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Abstract. In this paper, we present a substantially enhanced ver-
sion of our software tool STV (STrategic Verifier), dedicated to
strategy synthesis and model checking of strategic abilities in multi-
agent systems. The new extension, called STV+FLY, incorporates an
advanced strategy synthesis algorithm that enables model checking
with on-the-fly generation of the global model. This innovative ap-
proach allows for the verification of some strategic properties without
generating the entire global state space, thus avoiding an important
bottleneck and significantly improving the efficiency.

1 Introduction

Alternating-time temporal logic ATL/ATL∗ [1, 37] is a widely
recognized framework for reasoning about the strategic abilities of
agents. ATL enables to address the potential behaviors and out-
comes of individual agents and their coalitions. Over the past two
decades, substantial effort has been devoted to developing algorithms
and tools for formal verification of ATL specifications [3, 37, 12,
34, 2, 13, 9, 17, 10, 32, 11, 5, 4, 21, 29]. However, the computational
complexity of model checking for strategic abilities, especially under
imperfect information, presents significant challenges [8, 15].

To address the challenges, our group at the Polish Academy of
Sciences has developed a number of techniques for incomplete and
approximate verification of ATL for agents with imperfect informa-
tion [21, 28, 33, 18] as well as suitable model reductions [23, 6, 7].
Most of those have been implemented in our experimental open-
source model checker STV (STrategic Verifier) [27, 29], and shown
promising performance on toy models. To test their merits in a more
realistic context, we conducted an extensive case study [30], verify-
ing properties of the Selene protocol for secure voting [36]. We used
an “all-out” approach, employing (in various combinations) fixpoint
approximation, brute-force depth-first strategy synthesis, DFS syn-
thesis with elimination of dominated partial strategies, partial-order
reduction, and two different approaches to distributed verification.
The results in [30] showed that, in realistic scenarios, model genera-
tion is often the primary bottleneck. Whenever the verification failed,
it was because there was not enough time or memory to generate the
global state/transition space in the first place. Since the size of the
model grows exponentially with every added agent, so do the associ-
ated time and memory requirements.

In this work, we observe that in some cases the generation of the

whole global model is not necessary. This happens especially when
a winning state can be reached in few steps, or the search algorithm
is “lucky,” and hits the right choices first. Based on that observation,
we introduce an innovative extension of STV, which incorporates
a novel approach based on depth-first strategy synthesis with on-
the-fly model generation. The method enables to verify the specified
properties without the prerequisite of generating the entire model in
advance. Instead, the model is constructed incrementally during the
verification process, with only those parts being generated, that are
necessary to do the next verification step.

2 Application Domain

STV+FLY addresses formal verification of Multi-Agent Systems
(MAS), which is a notoriously complex and sophisticated prob-
lem [14]. It is generally accepted that most relevant system require-
ments in MAS refer to the strategic ability (or inability) of agents and
their groups. For instance, the ATL∗ formula ⟨⟨taxi⟩⟩G¬fatality
says that an autonomous cab can operate in a manner that ensures
no fatalities. Similarly, ⟨⟨taxi, passg⟩⟩F destination denotes that the
cab and passenger can collaboratively reach the destination, regard-
less of the actions from other agents. An even richer group of re-
quirements can be specified using a mix of strategic and knowledge
operators, which is especially relevant in information security (e.g.,
anonymity, privacy, and successful information exchange) and the
analysis of voting procedures (e.g., receipt-freeness, coercion resis-
tance, and voter-verifiability [35, 38]).

Unfortunately, verification of strategic abilities (with and without
knowledge) is challenging both theoretically and practically. In par-
ticular, practical verification of such properties remains challenging
due to exponential explosion of the state space and transition space,
and at least exponential explosion of the strategy space (on top of
the former explosion!). This has been demonstrated in various case
studies, e.g., in [19, 22, 24, 30].

STV, and its new extension STV+FLY, provide a user-friendly
environment tailored for the analysis of such requirements. They fea-
ture a graphical user interface (GUI) and a flexible model specifica-
tion language, enhancing the accessibility and usability of the model
checker. Additionally, the tool serves significant pedagogical value,
offering an intuitive platform for introducing the topic of strategic
reasoning and verification of strategic logics. Previous versions of
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Figure 1. Screenshot of STV

STV have been successfully employed in educational settings, in-
cluding tutorials and graduate courses at major AI conferences and
summer schools, such as IJCAI, PRIMA, and ESSAI.

3 Formal Background

Model checking asks if a given model of the system satisfies a given
property. Thus, the input typically consists of the model (or its sym-
bolic representation) and a logical formula expressing the property.
For the former, we use modular representations based on Asyn-
chronous Multi-Agent Systems [20, 25] and a flexible model specifi-
cation language [29], in which each agent is specified using separate
local model. For the latter, we employ formulas of ATL, interpreted
over memoryless strategies with imperfect information [37].

Modules. The main part of the input is given by a set of asyn-
chronous modules [31, 23], where local states (states of the agent
local model) are labelled with valuations of state variables. The tran-
sitions are valuations of input variables controlled by the other mod-
ules. The global model of the MAS is defined by the asynchronous
product of its modules.

Strategies. A strategy is a conditional plan that specifies what the
agent(s) are going to do in every possible situation [3, 37]. Here,
we consider the case of imperfect information memoryless strategies,
represented by functions from the agent’s local states to its available
actions. The outcome of a strategy from state q consists of all the
infinite paths starting from q and consistent with the strategy.

Logic. Given a model M and a state q in the model, the formula
⟨⟨A⟩⟩φ holds in M, q iff there exists a strategy for agents A that
makes φ true on all the outcome paths starting from any state indis-
tinguishable from q [3, 37]. The semantics of coalitional abilities is
analogous, for joint strategies of coalitions. Following this concept,
the formula ⟨⟨S⟩⟩φ holds in (M, q) iff there exists a joint strategy for
coalition S (i.e., a set of strategies, one for every agent in S) that
makes φ true on all the outcome paths starting from q. Moreover,
Kaφ (agent a knows φ) holds in M, q iff φ is true in every state q′

indistinguishable from q for a [16].

4 Technology

STV+FLY does explicit-state model checking. That is, the global
states and transitions of the model are represented explicitly in the
memory of the verification process. The user can load and parse the
input specification from a text file that defines the modules, i.e., lo-
cal automata representing the agents. The generated models and the

verification results are visualised in an intuitive web-based graphical
interface. The verification algorithms are implemented in C++, and
the GUI in Typescript, using the Angular framework.

5 Benchmark
As a benchmark for testing our tool we use Selene voting protocol,
which was already used in [30] to assess the performance of our pre-
vious verification techniques.

Selene [36] is an electronic voting protocol designed to ensure
voter verifiability and coercion resistance. This protocol equips the
voter with evidence to confirm that her vote has been accurately reg-
istered. Simultaneously, it allows her to deceive a coercer by provid-
ing falsified evidence, thereby protecting her true voting intentions.

The protocol operates in several stages:

1. Setup: Prior to the election, the Election Authority (EA) prepares
the system by generating keys for vote encryption and decryption
and assigning a unique vote tracker to each voter. These trackers
are encrypted and shuffled to anonymize the link between voters
and their respective trackers, then published on the Web Bulletin
Board (WBB).

2. Voting: Voters encrypt and sign their ballots before submitting
them to the system. The system processes these ballots through
several intermediate steps, culminating in the publication of pairs
(Votev , trv ) on the WBB for each voter. At this point, voter iden-
tities remain anonymous, and the decrypted ballots allow for a
public tally and audit.

3. Disclosure: In the final stage, voters receive their trackers via an
independent channel (e.g., SMS). Voters not subjected to coercion
request a special term (αv ) to retrieve their actual tracker. Con-
versely, coerced voters who are compelled to vote in a specific
manner communicate the demanded vote to the election server.
In response, they receive a counterfeit term (α′

v ) which they can
present to the coercer. This term reveals a tracker for a vote that
appears to align with the coercer’s demands.

Selene employs the ElGamal encryption scheme, leveraging its
multiplicative homomorphism and non-interactive zero-knowledge
proofs of knowledge for all data transformations displayed on the
WBB. In this study, we abstract from the cryptographic details, and
focus on the strategic interaction between the involved parties.

Our model includes four distinct agent templates: the Election Au-
thority (EA), the Coercer, the standard Voter, and the Coerced Voter.
The EA is responsible for generating and distributing trackers and
managing the Web Bulletin Board (WBB), which is accessible to
both voters and coercers.

The procedure begins with the Coerced Voter interacting with the
Coercer, who may demand a vote for a specific candidate. Following
this, the voting procedure commences, synchronized with the EA.
During this phase, the voter generates her commitment, completes
her ballot, encrypts it, and submits it to the EA. Then, she waits for
the votes to be published on the WBB, which is a process overseen
by the EA.

After vote publication, the Coerced Voter can fabricate an alpha-
term and fake tracker or await the real tracker. The Voter then checks
the WBB, confirms her vote, and interacts with the Coercer. Depend-
ing on the scenario, she may present either the false or the real tracker
to the Coercer, who will then decide whether to penalize her.

Additionally, the voter has the option to revote, casting multiple
votes as a strategy to mitigate domestic coercion by family members.
In case of revoting, only the latest ballot counts.



#A
Standard On-the-fly

ResStates Old New States VerifGen Verif Gen Verif
4 3.85e4 10 <1 3 <1 2.91e3 <1 True
5 2.19e6 520 <1 179 <1 1.47e5 1 True
6 8.12e7 10252 <1 2642 <1 1.10e6 14 True
7 timeout 9.60e6 406 True
8 timeout

Table 1. Results for ϕ1 with 3 candidates and 3 revotes

#A
Standard On-the-fly

ResStates Old New States VerifGen Verif Gen Verif
4 1.09e4 1 <1 <1 <1 19 <1 True
5 5.44e5 133 <1 37 <1 83 <1 True
6 3.34e7 2412 3 528 2 731 <1 True
7 timeout 5.43e3 32 True
8 timeout 1.96e4 9529 True
9 timeout

Table 2. Results for ϕ2 with 2 candidates and 3 revotes

6 Experimental Evaluation

We have assessed the performance of our new algorithm using the
Selene voting protocol as a testbed. Our evaluation comprised two
sets of tests, each focusing on specific properties defined by the fol-
lowing formulas of ATLK:

ϕ1 ≡ ⟨⟨C⟩⟩G
(
(finish1 ∧ revote = 2 ∧ voted1 = 1)

→ KCvoted1 = 1
)

ϕ2 ≡ ⟨⟨V1⟩⟩F
∨
i

(votedi = 1)

The first formula, ϕ1, is the same as the one used for experiments
in [30].1 It expresses that, if the coercer concludes his interaction
with the coerced voter who then votes for her intended candidate2

without doing the final revote, then the coercer will know how the
voter has voted. Like in [30], we applied this formula to a family of
Selene models with 3 candidates and 3 revoting phases. The number
of agents #A was used as the scalability parameter. The results of
the experiments are presented in Table 1. Note that in this particular
setting the system always includes 1 Coercer, 1 Election Authority
and 1 Coerced Voter, plus an arbitrary number of ordinary Voters (at
least 1), although number of agents could be easily modified.

The table provides a comparative analysis of the results ob-
tained using the “standard” verification approach (generate the full
global model first, verify next), versus the new on-the-fly verification
method implemented in STV+FLY. We report the number of gener-
ated states, the model generation time, and the verification time. All
times are given in seconds. The timeout was set to 3h. The test plat-
form was a server equipped with ninety-six 2.40 GHz Intel Xeon
Platinum 8260 CPUs, 991 GB RAM, and 64-bit Linux. For “stan-
dard” verification, we include two sets of results: one obtained by the
old version of STV used in [30], with model generation implemented
in Python, and the other using the most recent version of STV [26],
done fully in C++.

The second formula, ϕ2, says that the voter can ensure at least
one vote for the selected candidate to appear in the tally. The tests

1 With the small difference that, at that time, STV did not admit knowledge
operators, so epistemic formulas had to be emulated by additional atomic
propositions.

2 We assume without loss of generality that it is the candidate number 1.

were conducted using Selene models with 2 candidates and 3 revot-
ing phases. The outcomes are presented in Table 2.

The results of the experiments indicate that on-the-fly model
checking allows for verification of much larger models. The new ap-
proach enabled to analyze Selene instances with one more voter (for
ϕ1) and two more voters (in case of ϕ2). Even more interestingly,
the on-the-fly algorithm generated only 1% of the state space (for
ϕ1 and #A = 6 agents), and as little as 0.001% in case of ϕ2 and
#A = 6. Finally, note that the size of the full model grows geomet-
rically, roughly speaking 50 times with each added voter. Thus, for
ϕ2, STV+FLY was able to verify models that were approximately
1000 times larger than the ones amenable to standard explicit-state
model checking.

7 Usage
The tool is available at http://stv.cs-htiew.com/. The video demon-
stration of the tool is available at https://www.youtube.com/watch?
v=eDlTVhTbnhk. Example specifications can be found at http://
stv-docs.cs-htiew.com/. The current version of STV allows to: (i)
generate and display the composition of a set of modules into the
model of a multi-agent system; (ii) provide local specifications for
modules, and compute the global specification as their conjunction;
(iii) verify an ATL, ATLK and/or ATLH reachability or safety
formula with knowledge and/or uncertainty operators (nested strate-
gic operators are not allowed); (iv) finally, display the verification
result including the relevant truth values.

8 Conclusions
We present STV+FLY, which offers a substantial revision and ex-
tension of the STV model checker. Compared to the previous ver-
sion, STV+FLY features a new implementation of the verification
algorithm in C++. More importantly, it significantly changes the way
the strategy synthesis is conducted. Instead of generating the (ex-
cessively huge) global model first, and running the verification algo-
rithm afterwards, the model is generated incrementally as the imme-
diate need dictates.

The experiments show significant gains in performance. In partic-
ular, on-the-fly verification of coercion resistance and voter enfran-
chisement in a well-known voting protocol succeeded for problems
with 1000 larger state/transition spaces, compared to the traditional
pipeline of “first generate, then verify.” This shows that, indeed, only
a small part of the global model needs to be explored in many prac-
tical scenarios.
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