(Li, ιi,Evt i, Ri, Ti, PVi, Vi) including a set of local states
Li = {l1i , l2i , . . . , l

ni
i }, a designated initial state ιi ∈ Li, a

nonempty finite set of events Evt i = {α1
i , α

2
i , . . . , α

mi
i }, and

a repertoire of choices Ri : Li → 22
Evti . For each li ∈ Li,

Ri(li) = {E1, . . . , Em} is a nonempty list of nonempty choices
available to i at li. If the agent chooses Ej = {α1, α2, . . .},
then only an event in Ej can be executed at li within the
agent’s module. Moreover, Ti ⊆ Li × Evt i × Li is a lo-
cal transition relation, where (li, α, l

′
i) ∈ Ti represents that

event α ∈
⋃
Ri(li) changes the local state from li to l′i.

Agents are endowed with mutually disjoint, finite and possi-
bly empty sets of local propositions PVi, and their valuations
Vi : Li → 2PVi .

Note that each agent “owns” the events affecting its state,
but some of the events may be shared with other agents.
Those can only be executed synchronously by all the involved
parties. Moreover, the agent’s strategic choices are restricted
by its repertoire function.

Example 1 (Asynchronous Simple Voting). Consider a sim-
ple voting system ASVk

n with n + 1 agents (n voters and 1
coercer). Each Voteri agent can cast her vote for a candi-
date {1, . . . , k}, and decide whether to share her vote receipt
with the Coercer agent. The coercer can choose to punish
the voter or refrain from it. A graphical representation of
the agents for n = 1, k = 2 is shown in Fig. 1. We as-
sume that the coercer only registers if the voter hands in a
receipt for candidate 1 or not. The repertoire of the coercer
is defined as Rc(q

c
0) = {{gv1,1, gv1,2, ng1}} and Rc(q

c
g) =

Rc(q
c
n) = {{pun1}, {npun1}}, i.e., the coercer first receives

the voter’s decision regarding the receipt, and then controls
whether the voter is punished or not. Analogously, the voter’s
repertoire is given by: R1(q

1
0) = {{vote1,1}, {vote1,2}},

R1(q
1
j ) = {{gv1,j}, {ng1}} for j = 1, 2, and R1(q

1
1,g) =

R1(q
1
1,n) = R1(q

1
2,g) = R1(q

1
2,n) = {{pun1, npun1}}.

Notice that the coercer cannot determine which of the
events gv1,1, gv1,2, ng1 will occur; this is entirely under the
voter’s control. This way we model the situation where it is
the decision of the voter to show her vote or not. Similarly,
the voter cannot avoid punishment by choosing the strategy
allowing only npun1, because the choice {npun1} is not in
the voter’s repertoire. She can only execute {pun1, npun1},
and await the decision of the coercer.

The execution semantics is based on interleaving with syn-
chronization on shared events.

Definition 2 (Interleaved interpreted system). Let S be an
AMAS with n agents. The interleaved interpreted system
IIS(S) extends S with: (i) the initial states ι = (ι1, . . . , ιn);
(ii) the set of global states St ⊆ L1 × . . . × Ln that col-
lects all the configurations of local states, reachable from ι
by T (see below); (iii) the (partial) global transition func-
tion T : St × Evt ⇀ St, defined by T (g1, α) = g2 iff
Ti(g

i
1, α) = g i2 for all i ∈ Agent(α) and g i1 = g i2 for all

i ∈ A \ Agent(α);1 (iv) the global valuation of propositions
V : St→ 2PV , defined as V (l1, . . . , ln) =

⋃
i∈A Vi(li).

We will sometimes write g1
α−→ g2 instead of T (g1, α) = g2.

Also, we define relation ∼A= {(g , g ′) ∈ St × St | ∃i ∈
A . g i = g ′i} to connect states that are indistinguishable for
at least one agent i ∈ A.

Definition 3 (Enabled events). LetA = {a1, . . . , ak} ⊆ A =
{1, . . . , n} and −→

E A = (Ea1
, . . . , Eak

) for some k ≤ n, such
that Ei ∈ Ri(g

i) for every i ∈ A. Event β ∈ Evt is enabled
by the vector of choices −→

E A at g ∈ St iff, for every i ∈
Agent(β)∩A, we have β ∈ Ei, and for every i ∈ Agent(β)\
A, it holds that β ∈

⋃
Ri(g

i). That is, the “owners” of β
in A have selected choices that admit β, while all the other
“owners” of β might select choices that do the same. We
denote the set of such events by enabled(g ,−→E A).

Some combinations of choices enable no events. To ac-
count for this, the models of AMAS are augmented with
“silent” ϵ-loops, added when no “real” event can occur.

Definition 4 (Undeadlocked IIS). Let S be an AMAS, and
assume that no agent in S has ϵ in its alphabet of events. The
model of S, denoted IISϵ(S, I), extends the model IIS(S, I)
as follows:

• EvtIISϵ(S) = EvtIIS(S) ∪ {ϵ}, where Agent(ϵ) = ∅;

• For each g ∈ St, we add the transition g
ϵ−→ g iff there is

a selection of all agents’ choices −→E A = (E1, . . . , En), such
that Ei ∈ Ri(g

i) and enabledIIS(S,I)(g ,
−→
E A) = ∅. Then,

for every A ⊆ A, we also fix enabledIISϵ(S)(g ,
−→
E A) =

enabledIISϵ(S)(g ,
−→
E A) ∪ {ϵ}.

1g i denotes agent i’s state in g = (l1, . . . , ln), i.e., g i = li.
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Figure 2: The model IISϵ(ASV 2
1 )

In other words, an ϵ-loop is enabled whenever EA allows
the grand coalition to collectively block the execution of
any “real” event.

Example 2. The model of ASV2
1 is shown in Figure 2. Note

that it contains no ϵ-transitions, since no choices of the voter
and the coercer can cause a deadlock.

2.2 Reasoning About Strategies
Let PV be a set of propositions and A the set of all agents.
The syntax of alternating-time logic ATL [Alur et al., 2002;
Schobbens, 2004] is given by:
φ ::= p | ¬φ | φ ∧ φ | ⟨⟨A⟩⟩Xφ | ⟨⟨A⟩⟩Gφ | ⟨⟨A⟩⟩φUφ.

where p ∈ PV , A ⊆ A, X stands for “next,” G for “always
from now on,” U for “until,” and ⟨⟨A⟩⟩γ for “agent coalition
A has a strategy to enforce γ.” Derived boolean connectives
and constants (∨,⊤,⊥) are defined as usual. “Sometime” is
defined as Fφ ≡ ⊤Uφ.
Example 3. Voter enfranchisement can be expressed by for-
mula

∧
ȷ∈Candidates⟨⟨Voter⟩⟩F votedj.

Strategic ability of agents. Following [Jamroga et al.,
2021], a positional imperfect information strategy (ir-
strategy) for agent i is defined by a function σi : Li → 2Evti ,
such that σi(l) ∈ Ri(l) for each l ∈ Li. Note that σi
is uniform by construction, as it is based on local, and not
global states. The set of such strategies is denoted by Σir

i .
Joint strategies Σir

A for A = {a1, . . . , ak} ⊆ A are defined
as usual, i.e., as tuples of strategies σi, one for each agent
i ∈ A. By σA(g) = (σa1(g), . . . , σak

(g)), we denote the
joint choice of coalition A at global state g . An infinite se-
quence of global states and events π = g0α0g1α1g2 . . . is
called a path if gj

αj−→ gj+1 for every j ≥ 0. The set of all
paths in model M starting at state g is denoted by ΠM (g).
Definition 5 (Standard outcome). Let A ⊆ A. The standard
outcome of strategy σA ∈ Σir

A in state g of model M is the
set outStd

M (g , σA) ⊆ ΠM (g) such that π = g0α0g1α1 · · · ∈
outM (g , σA) iff g0 = g , and for each m ≥ 0 we have that
αm ∈ enabledM (gm, σA(gm)).

Definition 6 (Reactive outcome). The reactive outcome is
the set outReact

M (g , σA) ⊆ outStd
M (g , σA) such that π =

g0α0g1α1 · · · ∈ outReact
M (g , σA) iff αm = ϵ implies

enabledM (gm, σA(gm)) = {ϵ}.

Intuitively, the standard outcome collects all the paths
where agents in A follow σA, while the others freely choose
from their repertoires. The reactive outcome includes only
those outcome paths where the opponents cannot miscoor-
dinate on shared events. Let x ∈ {Std,React}. We ex-
tend the above definitions to subsets of global states G ⊆
St by outxM (G, σA) =

⋃
g∈G outxM (g , σA). Now, the ir-

semantics of ATL in asynchronous MAS [Alur et al., 2002;
Schobbens, 2004; Jamroga et al., 2021] is defined by:

M , g |=x p iff g ∈ V (p), for p ∈ PV ;
M , g |=x ¬φ iff M , g ̸|=x φ;
M , g |=x φ1 ∧ φ2 iff M , g |=x φ1 and M , g |=x φ2;
M , g |=x ⟨⟨A⟩⟩Xφ iff there is sA ∈ Σir

A such that, for each
path λ ∈ outxM ([g ]∼A

, sA), we have M , λ[1] |=x φ.
M , g |=x ⟨⟨A⟩⟩Gφ iff there is sA ∈ Σir

A such that, for each
λ ∈ outxM ([g ]∼A

, sA) and i ≥ 0, we get M , λ[i] |=x φ.
M , g |=x ⟨⟨A⟩⟩φ1 Uφ2 iff there is sA ∈ Σir

A such that, for
each path λ ∈ outxM ([g ]∼A

, sA), we have M , λ[i] |=x φ2

for some i ≥ 0 and M , λ[j] |=x φ1 for all 0 ≤ j < i.

Example 4. Let M = IISϵ(ASV k
n ), i.e., the model of the

AMAS in Example 1. Note that the Std and React seman-
tics coincide on M , as it includes no ϵ-transitions. Clearly,
M, (q10 , . . . , q

n
0 , q

c
0) |=

∧
ȷ∈Candidates⟨⟨Voter⟩⟩F votedj.

In this paper, we focus on formulas with no next step opera-
tors X and no nested strategic modalities. The corresponding
“simple” subset of ATL is denoted by sATL. The restriction
is less prohibitive than it seems at a glance. First, the X op-
erator is of little value for asynchronous systems. Secondly,
nested strategic modalities would only allow us to express
an agent’s ability to endow another agent with ability (or de-
prive the other agent of ability). Such properties are some-
times relevant, but simpler properties like ⟨⟨Voter⟩⟩F votedj
or ⟨⟨Voter⟩⟩G¬punished are usually of more interest.

2.3 Alternating Mu-Calculus
For strategies with perfect information, ATL can be embed-
ded in a variant of µ-calculus with ⟨⟨A⟩⟩X as the basic modal-
ity and no alternation of fixpoint operators [Alur et al., 2002].
At the same time, the analogous variant of µ-calculus for
imperfect information has incomparable expressive power to
ATLir [Bulling and Jamroga, 2011].

Formally, alternation-free alternating µ-calculus with im-
perfect information (af-AEµC) takes the next-time fragment
of ATLir and adds the least fixpoint operator µ. The greatest
fixpoint operator ν is defined as dual to µ. Let Vars be a set
of second-order variables ranging over 2St. The language of
af-AEµC is defined by:

ϕ ::= p | Z | ¬ϕ | ϕ ∧ ϕ | ⟨A⟩ϕ | µZ(ϕ) | Kaϕ,

where p ∈ PV , Z ∈ Vars , a ∈ A, A ⊆ A, and the
formulae are Z–positive, i.e., each free occurrence of Z is
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in the scope of an even number of negations. We define
νZ(ϕ(Z)) ≡ ¬µZ(¬ϕ(¬Z)), where ϕ(¬Z) denotes the re-
sult of substituting in ϕ all free occurrences of Z with ¬Z.
Additionally, every formula of af-AEµC in its negation nor-
mal form must contain no occurrences of ν (resp. µ) on any
syntactic path from an occurrence of µZ (resp. νZ) to a
bound occurrence of Z.

We evaluate the formulae of af-AEµC with respect to the
valuations of Vars , i.e., functions V : Vars → 2St. We denote
the set of all the valuations of Vars by Vals . If X ∈ Vars ,
Z ⊆ St, and V ∈ Vals , then by V[X := Z] we denote the
valuation of Vars such that V[X := Z](Y ) = V(Y ) for Y ̸=
X and V[X := Z](X) = Z. The denotational semantics
of af-AEµC assigns to each formula ϕ the set of states [[ϕ]]MV
where ϕ is true under the valuation V ∈ Vals :

• [[p]]MV = V(p),
• [[Z]]MV = V(Z),
• [[¬ϕ]]MV = St \ [[ϕ]]MV ,
• [[ϕ ∧ ψ]]MV = [[ϕ]]MV ∩ [[ψ]]MV ,
• [[⟨A⟩ϕ]]MV = {q ∈ St | ∃sA ∈ ΣA ∀λ ∈
out irM (q, sA) λ[1] ∈ [[ϕ]]MV },

• [[µZ(ϕ)]]MV =
⋂
{Q ⊆ St | [[ϕ]]MV[Z:=Q] ⊆ Q},

where ϕ ∈af-AEµC, p ∈ PV , Z ∈ Vars ,A ⊆ A, and a ∈ A.
If ϕ is a sentence, i.e., it contains no free variables, then its
validity does not depend on the valuation V , and we write
M , q |= ϕ instead of q ∈ [[ϕ]]MV .

3 New Fixed-Point Approximations
In multi-agent systems, the verification of properties often re-
quires analyzing the global model, which can be computa-
tionally expensive due to the state space explosion problem.
To mitigate this, we propose focusing on the local model of
an agent, which is a more tractable approach. By approximat-
ing the global model from the perspective of selected agent,
we can efficiently verify properties while maintaining a high
degree of accuracy.

3.1 Local Approximation Models of Ability
Definition 7 (Local Approximating Model). The local ap-
proximating model for an agent i captures the essen-
tial behavior of the agent within the context of the en-
tire system. This model is defined as a tuple Mi =
(Li,Evt i, Ri, PVi,Tappi), where Li represents the set of lo-
cal states, Evt i the set of events, Ri the repertoire function,
PVi the set of propositions, and Tappi the transition rela-
tion. The transition relation Tappi is particularly crucial
as it defines how the agent transitions between local states
based on events. Additionally, to account for the potential
livelock for i, we introduce an auxliary event symbol τ , such
that Agents(τ) = ∅.

In this section, we formalize the new fixpoint approxima-
tion by defining the transition relation in the local approxi-
mating model and proving its properties. We also introduce
the concepts of enabled events, standard outcomes, and re-
active outcomes within this model. These definitions lay the

groundwork for the execution semantics of the approximated
model and the subsequent model checking procedures.

By leveraging the local approximating model, we aim to
provide a scalable and efficient method for verifying multi-
agent systems, ensuring that the verification process remains
feasible even as the complexity of the system increases.
Definition 8 (Transition Relation in Local Approximating
Model). The transition relation Tappi is defined as follows:

• (l, ϵ, l) ∈ Tappi if there exist g ∈ St such that gi = l and
T (g, ϵ) = g.

• (l, τ, l) ∈ Tappi if there exist g1, g2, . . . , gn+1 ∈ St and
α1, α2, . . . , αn ∈ Evt \ Evt i such that:

– ∀j ∈ {1, 2, . . . , n}, (gj)i = l and T (gj , αj) = gj+1,
– gn+1 = g1.

In other words, there exists a sequence of global states in
the global model that starts and ends in the global state
containing the local state l, with all transitions in-between
labeled by events that are not in the agent i’s set of events.

• (l, α, l′) ∈ Tappi for α ∈ Evt i if there exist
g1, g2, . . . , gn+1 ∈ St and α1, α2, . . . , αn ∈ Evt such
that:

– ∀j ∈ {1, 2, . . . , n}, (gj)i = l and T (gj , αj) = gj+1,
– ∀j ∈ {1, 2, . . . , n− 1}, i /∈ Agent(αj),
– (gn+1)

i = l′ and αn = α.

In other words, there exists a finite path fragment in the
global model that runs entirely within the local state l (ex-
cept possibly the last transition) and ends in a global state
containing the local state l′, with the last transition labeled
by α and no other event executed by i.

The transition relation Tappi captures the essential behav-
ior of agent i within the global model. It defines how the
agent transitions between local states based on events, en-
suring that the local approximating model accurately repre-
sents the agent’s interactions with the system. Consistent with
the standard AMAS S (Definition 1), the transition relation
is characterized as a partial transition function, defined for
events within the agent’s repertoire of choices.

In order to talk about agent’s strategies, we need to de-
fine the enabled events in the local approximating model. An
event is enabled at a local state l if there exists a transition
from l to another local state l′ labeled with that event. This
concept is essential for defining the standard and reactive out-
comes of a strategy in the local approximating model.
Definition 9 (Enabled events in Local Approximating
Model). Event α ∈ Evt i is enabled at state l ∈ Li in the
local approximating model Mi if l α−→Mi

l′ for some l′ ∈ Li,
i.e., Tappi(l, α) = l′. The set of such events is denoted by
enabledMi(l).

The standard outcome captures the possible sequences of
events that can be executed by the agent according to its strat-
egy, while the reactive outcome further refines this by consid-
ering the enabled events at each local state.
Definition 10 (Standard outcome in Local Approximating
Model). Let i ∈ A. The standard outcome of strategy σi ∈
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Σir
i in state l ∈ Li of the local approximating model Mi is

the set outStd
Mi

(l, σi) ⊆ ΠMi
(l) such that π = l0α0l1α1 · · · ∈

outStd
Mi

(l, σi) iff l0 = l, and for each m ≥ 0 we have that
αm ∈ enabledMi

(lm, σi(lm)).

Definition 11 (Reactive outcome in Local Approximating
Model). Let i ∈ A. The reactive outcome of strategy
σi ∈ Σir

i in state l ∈ Li of the local approximating model
Mi is the set outReact

Mi
(l, σi) ⊆ outStd

Mi
(l, σi) such that π =

l0α0l1α1 · · · ∈ outReact
Mi

(l, σi) iff αm = lϵ for each m ≥ 0
implies enabledMi

(lm, σi(lm)) = {ϵ}.

3.2 Fixpoint Approximation on Local Models
Now we can define the model checking procedure for the lo-
cal approximating model. The model checking of a formula ϕ
in the local approximating model Mi is performed by check-
ing whether the formula holds for all sequences in the out-
come of the agent’s strategy in the initial state of the model.

Definition 12 (Model Checking Local Approximating
Model). Let x ∈ {Std,React} and i ∈ A. Mi, l |=x ⟨⟨i⟩⟩ϕ iff
there is a strategy σi ∈ Σir

i such that for all π ∈ outxMi
(l, σi)

we have Mi, π |=x ϕ.

To utilize the local approximating model for verifying the
formula ϕ in the original global model, we must impose cer-
tain restrictions on the set of possible formulas. Specifically,
all propositions that appear in ϕ must belong to the set PVi
of agent i. This requirement arises because the approximated
model retains only the local states of the agent from the orig-
inal model, omitting information about other agents. Conse-
quently, we focus exclusively on singleton coalitions in our
formulas. Additionally, similar to standard model checking
for AMAS S, we restrict our attention to formulas that ex-
clude next step operators X and nested strategic modalities.
These constraints ensure the feasibility and accuracy of veri-
fication within the local approximating model framework.

We use the following translations of simple formulas of
ATLir, that provide the lower approximation.

Definition 13 (Lower Approximation for sATL ir).

1. trL(⟨⟨i⟩⟩Fϕ) = µZ.(ϕ ∨ ⟨i⟩Z);
2. trL(⟨⟨i⟩⟩Gϕ) = νZ.(ϕ ∧ ⟨i⟩Z;

3. trL(⟨⟨i⟩⟩ψUϕ) = µZ.(ϕ ∨ (ψ ∧ ⟨i⟩Z)).
Next, we prove that, if trL(ϕ) is satisfied in the local

model, then ϕ must hold in the corresponding global model.

3.3 Correctness of the Approximation
Here, we present the main theoretical results of the paper,
showing that procedure proposed in Section 3 provides a
lower approximation of the verification problem for ATLir.
To this end, we introduce the additional concept of a partial
ir-strategy, which is simply a partial function σi : Li ⇀ 2Evti

with the standard constraints. The outcome of such σi is de-
fined analogously (note that it can contain infinite as well as
finite paths!). Additionally, for l ∈ Li and L ⊆ Li, we will
write “g ∈ l” instead of “gi = l,” and “g ∈ L” instead of
“g ∈ l for some l ∈ L.”

Theorem 1 (Approximation of reachability). Let x ∈
{Std,React}, i ∈ A, and l ∈ StMi . If Mi, l |=x µZ.(ϕ ∨
⟨i⟩Z) then, for every g ∈ l, we have M, g |=x ⟨⟨i⟩⟩Fϕ.

Theorem 1 is a direct consequence of the following lemma.

Lemma 1. Let Satxn(Mi, µZ.(ϕ ∨ ⟨i⟩Z)) be the set of states
in Mi, computed by the standard least fixpoint algorithm for
µZ.(ϕ∨⟨i⟩Z) with at most n fixpoint iterations (equivalently:
with at most n executions of the preimage operation for ⟨i⟩).

We claim that, for every n ∈ N, if L = Satxn(Mi, µZ.(ϕ ∨
⟨i⟩Z)) then, for every g ∈ L, we have M, g |=x ⟨⟨i⟩⟩Fϕ.

Proof. Proof by induction on n.

Base Case, n = 0: If n = 0, then L = Satx0(Mi, µZ.(ϕ ∨
⟨i⟩Z)) contains only the states where ϕ is satisfied. There-
fore, for every g ∈ StM such that gi = l ∈ L, we have
M, g |=x ϕ. Hence, M, g |=x ⟨⟨i⟩⟩Fϕ.

Inductive Step: Assume that the lemma holds for some
n ≥ 0. We need to show that it also holds for n + 1. Let
Ln+1 = Satxn+1(Mi, µZ.(ϕ∨⟨i⟩Z)). By the definition of the
least fixpoint algorithm, Ln+1 is the set of states where either
ϕ is satisfied or there exists a transition to a state in Ln. For-
mally, Ln+1 = {l |Mi, l |= ϕ ∨ ∃l′∈Ln(l, α, l

′) ∈ Tappi}.
Consider any g ∈ StM such that gi = l ∈ L. We have two

cases to consider:
1. Mi, l |= ϕ: In that case,M, g |=x ϕ, and henceM, g |=x

⟨⟨i⟩⟩Fϕ.
2. ∃l′∈Ln

(l, α, l′) ∈ Tappi: By the inductive hypothesis,
for every g′ ∈ StM st. g′i = l′, we have M, g′ |=x ⟨⟨i⟩⟩Fϕ.

Since (l, α, l′) ∈ Tappi, there exists a corresponding set
of transitions in the original model M from state g to some
states g′ such that g′i = l′. Since l′ was added in the current
iteration of the least fixpoint algorithm, it means that there
exists an event α ∈ Evt i such that (l, α, l′) ∈ Tappi. There-
fore, there exists a partial strategy in M for agent i to ensure
that ϕ is eventually satisfied starting from state g. By follow-
ing this strategy, agent i can navigate through the states in M
to reach a state where ϕ holds, thus satisfying the reachability
condition in the original model. Hence, M, g |=x ⟨⟨i⟩⟩Fϕ.

Formally, we proceed as follows:
(i) By the induction lemma, we obtain a partial strategy σa

defined on Ln, such that for every global state g ∈ Ln and
path λ ∈ outx(g, σa), the path λ is infinite and there exists an
index i ∈ N such that M,λ[i] |= ϕ.

(ii) From the (n+ 1)-th iteration, we derive a partial strat-
egy σ′

a defined on Ln+1 \Ln, such that for every global state
g ∈ Ln+1 \ Ln and path λ ∈ outx(g, σ′

a), the path λ is finite
and last(λ) ∈ Ln.

(iii) Since σa and σ′
a are defined on disjoint subsets of

locations, they can be combined into a new strategy σ′′
a =

σa ∪ σ′
a. Consequently, every path λ′′ ∈ outx(g, σ′′

a) is
infinite and consists of the concatenation of a finite prefix
λ′ ∈ outx(g, σ′

a) with an infinite path λ ∈ outx(ĝ, σa)
for some ĝ ∈ Ln. Therefore, there must exist some index
j ∈ N such that M,λ[j] |= ϕ, which completes the proof that
M, g |=x ⟨⟨i⟩⟩Fϕ.
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Therefore, by induction, the claim holds for all n ∈ N.

Theorem 2 (Approximation of safety). Let x ∈ {Std,React},
i ∈ A, and l ∈ StMi

. If Mi, l |=x νZ.(ϕ ∧ ⟨i⟩Z) then, for
every g ∈ l, we have M, g |=x ⟨⟨i⟩⟩Gϕ.

Theorem 2 is a direct consequence of Lemma 2, that uses
the “bounded always” operator Gn with semantics given by:

M , g |=x ⟨⟨A⟩⟩Gnφ iff there is a strategy sA ∈ Σir
A such that,

for each path λ ∈ outxM (g , sA), we have M , λ[i] |=x φ for
all 0 ≤ i ≥ n.

Lemma 2. Let Satxn(Mi, νZ.(ϕ ∧ ⟨i⟩Z)) be the set of states
in Mi, computed by the standard greatest fixpoint algorithm
for νZ.(ϕ ∧ ⟨i⟩Z) with at most n fixpoint iterations (equiva-
lently: at most n executions of the preimage for ⟨i⟩).

We claim that, for every n ∈ N, if L = Satxn(Mi, νZ.(ϕ ∧
⟨i⟩Z)) then, for every g ∈ L, we have M, g |=x ⟨⟨i⟩⟩Gnϕ.

Proof. Proof by induction on n.

Base Case, n = 0: If n = 0, then L = Satx0(Mi, νZ.(ϕ ∧
⟨i⟩Z)) contains only the states where ϕ is satisfied. There-
fore, for every g ∈ StM such that gi = l ∈ L, we have
M, g |=x ϕ. Hence, M, g |=x ⟨⟨i⟩⟩G0ϕ.

Inductive Step: Assume that the lemma holds for some
n ≥ 0. We need to show that it also holds for n+ 1.

Let Ln+1 = Satxn+1(Mi, νZ.(ϕ ∧ ⟨i⟩Z)). By the def-
inition of the greatest fixpoint algorithm, Ln+1 ⊆ Ln, i.e.
all the states from Ln from which transition going back to
Ln can’t be enforced, were removed. Formally: Ln+1 =
Ln \ {l | Ln, ∀α∈Ri(l)∃l′ ̸∈Ln(l, α, l

′) ∈ Tappi} = {l |
Ln, ∃α∈Ril∀l′∈Mi

((l, α, l′) ∈ Tappi) =⇒ l′ ∈ Ln}.
Consider any g ∈ StM such that gi = l ∈ Ln+1. We need

to show that ∃α∈Ri(l)∀l′∈Mi
((l, α, l′) ∈ Tappi) =⇒ l′ ∈

Ln: by the inductive hypothesis, for every g′ ∈ StM such
that g′i = l′ ∈ Ln, we have M, g′ |=x ⟨⟨i⟩⟩Gnϕ.

By the induction lemma, we obtain a partial strategy σa
defined on Ln, such that for every global state g ∈ Ln and
path λ ∈ outx(g, σa), the path λ is of length at least n and
for all i ≤ n we have M,λ[i] |= ϕ.

From the (n+1)-th iteration, we derive a partial strategy σ′
a

defined on Ln+1, such that for every global state g ∈ Ln+1

and path λ ∈ outx(g, σ′
a), the path λ is of length at least 1

and for all i ≤ n + 1 we have λ[i] ∈ Ln+1, and thus also
λ[i] |= ϕ. Since Ln+1 ⊂ Ln, we have that for all i ≤ n + 1
we have λ[i] ∈ Ln. Therefore, by the inductive hypothesis,
we have M,λ[i] |= ϕ for all i ≤ n + 1. Hence, we can use
σ′
a to demonstrate that M, g |=x ⟨⟨i⟩⟩Gn+1ϕ.

Therefore, by induction, the claim holds for all n ∈ N.

The characterization for “until” formulas only slightly ex-
tends that of reachability (Theorem 1). We only mention the
theorem and the main lemma here, as the rest of the proof is
completely analogous.

Theorem 3 (Approximation of until). Let x ∈ {Std,React},
i ∈ A, and l ∈ StMi

. If Mi, l |=x µZ.(ϕ ∨ (ψ ∧ ⟨i⟩Z)) then,
for every g ∈ l, we have M, g |=x ⟨⟨i⟩⟩ψUϕ.

Lemma 3. Let Satxn(Mi, µZ.(ϕ ∨ (ψ ∧ ⟨i⟩Z))) be the set of
states in Mi, computed by the standard least fixpoint algo-
rithm for µZ.(ϕ ∨ (ψ ∧ ⟨i⟩Z)) with at most n fixpoint itera-
tions (equivalently: with at most n executions of the preimage
operation for ⟨i⟩).

We claim that, for every n ∈ N, if L = Satxn(Mi, µZ.(ϕ ∨
(ψ ∧ ⟨i⟩Z)) then, for every g ∈ L, we have M, g |=x

⟨⟨i⟩⟩ψUϕ.

4 Experimental Evaluation
In this section we evaluate the proposed method on the asyn-
chronous simple voting protocol of [Jamroga et al., 2020a].

4.1 Verification
We conducted two sets of experiments to evaluate the per-
formance of our approach. The first set focused on the stan-
dard Asynchronous Simple Voting model, while the second
set examined the same model with the addition of revot-
ing. In the experiments, we compared the verification time
of fixpoint approximation on local approximation models
vs. the performance of the fixpoint approximation on standard
global model, implemented in the state-of-art model checker
STV [Kurpiewski et al., 2024], that operates on explicit rep-
resentation of global states. We used STV due to its ap-
plicability to ATLir (i.e., imperfect information strategies),
unlike most other model checkers, such as MCMAS and
PRISM-GAMES, that focus on perfect-information strate-
gies. The results (discussed further) show astonishing gains.
One may notice, however, that in order to run the approxi-
mate verification, we should first generate the local approx-
imating model. The code for the experiments is available at
https://tinyurl.com/sup7888.

4.2 Generating Approximated Models
The naive approach would be to generate the full global
model, and then project it to local states and transitions of
a given agent a. To avoid this, we tried a smarter procedure,
that translates the existence of a sequence of transitions be-
tween two locations l, l′ into a CTL verification problem, and
runs a dedicated CTL model checker to get the answer. For
the experiments, we employed the UPPAAL model checker
as a sub-routine to generate the approximated local model,
which was then used with the STV model checker for verifi-
cation of strategic ability [Behrmann et al., 2004].

All calls to UPPAAL were managed by an auxiliary script
that reads the model specification (provided in .xta format
with event labels assigned to edges) and constructs a corre-
sponding pair of model and query in a BFS manner, start-
ing from the initial local state. For every candidate triplet
(s, α, s′)—composed of source local state s, event label α,
and target local state s′—the script processes the model.

In the study, each event available to the given agent is as-
sociated with an auxiliary Boolean variable, which evaluates
to true only when that event was the last to occur at a cur-
rent (global) state. For each source local state, every out-
going edge with the given event label is duplicated with an
additional guard (matching the valuation from the source lo-
cal state) and update assignments (matching the last occurred
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#V Model generation Verification

Global Approx.
Standard

Approx.
Optimized Global Approx. Result

2 0.04 6.60 6.54 <0.01 <0.01 TRUE
3 0.10 6.62 6.60 0.29 <0.01 TRUE
4 1.22 6.93 6.91 30.15 <0.01 TRUE
5 35.80 8.71 8.70 2659 <0.01 TRUE
6 1206 36.95 29.42 timeout <0.01 TRUE
7 timeout 282.48 280.62 —— <0.01 TRUE
8 timeout 5539 4046 —— <0.01 TRUE
9 timeout —— —— ——

Table 1: Results for Asynchronous Simple Voting

#V Model generation Verification

Global Approx.
Standard

Approx.
Optimized Global Approx. Result

2 0.82 19.43 19.27 8.20 <0.01 TRUE
3 131.61 26.44 19.28 timeout <0.01 TRUE
4 timeout 524.93 19.25 —— <0.01 TRUE
5 timeout 19.34 —— <0.01 TRUE
6 timeout 19.40 —— <0.01 TRUE
7 timeout 19.41 —— <0.01 TRUE
8 timeout 19.43 —— <0.01 TRUE
9 timeout 19.44 —— <0.01 TRUE

Table 2: Results for Asynchronous Simple Voting with Revoting

event). Fragments outside of the potential predecessors are
truncated, and remaining edges are appended with the oppos-
ing update assignment. To enforce progressive semantics, all
locations are set to the committed type.

The obtained model is then queried for the reachability
of the target local state counterpart, with the auxiliary vari-
able from the last occurred event matching the one from the
triplet. Next, the computed local states are verified for live-
locks [Ashcroft, 1975]—the existence of a cycle of global
states and events that neither leads to a change in the given
local state nor involves events from the studied agent’s reper-
toire—using the original model specification.

The straightforward application of UPPAAL for generat-
ing the approximated local model was inefficient. When the
query with the triplet has no counterpart in the global model,
the verifier needs to generate the entire state space to conclude
that. However, we implemented several optimizations to im-
prove efficiency. Firstly, we noted the symmetry within the
homogeneous modules of voters; none of the voters have tran-
sitive interactions with each other—they only interact with
the coercer. This semantic analysis allowed us to conclude
that the order in which different voters perform their actions
does not affect the composition of their local models. Con-
sequently, we enhanced the generation of the local model by
using UPPAAL’s specific process priority feature, assigning
the given voter the highest priority among all other voters,
and adding an edge connecting the target local state with an
auxiliary sink location, which has a single self-loop.

4.3 Results
The results of the experiments are summarized in Tables 1
and 2. The first column indicates the number of voters con-
sidered. In all scenarios, there were two candidates and
one coercer. The tables present the model generation times
for the standard global model and two approximated mod-
els: one without optimizations (standard) and one with op-
timizations (optimized) in UPPAAL. Verification was per-
formed using a fixpoint algorithm, and the verified formula

was ϕ1 = ⟨⟨V oter1⟩⟩F (vote1,1∧¬give1). The approximated
model was generated for agent V oter1. All times are reported
in seconds, with a timeout set to two hours.

All experiments were conducted on a machine equipped
with a 3.0 GHz 8-core AMD Ryzen 7 5700X3D CPU and
64 GB of RAM. The model generation and verification times
were measured using the time command in a Linux environ-
ment to ensure precise and consistent timing measurements.

As observed, the model generation times for few voters
are lower for the global model compared to the approximate
models. However, this trend reverses as the number of voters
increases. The optimized version of the approximate model
is consistently faster than the standard version, although its
time still increases exponentially for the model without revot-
ing. In the scenario with revoting, the optimized approach
exhibits linear time growth, allowing us to generate a model
for even 50 voters in under one minute. The verification time
for the global model also increases exponentially, whereas the
verification time for the approximate model remains constant.
This is because the size of the approximated model does not
change, as the local model of the voter remains the same re-
gardless of the number of voters in the system.

Interestingly, the optimized version yields a more substan-
tial reduction in model generation time for the case with
revoting. Without revoting, the exponential growth in time
can be mainly attributed to the detection of potential live-
locks. In the absence of a witnessing livelock cycle, the
model checker must generate the entire fragment of the
source local state’s predecessor states to reach a conclusion.

Note that in both the straightforward and optimized ver-
sions, there is room for further improvement in efficiency
through parallel computation of the reachable successors
from the already discovered states of the local model. This
would allow more efficient generation of the approximated
model, especially for larger numbers of voters.

5 Conclusions
The model checking problem for ATLir is indeed challeng-
ing. Nevertheless, some feasible approaches for tackling this
problem exist. We have taken the first step in optimizing fix-
point approximations, by focusing on the local model of the
agent whose strategic abilities we aim to verify. In conse-
quence, the verified model grows much slower, and in some
cases might even remain constant, regardless of the number
of agents in the scenario. Consequently, the verification time
also decreases. However, the approximate model needs to be
generated. We have shown that existing tools like UPPAAL
can be used for this task, and with proper optimizations, the
generation times for the approximated model can increase lin-
early rather than exponentially.

The present method has several limitations: observable
safety/reachability goals, only individual strategies, no nest-
ing of strategic modalities. They arise from technical fea-
sibility (e.g., scalability and semantic alignment with ex-
periments), rather than theoretical constraints. Our experi-
ments show very promising results, and we plan to extend the
method to handle general non-observable properties, proper
coalitions, and nested strategic reasoning in future work.
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