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Abstract. Judgment aggregation is a social choice method for aggregat-
ing information on logically related issues. In distance-based judgment
aggregation, the collective opinion is sought as a compromise between
information sources that satisfies several structural properties. It would
seem that the standard conditions on distance and aggregation functions
are strong enough to guarantee existence of feasible procedures. In this
paper, we show that it is not the case, though the problem becomes easier
under some additional assumptions.

1 Introduction

It is often convenient to ascribe information-related stances (such as judgments,
opinions, beliefs, etc.) to collectives of agents. The need for modeling collective
opinions can be either external or internal. External agents may ascribe opinions
to institutions and groups in order to simplify their model of the world and rea-
son about it. Agents inside the group may need to reach consensus about issues
of interest, and in particular to obtain collective decisions that will lead to con-
sistent collective action. In this paper, we focus on one of the formal frameworks
that try to explain how collective judgments are formed from individual stances,
namely judgment aggregation theory [33].

Several formal theories within artificial intelligence have tried to explain how
collective judgments arise from individual judgments. Epistemic logic [41] pro-
poses to aggregate agents’ views by aggregating the underlying models, i.e., indis-
tinguishability relations over different valuations of atomic sentences. By differ-
ent operations on epistemic relations we obtain different notions of group knowl-
edge: mutual knowledge, common knowledge, distributed knowledge etc. [24]. On
the other hand, Dempster-Shafer theory [9, 39] shows how probabilistic beliefs
can be merged into a single collective belief. However, epistemic logic requires
complete individual views, that is, everybody’s opinions about every conceivable
state of the world must be given as input. Dempster rule of combination admits
incomplete models, but may yield logically inconsistent judgments, i.e., ones
that violate logical interdependencies between issues (even if the input consists
of consistent individual judgments). Thus, both theories make assumptions that
turn out too strong for most cases of practical reasoning.

Another formal framework is provided by social choice theory. It develops
and analyses (on a more abstract level) methods for reaching group decisions



through aggregating individual stances. For instance, voting rules used in po-
litical elections are social choice methods. Deriving collective opinions from a
partial representation of individual judgments on a set of mutually dependent
issues may be obtained by a method of similar kind. More precisely, the problem
of aggregating binary valuations assigned to each element of a set of logically
related elements into a consistent set of valuations is studied by judgment ag-
gregation theory [33].

Distance-based judgment aggregation [34, 38] comprises the largest class of
judgment aggregation rules. Inspired by belief merging rules, the idea is to define
the collective opinion as a “well-behaved compromise” among the individual
opinions of the group members. That is, we assume that each member is willing
to give up some of their judgments as long as the resulting aggregate judgment
set does not stray too far from their individual ones. Distance-based aggregation
rules are supposed to satisfy a number of structural constraints (see Section 3 for
details) to make sure their output is indeed “well-behaved” in the mathematical
sense. It seems – at least at the first glance – that the constraints should lead to
computationally well-behaved procedures. In this paper, we show that it is not
necessarily true.

Why is computational complexity important for aggregating judgments? Es-
sentially, judgment aggregation provides an intuitive representation for decision
problems in collective reasoning. In this context, its computational complexity is
crucial. More specifically, judgment aggregation rules are procedures that deter-
mine the collective view based on individual inputs. The procedure is only useful
if it returns the result in reasonable time. This is perhaps not that crucial in
case of a jury consisting of 10 members and deliberating over 5 connected issues.
Consider, however, a team of 100 robots reaching a collective decision based
on the input from 400 sensors with different (but overlapping) range, or 500
stakeholders trying to agree on a company agenda. Scalability of the procedure
becomes clearly of utmost importance.

The paper is structured as follows. In Section 3 we give the necessary defini-
tions for a judgment aggregation problem and distance-based aggregation rules.
In Section 4 we consider the problem of verifying whether a particular set of
judgments can be selected as collective, for a collection of individual judgments,
by a distance-based judgment aggregation rule. We also extend our results to
aggregation of opinions expressed in multi-valued logics. In Section 5 we present
our conclusions.

2 Related Work
Our paper fits in the area of computational social choice [6] which comprises
interdisciplinary study of how computational analysis can be used to make social
choice methods operational. Many contributions, e.g. [1, 7, 8, 23], have been made
towards understanding the complexity-theoretic properties of voting rules. In
comparison, complexity-theoretic properties of judgment aggregation are not so
well explored.

Complexity analysis of distance-based judgment aggregation has, to the best
of our knowledge, been focused on analysis of particular aggregation rules. The



following papers have addressed the complexity of judgment aggregation pro-
cedures: [2–4, 20–22]. Out of these works, [2–4] focus on the complexity and
parameterized complexity of decision problems related to control and bribery in
quota judgment aggregation rules which generalize issue-by-issue majority judg-
ment aggregation [12].. [20] studies the complexity of deciding whether the so
called premise-based judgment aggregation rule (a special type of quota rule [14])
can be applied to a given judgment aggregation problem. [21] investigates the
complexity of deciding if a given judgment is selected by two alternative rules:
the quota rule and the most “typical” distance-based aggregation rule that uses
the sum of Hamming distances to compute the “score” for each judgment set.
The work [22] gathers and deepens the results of [21] and [20].

Summarizing, complexity-theoretic properties of judgment aggregation are
only partially explored. This applies especially to distance-based judgment ag-
gregation, where the only existing studies refer to particular “natural” judgment
aggregators, mainly based on the sum of Hamming distances. In contrast, we take
the opposite approach and explore the bounds of the framework. That is, we in-
vestigate what kind of complexity can be expected from arbitrary distance-based
aggregation rules.

Besides papers that explicitly refer to the complexity of judgment aggregation
procedures, we must also mention works on complexity of distance-based belief
merging [28] and especially distance-based preference aggregation [1, 18, 19].

Relation to research on preference aggregation. The research on complex-
ity in preference aggregation connects to the research on complexity of distance-
based judgment aggregation through the result of [19] where it was shown that
the Kemeny rule of voting coincides, for strict preference orders, with judgment
aggregation based on the sum of Hamming distances. The complexity of the
winner determination problem for the Kemeny preference aggregation rule, has
been studied in [1] and [27], the latter proving it to be ΘP

2 complete.

It has been demonstrated that judgment aggregation is related to preference
aggregation by showing when a preference aggregation problem can be translated
to a judgment aggregation problem and vice versa [11, 26, 32]. Studies that for-
mally establish the relationship between judgment aggregation rules and voting
rules (or preference aggregation rules) on the general level are only now start-
ing to be pursued [30], despite a number of discussions on the topic [13, 29, 35].
The general relationship between the complexity properties of preference aggre-
gation rules and the complexity properties of the judgment aggregation rules
that generalize them, is the next research step. We present some preliminary
intuitions.

A judgment set can be used to characterize a strict preference order [11] by
using a formula ϕa

b to represent that alternative a is preferred to alternative b.
In complexity of preference aggregation, one is typically interested in the winner
determination problem, that is, the problem of deciding whether an alternative is
top ranked in at least one of preference orders produced by the preference aggre-
gation rule. Considering only aggregation of strict preferences and following the
analogy that a preference order is a judgment set, an alternative in preference



aggregation corresponds to a judgment, and the winner determination problem
can be interpreted as that of determining whether a particular judgment ϕa

b is a
part of the collective judgment set produced by the judgment aggregation rule.
The difficulty lies in the fact that a judgment aggregation rule can produce mul-
tiple collective judgment sets, some containing ϕa

b and some not. Therefore two
different meaningful questions can be studied: (1) whether a judgment set as a
whole can be selected as the collective opinion, corresponding to our definition of
the winner set verification problem in Section 4, or (2) whether a given judgment
is an element of all collective opinions, as in [22]. For preference aggregation, (1)
corresponds to checking if a preference order is selected by the preference aggre-
gation rule, while (2) is about determining whether a given alternative is highest
ranked in all selected preference orders. Both decision problems are at least as
hard as the problem of deciding whether an alternative is a winner of the elec-
tion. Therefore we can expect decision problems in judgment aggregation to be
no easier than their counterparts in preference aggregation.

Relations with belief merging Judgment aggregation has been related with
belief merging [38]. Both theories are concerned with aggregating sets of formu-
las, however the demands on the aggregation results are different. In judgment
aggregation, the agenda limits the scope of issues whose consistent aggregated
truth-value is of interest. In belief merging, the agenda does not exist. The in-
terest focus in merging is on determining, not sets of formulas like in judgment
aggregation, but the (closed under deduction) set of formulas that are logically
entailed by the sets of formulas being merged. The computational complexity
analysis in belief merging is concerned with the decision problem of whether one
particular formula (judgment) is entailed by a given collection of belief sets [28].

3 Preliminaries

We first give a brief exposition of judgment aggregation and distance-based judg-
ment aggregation.

3.1 Judgment Aggregation

Let L be a propositional language over a countable set of atomic propositions
Prop, and let T be a set of truth values such that 1 ∈ T (i.e., it includes the value
for “absolutely true”). Any v : Prop → T is called a propositional valuation;
we denote the set of valuations as PV . Each v ∈ PV extends to a valuation
valv : L → T for all formulae of L. In most of the paper we will assume that L
is the language of classical propositional logic, T = {0, 1}, and valv is defined
by the classical Boolean semantics of negation, conjunction, etc.

Judgment aggregation can be defined as follows.3 Let N be a finite set of
agents, A ⊆ L a finite agenda of issues, and C ⊆ L a finite set of admissibility
constraints. A judgment set is a consistent and admissible combination of opin-
ions on issues from A, that is, some js : A → T for which there exists a valuation

3 Our definition of judgment aggregation combines features of logic-based aggrega-
tion [33] and algebraic aggregation [42]. It is easy to see that both formulations can
be expressed in our notation.



v ∈ PV such that: (i) valv(ϕ) = js(ϕ) for every ϕ ∈ A, and (ii) valv(ψ) = 1 for
every ψ ∈ C. The set of all judgment sets is denoted by JS. Now, a judgment
profile is a collection of judgment sets, one per agent, i.e., jp : N → JS. With a
slight abuse of notation, we will denote the set of all such profiles by JS|N |. Note
that we can conveniently represent judgment profiles as |Agt| × |A| matrices of
elements from T . Finally, a judgment aggregation rule ∇ : JS|N | → P(JS) \ {∅}
aggregates opinions from all the agents into a collective judgment set (or sets).
We allow for more than one “winning” set to account for nondeterministic or
inconclusive aggregation rules.

p1 p2 p3
robot 1 1 1 0
robot 2 0 0 0
robot 3 0 1 1

majority 0 1 0

Fig. 1. Guarding robots.
N = {1, 2, 3}, A = {p1, p2, p3},
C = {¬p1 ∧ p2 → p3}

Example 1. Consider 3 robots guarding a
building, that have just observed a person.
Each robot must assess whether the person is
authorized to be there (proposition p1), if it
has malicious intent (p2), and whether to clas-
sify the event as dangerous intrusion (p3). Ad-
ditionally, it is assumed that a non-authorized
person with malicious intent implies intru-
sion: ¬p1 ∧ p2 → p3 (note that the converse
does not have to hold). A possible judgment
profile is shown in Figure 1. The figure also shows that the most “obvious” ag-
gregation rule (majority) results in an inadmissible judgment set.

In case of binary (yes/no) judgments, this is equivalent to representing opin-
ions as consistent and complete sets of propositional formulas. For example, the
view of robot 1 in the Example 1 can be represented by the set {p1, p2, p3},
the judgment set of robot 2 is {¬p1,¬p2,¬p3}, and for robot 3 it becomes
{¬p1, p2, p3}. Issue-by-issue majority rule aggregates the sets into {¬p1, p2,¬p3}
which is inconsistent with the constraint ¬p1∧p2 → p3. Three-valued judgments
can be modeled analogously by assuming that the third value is in place for pi
when neither pi nor ¬pi occurs in the set (obviously, a set of judgments is then
only required to be consistent but not necessarily complete). Representing judg-
ments with more than 3 truth values by sets of formulas is not straightforward
anymore.

There are two natural computational problems related to judgment aggrega-
tion: computing a “winning” judgment set and verifying that a judgment set is
one of the winner sets. We look closer at the latter problem in Section 4.

3.2 Distance-Based Aggregation Rules

A distance-based aggregation rule [34, 38] looks for a collective opinion that
does not stray too much from the individual judgments: Formally, such a rule
is defined as ∇d,aggr(jp) = argminjs∈JS

{
aggr

(
d(js, jp[1]), . . . , d(js, jp[|N |])

)}
,

where d is a distance function [10, p.3-4 and 45], and aggr an aggregation func-
tion [25, p.3], cf. the definitions below.

Definition 1. An algebraic aggregation is a function aggr : (R+)n → R+

such that: (minimality) aggr(0n) = 0, and (non-decreasing) if x ≤ y, then
aggr(x1, . . . , x, . . . , xn) ≤ aggr(x1, . . . , y, . . . , xn).



Definition 2. A distance over set X is a function d : X ×X → R+ ∪ {0} such
that: (minimality) d(x, y) = 0 iff x = y, (symmetry) d(x, y) = d(y, x), and
(triangle inequality) d(x, y) + d(y, z) ≥ d(x, z).

Well known aggregators are: min, max, sum, and product. Well known distances
are the Hamming distance dH(x, y) =

∑m
i=1 δH(x[i], y[i]), and the drastic dis-

tance dD(x, y) = maxm
i=1 δH(x[i], y[i]), while δH(x, y) = 0 if x = y and 1 other-

wise.
In belief-merging, it is not required that d satisfies triangle inequality, d is

a pseudo-distance, but the only two concrete distances used in belief merging,
the Hamming and drastic distance, satisfy it. How necessary this property is in
judgment aggregation, is not well studied, but since we do not know of d’s that
are not distances, we decided to use distances within the scope of this paper.

Example 2. Consider the robots from Example 1, and let us use dH as the
distance and

∑
as the aggregator. Then, the winner sets are {000, 011, 110},

all with score (i.e., aggregate distance) 3. In other words, the agents cannot do
better than to accept one of their individual opinions.

4 Verification of Collective Opinions in Distance-Based
Judgment Aggregation

In computational social choice various complexity-theoretic aspects of voting
theory are studied, such as how difficult it is to find a winner of elections or how
difficult it is to manipulate an election. There are two natural computational
problems related to judgment aggregation: the function problem of computing
a “winning” judgment set, and the decision problem of verifying that a given
judgment set is one of the winner sets. We look closer at the latter.

4.1 Winner Set Verification
In judgment aggregation the “winner” of an aggregation is the resulting collective
opinion, i.e., a set of judgments. Consequently one can consider complexity issues
from the stance of a judgment on a particular issue, but also from the stance of an
entire set of judgments. If one is concerned with particular judgments, then the
interesting complexity-theoretic one-judgment question to study is: how complex
is it to determine if a judgment value t ∈ T was assigned to issue a ∈ A. This
stance is taken in the complexity analysis of [21]. A similar stance, of whether
a given belief is included in the merging result of belief bases, is taken when
studying the complexity-theoretic properties of belief merging [28]. We adopt
a different approach, and look at the verification problem for a given complex
opinion, i.e., a judgment set.

We begin by defining formally the problem of winner set verification. Then,
we investigate the “absolute” complexity that one may face in distance-based
aggregation. It turns out that the problem is undecidable in general. On the other
hand, the problem becomes more feasible under some reasonable restrictions
on the distance and algebraic aggregation functions. Finally, we determine the
complexity of winner set verification for some natural aggregators.

The winner set verification problem for agenda A, set of constraints C, logic
L and a rule ∇d,aggr, is defined as follows.



Definition 3. winver∇ is the decision problem defined as follows:
Input: Agents N , agenda A, constraints C, judgment profile jp ∈ JS|N |(A, C),
and judgment set js ∈ JS(A, C).
Output: true if js ∈ ∇(jp), else false.

What is the complexity of winver? One could expect that, under the as-
sumptions in Definitions 1 and 2, distance-based aggregation should behave rea-
sonably in computational terms. Unfortunately, it is not the case.

4.2 Negative Results
Theorem 1. There is a distance which is not Turing computable.

Proof. We construct the Turing distance dTR as follows. First, we assume a
standard encoding of Turing machines in binary strings; we use TM(X) to refer
to the machine represented by the string of bits X ∈ {0, 1}m. We also assume by
convention that strings starting with 0 or ending with 1 represent only machines
that always halt (e.g., they can represent various TM’s with only accepting
states).

Let halts(X) = 0 if the TM(X) halts, and 1 otherwise. Now, for any
js, js′ ∈ {0, 1}m, we take

dTR(js, js′) = dD(js, js′) + halts(h(js, js′)),

where dD is the drastic distance (i.e., dD(js, js′) = 0 if js = js′ and 1 other-
wise), and h(js, js′) =

(
δH(js[1], js′[1]), . . . , δH(js[m], js′[m])

)
is the Hamming

sequence for (js, js′). In other words, we XOR the binary strings corresponding
to js and js′, interpret the resulting string as a TM, and set the distance to 0 or
1 depending on whether the TM halts or not. On top of that, we add 1 whenever
js, js′ are not exactly the same.

We check that dTR is a distance:
1. dTR(js, js) = dD(js, js) + halts(0m) = 0;
2. dTR(js, js′) = 0⇒ dD(js, js′) = 0⇒ js = js′;
3. dTR(js, js′) = dTR(js′, js): straightforward;
4. Triangle inequality: the nontrivial case is js 6= js′ 6= js′′, then
dTR(js, js′) + dTR(js′, js′′) ≥ 2 ≥ dTR(js, js′′).

For incomputability, we observe that TM(X) halts iff dTR(X, 0|X|) ≤ 1. Con-
sider the following cases: (1) X = 0n: TM(0n) halts and dTR(0n, 0n) = 0; (2)
X 6= 0n and TM(X) halts: then, dTR(X, 0|X|) = 1 + halts(X) = 1; (3) X 6= 0n

and TM(X) does not halt: then, dTR(X, 0|X|) = 1 + halts(X) = 2. ut

Theorem 2. There is a distance and an aggregation function for which winver
is undecidable.

Proof. We construct a Turing reduction from the halting problem. Given is a
representation X ∈ {0, 1}m of a Turing machine (same assumptions as in Theo-
rem 1, i.e., every X starting with 0 or ending with 1 represents a TM that halts).
We take dTR as the distance, and aggr =

∑
. Let the agenda A = {p1, . . . , pm}



consist of n unrelated atomic propositions, the set of constraints C = ∅, and the
judgment profile jp = {0m, X}. Now, for X = 1 . . . 0 (the other cases of X triv-
ially halt), we have that TM(X) halts iff js = 0m, X are the only winner sets. To
prove this, we first observe that: (i) there is no Y ∈ {0, 1}m with the aggregate
distance less than 1 (since the aggregate distance for Y is a sum of nonnegative
elements that includes dD(Y,X) + dD(Y, 0m) and X 6= 0m by assumption); (ii)
for all candidate judgment sets Y /∈ {0m, X} the aggregate distance is at least 2
(by the analogous argument); (iii) for Y = 1m the aggregate distance is always
exactly 2, the score being dD(1m, 0m) + halts(1m) + dD(1m, X) + halts(X) =
1 + 0 + 1 + 0. TM(1m) halts because 1m ends with 1, and TM(X) halts because
X begins with 0. Now we prove the equivalence:
⇒: Assume that TM(X) halts. Then, the aggregate distance for X is 1, and

the same for 0m (because dTR(X, 0m) = 1 and dTR(X,X) = dTR(0m, 0m) = 0).
Thus, by (i), 0m, X must be winners, and by (ii) no other judgment set can be
a winner.
⇐: Assume that TM(X) does not halt. Then, the aggregate distance for X

is 2, and likewise for 0m (because dTR(X, 0m) = 2). By (ii), 0m, X must be
winners, but they are not the only winners – by (iii), 1m must be a winner too.

We have proved that TM(X) halts iff js = 0m, X are the only winner sets.
Suppose now that deciding winver terminates in finite time. Then, the halting
of TM(X) could be verified by 2m winver checks, i.e., also in finite time –
which is a contradiction. ut

Thus, the standard requirements on distance metrics and aggregation func-
tion are not sufficient to guarantee even decidability of the winner set verification
problem. Of course, the judgment aggregation rule used in the proof of Theo-
rem 2 is artificial and unlikely to be ever used in any practical context. Still, it
shows that the framework allows – at least theoretically – for such ill-behaved
rules. Note that the effect should be the same if the distance is based on solving
any other undecidable problem. For example, it can be based on a solution to
a certain game, and if the game assumes imperfect information and perfect re-
call of players then solving it is in general undecidable [37, 15]. Or, the distance
can be defined in terms of resources needed by a group of agents to achieve a
given task (for undecidability, cf. e.g. [5]). We believe that these two examples
of hypothetical distance-based rules are not so far-fetched anymore.

Distance-based aggregation rules that are actually used have much better
computational properties, as we demonstrate in Section 4.3. Yet, Theorem 2
is important because it shows the bounds of the framework: in principle, the
complexity of related decision problems can be very bad. This means that, when
trying a new variant of distance-based aggregation, one should be cautious, and
carefully examine its computational characteristic beforehand.

4.3 Positive Results
We now prove that, under reasonable conditions, winner set verification sits in
the first level of the polynomial hierarchy. We recall that PNP[k] is the class of
problems solvable by a polynomial-time deterministic Turing machine asking at
most k adaptive queries to an NP oracle. Clearly, NP ⊆ PNP[k] ⊆∆P

2 = PNP.



Theorem 3. If aggr and d are computable in polynomial time then winver for
∇d,aggr is in PNP[2].

Proof. We prove the inclusion by showing Algorithm 1 for winver, which uses
two oracles, given in Algorithms 2 and 3. Note that the js in the input of
Algorithms 3 is always consistent.

Algorithm 1: Winver()

Input: js,jp,N,A,C,d,aggr
Output: true if js is a winner for jp under aggr, false otherwise

1 if Consistent(js,A,C) and not ExistsBetter(js,jp,N,A,C,d,aggr) then
2 return true else return false

Algorithm 2: Oracle Consistent()

Input: js,A,C
Output: true if js is consistent for A and C, false otherwise

1 guess a valuation v ∈ PV for the atomic propositions in A
2 if valv(ϕ) = js(ϕ) for every ϕ ∈ A and valv(ψ) = 1 for every ψ ∈ C then
3 return true else return false

Algorithm 3: Oracle ExistsBetter()

Input: js,jp,N,A,C,d,aggr
Output: true if there is a judgment set ‘closer’ to jp than js, false otherwise

1 guess js′ ∈ JS
2 guess a valuation v′ ∈ PV for the atomic propositions in A
3 if valv′(ϕ) = js′(ϕ) for every ϕ ∈ A and valv(ψ) = 1 for every ψ ∈ C
4 andaggr

(
d(js′, jp[1]), . . . , d(js′, jp[|N |])

)
< aggr

(
d(js, jp[1]), . . . , d(js, jp[|N |])

)
then

5 return true else return false

For combinations of most typical distances and aggregators, the following
is a straightforward consequence.The problem of checking if a judgment is in
at least one collective judgment set is already known to be NP-complete for
d = dH , aggr =

∑
[21].

Corollary 1. If aggr ∈ {min,max,
∑
,
∏
} and d ∈ {dH , dD} then winver for

∇d,aggr is in PNP[2].

4.4 Aggregation of Non-Binary Judgments

In this section, we briefly report that all the results from Sections 4.2 and 4.3
carry over to the case of judgments interpreted in a given k-valued logic.4 In
particular, we note that the algorithm in Section 4.3 depends neither on the
set of truth values, nor on the way valuations of complex formulas derive from
valuations of atomic propositions. Also, the Turing distance used in Section 4.2
is built on pointwise comparison of judgment sets that always results in a binary
string. Thus, we can state the following.

4 We do not discuss motivation for using such judgments, and instead refer the inter-
ested reader e.g. to [36, 16, 31, 40, 17].



Theorem 4. For every k ∈ N, there is a distance over {0, . . . , k− 1}m which is
not Turing computable.

Proof. Analogous to the proof of Theorem 1.

Theorem 5. Let k ∈ N, and L a k-valued logic constructed like in Section 3.1.
Then, there is a distance and an aggregation function for judgment sets in L
such that winver is undecidable.

Proof. Analogous to the proof of Theorem 2.

Theorem 6. If aggr is an aggregation function over over {0, . . . , k − 1}n, d is
a distance metric over {0, . . . , k − 1}m, and both aggr and d are computable in
polynomial time, then winver for ∇d,aggr is in PNP[2].

Proof. The claim is demonstrated by the same algorithm as in the proof of
Theorem 3.

5 Conclusions
Complexity-theoretic properties of voting procedures are a frequent topic of
study in computational social choice. In contrast, the complexity of judgment
aggregation has drawn attention only recently. In this paper, we explore the com-
plexity bounds of an important family of judgment aggregation rules, namely
those based on minimization of aggregate distance. More precisely, we study
the decision problem of verifying if a given judgment set can be selected as the
collective opinion. It turns out that feasibility of distance-based aggregation in
general cannot be guaranteed, and should not be taken for granted. However,
by assuming some requirements on the possible outcomes of the distance and
aggregation functions, we can tame the complexity reasonably. We also show
that the pattern of complexity does not change when the framework is extended
to multi-valued judgments.

To our best knowledge, this paper is the first to analyze the complexity of
verifying distance-based aggregate judgments on an abstract level. There are not
many concrete judgment aggregation rules proposed in the literature; this aspect
of the judgment aggregation theory has only now begun to be developed. Our
results suggest that, when devising a new judgment aggregation rule, we should
expect complexity traps, and carefully look for rules that are relatively efficient.
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