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Abstract

We present NatSTV, a tool for approximate veri-
fication of natural strategic ability in multi-agent
systems. The tool builds on our model checker
STV (STrategic Verifier), and implements heuris-
tic synthesis of natural strategies for asynchronous
agents with imperfect information and recall. All
of that is available through a web interface, with no
need to install or configure the software by the user.

1 Introduction

Multi-agent systems (MAS) are based on the interaction of
multiple autonomous agents, some of them intelligent and/or
proactive, often exhibiting purposeful collaborative (or, con-
versely, adversarial) behavior. Formal methods for analysis
and verification are essential to ascertain their functionality
and security. Alternating-time temporal logic ATL [Alur et
al., 2002; Schobbens, 2004] is a widely recognized frame-
work for reasoning about the strategic abilities of agents, that
enables to address the potential outcomes of individual agents
and their coalitions. Over the past two decades, substantial
effort has been devoted to algorithms for formal verification
of strategic logics [Alur er al., 2002; Mogavero et al., 2014;
Chen et al., 2013; Busard et al., 2014; Huang and van der
Meyden, 2014; Cermak et al., 2014; Cermék et al., 2015;
Jamroga et al., 2019a]. Based on those, a number of model
checking tools have been developed, including Mocha [Alur
et al., 1998], MCMAS [Lomuscio et al., 2017] and VITA-
MIN [Ferrando and Malvone, 2024]. However, the com-
putational complexity of model checking for strategic abili-
ties, especially under imperfect information, is very challeng-
ing [Bulling et al., 2010; Jamroga, 2015].

To address the challenges, our group at the Polish Academy
of Sciences has developed a suite of techniques for in-
complete and approximate verification of ATL for agents
with imperfect information, implemented in our experi-
mental open-source model checker STV (STrategic Veri-
fier) [Kurpiewski et al., 2019; Kurpiewski et al., 2021;
Kaminski et al., 2024; Kurpiewski ef al., 2024]. Here, we
expand the suite with sound but incomplete verification of
natural strategic ability, expressed in “Natural ATL,” or
NatATL [Jamroga e al., 2019b; Jamroga ef al., 2019c].

The new tool, called NatSTV, provides a user-friendly
environment for analyzing such requirements, featuring a
graphical user interface (GUI) and a flexible model specifi-
cation language. Thanks to that, it has significant pedagog-
ical value, serving as an intuitive introduction to the com-
plex subjects of strategic reasoning and model checking of
strategic logics. Previous versions of STV have been utilized
in tutorials and graduate courses at top Al conferences and
summer schools, including IJCAI 2022, PRIMA 2022, ES-
SAI 2023, and ECAI 2024. The only other tool to synthesize
and verify natural strategies is a very recent extension of VI-
TAMIN [Aruta et al., 2024]. However, it only tackles the case
of perfect information strategies, whereas NatSTV verifies
MAS with imperfect information (i.e., partial observability).

2 Application Domain

NatSTV addresses the formal verification of strategic
abilities in multi-agent systems. ATL formulas like
(taxi, passg))Odestination (“the autonomous cab and the
passenger have a joint strategy to eventually arrive at the
destination”) and ((passg)Ualive (“the passenger can keep
staying alive”) can be used to express important function-
ality, safety, and security requirements in MAS [Jamroga,
2015]. This is, e.g., relevant for specification and verifica-
tion of e-voting. Properties such as anonymity, coercion-
resistance, and voter verifiability are crucial for voting pro-
cedures, and have a strong strategic component. However,
case studies [Jamroga et al., 2018; Jamroga et al., 2020b;
Kurpiewski et al., 2022] have demonstrated that practical ver-
ification of those properties is infeasible due to the state-,
transition- and strategy-space explosion.

Natural strategies were proposed in [Jamroga et al., 2019b;
Jamroga et al., 2019c¢] to capture the abilities of agents with
limited computational resources, such as humans, drones,
sensor networks etc. In particular, natural strategic abilities
provide a more suitable semantics for reasoning about what
human voters can plausibly achieve [Jamroga et al., 2021al.
Extensions of Nat ATL have been used to analyze the abili-
ties of participants in keyword auctions and probabilistic ac-
cess control [Belardinelli et al., 2022; Berthon et al., 2024].

NatSTYV is our first step towards practical verification of
such abilities. Given a modular specification of a MAS and a
formula ((A))~, it attempts to synthesize and simplify a natu-
ral strategy for A to enforce the temporal property ~. Then, it
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reports the size k of the smallest natural strategy that has been
found. Thus, for all complexity constraints of k' > k, we get
that the Nat ATL formula (A)<*~ holds. In this sense,
NatSTYV provides sound but not complete model checking
for Nat ATL with imperfect information.

3 Formal Background

Model checking takes a specification of the system model M
and a logical formula ¢, and asks if ¢ is satisfied by M.

Modules and models. The primary input consists of a col-
lection of asynchronous modules [Lomuscio et al., 2013;
Jamroga er al., 2020a], where each local state consists of a
location label, possibly with a valuation of state variables.
Local transitions in an agent’s module are determined by the
current location, the choice of the agent, and possibly the val-
uation of input variables. They can be either private or shared
between several agents. In the latter case, the transition can
be executed only if all the involved agents synchronously par-
ticipate in it. An example specification of an agent module in
the input language of NatSTV is shown in Figure 1.

The global model of the MAS is given by the asynchronous
product of its modules. In particular, global states are tuples
of local states, one per agent, reachable from the initial con-
figuration, cf. [Jamroga et al., 2021b; Kurpiewski et al., 2022]
for the details.

General strategies. A strategy is a conditional plan that pre-
scribes the agents’ actions for every possible situation [Alur
et al., 2002; Schobbens, 2004]. We focus on imperfect infor-
mation memoryless strategies, which are functions mapping
the agent’s local states to its available choices. The outcome
of a strategy from state g consists of all infinite paths starting
from q that are consistent with the strategy.

Natural strategies. Let 53(Prop) denote the set of Boolean
formulas over some atomic propositions Prop. Natural mem-
oryless strategies for agent a are represented by ordered lists
of guarded actions. That is, s, consists of pairs ¢; ~» ay
where ¢; € B(Prop) and «; is a choice available to a in
states where ¢; holds. To enforce that only uniform (i.e., ex-
ecutable) strategies are used, we impose that only the local
atomic propositions of module a can be used within s,. A
collective strategy s4 is simply a tuple of individual strate-
gies, one per a € A.

Complexity of strategies. The complexity of a natural strat-
egy s is defined as compl(sa) = 3_(4 4yes, ||, where [¢]
represents the number of symbols in the guard ¢, excluding
parentheses. Thus, compl(s4) measures the total length of
the guards in s 4.

Logic. Given a model M and a state ¢ in M, the ATL
formula ((A))y holds in M, ¢ if there exists a general strat-
egy sa for agents A that ensures v on all outcome paths
starting from the epistemic class of ¢ [Alur er al., 2002;
Schobbens, 2004]. Analogously, the NatATL formula
((A)=F~ holds in M, q if there is a natural strategy s4 such
that (i) s 4 ensures ~y on all outcome paths from the epistemic
class of ¢, and (i) compl(sa) < k [Jamroga et al., 2019b;
Jamroga et al., 2019c].

Agent Voterl:
LOCAL: [Voterl_votel , Voterl_vote2]
PERSISTENT: [Voterl_votel , Voterl_vote2]

INITIAL: []

init q0

voterlvotel: q0 —> ql [Voterl_votel:=1]

shared [2] gv_1_Voterl[gv_1_Voterl]: ql [Voterl_votel==1] —> q2
voterlvote2: q0 —> ql [Voterl_vote2:=1]

shared[2] gv_2_Voterl[gv_2_Voterl]: ql [Voterl_vote2==1] —> q2

shared[2] ng_Voterl[ng_Voterl]: ql —> q2
shared [2] pun_Voterl[pn_Voterl]: g2 —> q3
shared [2] npun_Voterl[pn_Voterl]: g2 —> q3

Figure 1: Voter specification in Asynchronous Simple Voting

4 Scenarios
We will evaluate our tool on two scalable voting scenarios.

Simple Voting. A simple scalable benchmark is provided by
the Asynchronous Simple Voting scenario [Jamroga et al.,
2019al. The system consists of k& voters and a single co-
ercer. The NatSTV code specifying the behavior of a voter
is shown in Figure 1. The voter first casts their vote, then de-
cides whether to share its value with the coercer. Finally, the
voter waits for the coercer’s decision to either punish or re-
frain from punishment. The coercer has two actions available
per voter: to punish the voter or to refrain from punishment,
resulting in 2k actions in total.

The model contains the following propositional variables:
vote; ;, indicating whether voter ¢ has voted for candidate
J; pun;, indicating whether voter ¢ was punished; finish;,
indicating whether voter ¢ has completed the voting process
and interactions with the coercer.

vVote. The second benchmark is based on a real-life voting
protocol, namely the vVote system [Culnane et al., 2015] that
was used for the 2014 election in Victoria, Australia. We refer
to [Ryan, 2010] and [Jamroga et al., 2021a] for the details of
the protocol and the formal model.

S Technology

NatSTV performs explicit-state model checking, where the
global states and transitions of the model are explicitly stored
in the memory during the verification process. Users can
load and parse the input specification from a text file that de-
fines the modules, which are local automata representing the
agents. The generated models and verification results are dis-
played in an intuitive web-based graphical interface. The ver-
ification algorithms are implemented in C++, while the GUI
is developed in Typescript using the Angular framework.

NatSTV executes depth-first strategy synthesis from the
initial state. During this process, it evaluates whether each
new action can extend the existing partial strategy without
contradicting prior decisions. Upon completion, the strat-
egy is expressed as a set of boolean conditions involving all
agent variables. The tool then optimizes this representation
by eliminating redundant variables and conditions, signifi-
cantly reducing the complexity of the strategy.

6 Experimental Evaluation

6.1 Configuration of the Experiments

The experiments have been conducted on a computer with 8-
core AMD Ryzen 7 5700X3D running at 3.20 GHz, 64 GB
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av | Model 1 P2 3
genera- General Natural Compl. | Compl. General Natural Compl. | Compl. General Natural Compl. | Compl.
tion synthesis synthesis raw opt. synthesis | synthesis raw opt. synthesis synthesis raw opt.
1 0.03 <0.01 <0.01 156 26 <0.01 <0.01 9 3 <0.01 <0.01 9 3
2 0.05 <0.01 <0.01 991 131 <0.01 <0.01 9 3 <0.01 <0.01 9 3
3 0.21 0.15 0.15 4516 512 0.01 0.04 9 3 0.02 0.03 9 3
4 5.89 5.25 5.48 18043 1831 0.02 0.02 9 3 0.04 0.05 9 3
5 254.98 memout 25.02 10.15 9 3 28.56 12.68 9 3
6 timeout - [ - [ - [ - - - - - - -

Table 1: Results for Asynchronous Simple Voting with 2 candidates

# Model General Natural Compl. Compl.
Vv genera- . .
tion synthesis synthesis raw opt.
1 0.04 <0.01 0.06 797 39
2 0.24 <0.01 0.26 2170 124
3 9.02 0.43 0.54 2105 122
4 526.16 29.55 21.83 2170 124
5 timeout - - - -

Table 2: Results for vVote with 2 candidates for ¢4

Model General Natural Compl. Compl.
#V genera- . .
tion synthesis synthesis raw opt.
1 0.04 <0.01 0.02 863 42
2 0.24 <0.01 0.04 851 38
3 9.02 0.22 0.41 851 38
4 526.16 18.64 18.81 851 38
5 timeout - - - -

Table 3: Results for vVote with 2 candidates for ¢5

RAM and a 64-bit Linux operating system. The algorithms
were implemented in C++. All execution times are reported
in seconds, with the timeout set to 2 hours.

6.2 Simple Voting
For Simple Voting, we verified the following properties:

o1 = (e)O((finishy, A vote; ;) — pun;)
¢2 = (vi)O (=K vote; ;)
o3 = (v )O(finish; — vote; ; N ~K vote; ;).

Formula ¢, expresses the undesirable property of strategic
punishment, i.e., the coercer can ensure that, whenever his
interaction with the voter ¢ concludes and the voter has dis-
obeyed and voted for candidate j, the coercer can punish the
voter for that. Formula ¢, captures the desirable property of
strategic anonymity, i.e., the voter can ensure that the coercer
will never know that she has voted for candidate j. Finally,
¢3 denotes strategic coercion resistance, i.e., the voter can
always vote for candidate j without the coercer knowing it.
We used 7 = 2 and ¢ = 1 in all experiments, except for ¢;
where ¢ = k was used. The experimental results, scaled by
the number of voter agents, are presented in Table 1. The
natural strategy found by NatSTV for ¢3 is given below:

—wotey 5 — votes
T —=ng

Table 1 includes the following columns: scalability param-
eter (the number of voter agents); model generation time;
synthesis time for general strategies and natural strategies;
complexity of the synthesized natural strategy without and
with optimization. The results demonstrate that the natural
strategy synthesis requires approximately the same time as
the synthesis of general strategies. The optimization of the

natural strategy, although relatively straightforward, signifi-
cantly reduces its complexity.

Moreover, depending on the agent and the formula, the
complexity of the natural strategy may not increase with the
number of agents in the system. This occurs for voter strate-
gies, as their strategy is unaffected by other agents, unlike the
coercer, who must adapt his choices depending on with whom
he currently interacts.

6.3 vVote
For vVote, we consider the following properties:

¢q = (V1)) (checkWBB_ok \V checkWBB_notok)

o5 = ((v1, c)O(voter 1 A K voter 1).
Formula ¢, expresses the desirable property of voter veri-
fiability, indicating that the voter can verify the correctness
of her vote on the web bulletin board. Then, ¢5 represents
the undesirable property of strategic coercion, stating that
the coercer with the support of the voter can ensure that the
voter votes for the first candidate and coercer will know about
that. The experimental results, scaled by the number of voter
agents, are presented in Tables 2 and 3.

The results show a similar pattern as in the Simple Vot-
ing scenario. The natural strategy synthesis requires approxi-
mately the same time as the standard strategy synthesis. The
reduction of the natural strategy significantly simplifies the
strategy. Moreover, the complexity of the natural strategy
varies only slightly with the number of agents in the system.

7 Usage

The tool can be accessed at stv.cs-htiew.com. A video demon-
stration of the tool is available at jmp.sh/AiRcVLmH. Sam-
ple specifications are available at stv-docs.cs-htiew.com. The
current version of NatSTV offers the following features:

* Generate and visualize the composition of a set of mod-
ules into a global multi-agent model;

* Provide local specifications for modules and compute
the global specification as their conjunction;

* Display the verification results, including relevant truth
values and the winning natural strategy (if one exists).

8 Conclusions

We introduce NatSTYV, a novel extension in the STV model
checking suite for the synthesis and verification of natural
strategies. The experiments indicate that verifying natural
strategies with NatSTV yields performance comparable to
model checking standard strategic properties. Consequently,
we obtain an important new functionality with minimal im-
pact on the complexity and performance of the suite.
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