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Abstract

A central focus in multi-agent systems is the
agents’ ability to achieve their goals, often involv-
ing epistemic objectives like acquiring knowledge
about a crucial fact φ. Many such properties can
be expressed using PATLK, an extension of proba-
bilistic alternating-time temporal logic (PATL) with
knowledge operators, or PATLC that extends PATL
with probabilistic beliefs.
In many scenarios, however, the goal of the play-
ers is not to achieve high confidence about φ be-
ing true, but rather to reduce their uncertainty about
φ (be it true or false). To capture such properties,
we introduce PATLH, a logic extending PATL with
information-theoretic modalities based on Shan-
non entropy. As technical results, we compare
the epistemic and information-theoretic extensions
of PATL with respect to their expressiveness, suc-
cinctness, and complexity of model checking.

1 Introduction

Motivation. In the field of formal reasoning about multi-
agent systems (MAS), strategic uncertainty plays a critical
role in decision-making processes (see [Bulling et al., 2015;
Ågotnes et al., 2015]). Agents within such systems often
need to reason about the outcomes of actions in environments
that are not fully observable or deterministic. Therefore,
strategic reasoning of individual agents and their groups must
account for both incomplete information about their environ-
ment and the stochastic nature of this environment when for-
mulating strategic decisions and plans. This requires the de-
velopment of formal models that allow agents to make strate-
gic decisions despite various layers of uncertainty, and take
into account the stochastic behavior of MAS.

Knowledge and information play a vital role in interac-
tions, especially with the rise of the Internet and social net-
works. Information is both a key resource for strategy forma-
tion and often the primary goal of interaction. Agents may
act to learn new information or to protect secrets. For exam-
ple, people seek economic trends, fashion updates, or even
the quality of workplace coffee. Such scenarios inherently

involve both knowledge and uncertainty. Analyzing proba-
bilistic information is essential in these contexts. By com-
puting the likelihood of outcomes and integrating uncertainty
into decision-making, agents can make informed choices in
environments where complete knowledge is unattainable.

Logics for strategic uncertainty. Alternating-time temporal
logic ATL [Alur et al., 2002]is a widely recognized frame-
work for reasoning about strategic capabilities in MAS. ATL
allows for the expression of strategic abilities of groups of
agents, where certain outcomes can be guaranteed through
cooperative strategies. A probabilistic extension of the logic,
PATL [Chen and Lu, 2007; Huang et al., 2012; Belardinelli
et al., 2024], enhanced ATL by probabilistic reasoning about
the likelihood of achieving certain outcomes, rather than de-
terministic guarantees.

An important step towards reasoning about strategic un-
certainty was made with ATLH [Tabatabaei and Jamroga,
2023]. ATLH extended ATL with modalities based on the
Hartley measure [Hartley, 1928a], that can be seen as a non-
probabilistic restriction of Shannon entropy [Shannon, 1948].
However, in scenarios where agents do have beliefs about the
likelihoods of events, the information gain from revealing cer-
tain facts is intimately related to those likelihoods.

Contribution. To fill this major gap, we consider “PATL
with Credences” (PATLC), which is in fact a more general
version of PATEL [Huang and Luo, 2013]. PATLC extends
Probabilistic ATL by graded epistemic operators K≥q

a φ for
probabilistic beliefs (or credences), with the intended mean-
ing: “agent a believes that φ holds with probability at least q.”
In contrast to PATL with binary knowledge, this allows us to
incorporate the stochastic behavior of the environment and its
influence on the epistemic aspects of strategic reasoning.

Even more importantly, we introduce “PATL with Shan-
non uncertainty” (PATLH). PATLH is an information-
theoretic extension of PATL that adds quantitative uncer-
tainty modalities based on Shannon entropy – a foundational
concept in information theory. By incorporating entropy-
based reasoning, PATLH allows agents to reason about both
their strategic options and their epistemic uncertainty. This is
particularly useful in scenarios where agents must either re-
duce the uncertainty to gain knowledge about specific facts
or, conversely, maintain a high level of uncertainty to keep
sensitive information hidden from adversaries. The added
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layer of expressiveness makes PATLH suited, e.g., for rea-
soning about security and privacy in MAS, where the con-
trol of information flow is as important as the control of out-
comes. To our best knowledge, this is the first logical formal-
ism that incorporates stochastic aspects of the system directly
into strategic reasoning about uncertainty of information flow.

In terms of technical results, we prove that (1) PATLC
and PATLH have the same model checking complexity; (2)
PATLC is strictly more expressive than PATLH; and con-
jecture that (3) PATLH is exponentially more succinct than
PATLH. Thus, PATLC allows for expressing more proper-
ties, but PATLH may offer exponentially shorter encodings
for those that it can express. In consequence, the practical
verification of PATLH would be often exponentially easier,
which makes both logics interesting for applications that re-
quire both strategic and information-theoretic reasoning.

Related Work Strategic-epistemic reasoning gained sig-
nificant attention in the early 2000s, particularly within
frameworks like ATEL [van der Hoek and Wooldridge,
2003; Ågotnes, 2006; Jamroga and Ågotnes, 2007] and
DEL [van Ditmarsch et al., 2007; Ågotnes and van Dit-
marsch, 2008], To the best of our knowledge, the only works
that combine logical approaches to strategic reasoning with
information-theoretic concepts are [Jamroga and Tabatabaei,
2013; Tabatabaei and Jamroga, 2023], and both concern
non-probabilistic interaction. MAS with stochastic interac-
tions has been extensively studied, see e.g. [Hansson and
Jonsson, 1994; Chen and Lu, 2007; Huang et al., 2012;
Huang and Luo, 2013; Belardinelli et al., 2024]. How-
ever, these works did not focus on epistemic or information-
theoretic aspects. A notable exception is [Huang and Luo,
2013] which proposed PATEL, i.e., Probabilistic ATL ex-
tended with probabilistic belief operators, and investigated its
model checking complexity. Metrics of uncertainty and infor-
mation gain were introduced by Hartley [Hartley, 1928a] and
extended by Shannon [Shannon, 1948]. The latter is com-
monly used in information security to measure the amount of
information leaking to the intruder [Alvim et al., 2020]. An
extension of ATL with modalities based on Hartley measure
was recently introduced in [Tabatabaei and Jamroga, 2023].
In this paper, we extend this framework to probabilistic con-
cepts and models.

Our main technical results concern the comparison of
expressiveness between epistemic and information-theoretic
modalities, and the succinctness of information-theoretic
modalities based on Shannon entropy. The study of the suc-
cinctness of logical representations dates back to the early
1970s [Stockmeyer, 1972]. The relative succinctness of
branching-time logics was explored in [Wilke, 1999; Adler
and Immerman, 2001; Markey, 2003], while the succinctness
of ATL* with past-time operators was studied in [Bozzelli et
al., 2020]. The method of proving succinctness using formula
size games was first introduced in [Adler and Immerman,
2001], and later generalized in [French et al., 2013b]. In this
work, we build on the latter approach, and follow [Tabatabaei
and Jamroga, 2023] in establishing our result.

2 Preliminaries
Distributions and Markov Chains. Let X be a finite non-
empty set. A probability distribution over X is a function
p : X → [0, 1] such that

∑
x∈X p(x) = 1, and Dist(X) is

the set of probability distributions over X . A Markov Chain
M is a tuple (St, p) where St is a nonempty set of states
and p ∈ Dist(St × St) is a distribution. The values p(s, t)
are transition probabilities of M denoting the likelihood of a
transition from s to t. A path is an infinite sequence of states.
Stochastic iCGS. Stochastic Imperfect Information Concur-
rent Game Structures (Stochastic iCGS, or SiCGS) extend
the well-known Concurrent Game Structures [Alur et al.,
2002] to allow for both imperfect information and stochas-
tic transitions. Formally, a Stochastic iCGS is a tuple G =
(Agt, St,Act , d, δ, {∼a}a∈Agt), where Agt is a finite set of
agents, St is a finite set of states, Act is a finite set of actions,
d : Agt×St→ 2Act \{∅} is a function defining the available
actions for each agent in each state, δ : St× Actn → D(St)
is a stochastic transition function (where D(St) denotes the
set of probability distributions over St) that gives the (condi-
tional) probability δ(s, c) of a transition from state s for all
s′ ∈ St if each player a ∈ Agt plays the action ca (we also
write this probability as δ(s, c)(s′) to emphasize that δ(s, c)
is a probability distribution on St), and ∼a⊆ St × St for
each a ∈ Agt is an equivalence relation capturing the indis-
tinguishability of states for agent a.
Strategies and Probabilistic Outcomes. For the interplay
between a coalitionC ⊆ Agt and its opponentsC = Agt\C,
we follow [Belardinelli et al., 2023a] and assume that C play
uniform deterministic memoryless strategies (ir-strategies in
short), whereas C can respond with any pattern of behavior
(possibly probabilistic and history-based). Formally, an ir-
strategy for agent a is a function σa : St → Act in which:
(i) for each s, we have σσσa(s) ∈ d(s, a); and (ii) if s ∼a

s′ then σσσa(s) = σσσa(s
′). Moreover, a general strategy for

agent a ∈ Agt is represented by σσσa : St+ → D(Act) that
maps each finite history to a probability distribution over the
agent’s actions, such thatσσσa(h) ∈ d(last(h), a). A collective
strategy σσσC for C is a tuple of strategies σσσa, one per agent
a ∈ C.

The outcome of strategy σσσC from state s is the set
outC(σσσC , s) of probability distributions over infinite paths
in the model, consistent with C’s choices prescribed by σσσC .
Each distribution µσσσC ,s ∈ outC(σσσC , s) is obtained from the
Markov chain that combines the Stochastic iCGS M with σσσC

and a possible general strategy of C. We refer to [Belardinelli
et al., 2023a] for the detailed construction.
Probabilistic Alternating-Time Logic PATL. We now in-
troduce Probabilistic Alternating-Time The language of
PATL∗ is defined as follows:

φ ::= p | ¬φ | φ ∧ φ | φU φ | ❣φ | ⟨⟨C⟩⟩∝pφ,
where ⟨⟨C⟩⟩∝pφ means that there exists a strategy for the
coalition C to collaboratively enforce φ with a probability
in relation ∝ with constant p, where ∝∈ {=, ̸=, >,<,≥,≤}.

The language of PATL is a restriction of the language of
PATL∗ and is defined by the following grammar:

φ ::= p | ¬φ | φ ∧ φ | ⟨⟨C⟩⟩∝p ❣φ | ⟨⟨C⟩⟩∝pφU φ,
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C to collaboratively enforce φ with a probability in relation
∝ with constant p.

An iSCGS together with a set of atomic propositions AP
and a valuation function V : AP → 2St is called a stochastic
concurrent game model (SCGM). The formulas of PATL are
interpreted over pairs (M,π), consisting of an SCGM and an
infinite path in it.
Satisfaction relation. The semantics of PATL extends the
semantics of ATL and is defined by the following clauses:

M,π |= p iff p ∈ V (π0);

M,π |= ¬φ iff M,π ̸|= φ;

M,π |= φ ∧ ψ iff M,π |= φ and M,π |= ψ;

M,π |= ⟨⟨C⟩⟩∝pφ iff there is an ir-strategy σσσC s.t. for all
µσσσC ,π0

∈ outC(σσσC , π0) we have µσσσC ,π0
({ρ : M,ρ |=

φ}) ∝ p;

M,π |= ❣φ iff M,π≥1 |= φ;

M,π |= φU ψ iff there is a k s.t. M,π≥k |= ψ and for all
j < k we have M,π≥j |= φ.

We define M, s |= φ iff M,π |= φ holds for any π starting
in s. Sat(M,φ) = {s ∈ St | M, s |= φ} is the subset of
states in M satisfying φ. Moreover, pointed models are pairs
(M, s) consisting of an SCGM and a state in it. For a subset
of pointed models A, we use A |= φ to mean that for all
(M, s) ∈ A it holds that M, s |= φ. We also use M̂ to denote
the set of all pointed models in M .

3 Adding Knowledge and Uncertainty
In this section we introduce probabilistic extensions
of ATLK [van der Hoek and Wooldridge, 2003] and
ATLH [Tabatabaei and Jamroga, 2023] that can be simultane-
ously seen as epistemic and information-theoretic extensions
of PATL [Belardinelli et al., 2023b].

Knowledge and Credences In multi-agent epistemic logic,
knowledge of agents is formalized by epistemic formulas
Kaφ, stating “agent a knows that φ holds.” They are inter-
preted by the following clause:

M, s |= Kaφ iff, for every state t such that s ∼a t, we
have that M, t |= φ,

where ∼a⊆ St×St is an epistemic equivalence relation con-
necting states that are indistinguishable to a.

Analogously, PATL can be extended by operatorsK∝q
a for

probabilistic knowledge/beliefs, or credences (where ∝∈ {<
,>,≤,≥,=}). To provide semantics, we augment SiGS by
a probabilistic observation function obsa : St → Dist(St),
with the idea that obsa(s)(t) gives the subjective probability
with which agent a believes that the current state is t, pro-
vided that the actual current state is, in fact, s. We will of-
ten write obsa(t|s) instead of obsa(s)(t) to make this even
clearer. Additionally, we lift the notation to subsets of states
by defining obsa(T |s) =

∑
t∈T obsa(t|s).

We require that epistemic indistinguishability, captured by
∼a, is consistent with obsa as follows: s ∼a t (when in s,
the agent considers t as possible) iff obsa(t|s) > 0 (when in
s, the agent considers t with nonzero probability). Since ∼a

is an equivalence, this implies the following requirements:
obs(s|s) > 0 (due to reflexivity of ∼a); if obs(t|s) > 0
then obs(s|t) > 0 (due to symmetry); if obs(t|s) > 0 and
obs(s|w) > 0 then obs(t|w) > 0 (due to transitivity).

An SiCGS extended by observation functions obsa is
called a Stochastic Observational CGS (SOCGS). An SOCGS
together with a set of atomic propositionsAP and a valuation
function V : AP → 2St is called a Stochastic Observational
CGM (SOCGM). The semantics of PATLC extends PATL
by the clause:

M, s |= K∝q
a φ iff obsa(Sat(M,φ)|s) ∝ q.

We note in passing that, for finite models, we can express
classical knowledge by credences with Kaφ ≡ K=1

a φ.
Probabilistic Uncertainty Operators We propose modal
operators H∝m

a Φ, based on the fundamental notion of in-
formation entropy, due to [Shannon, 1948]. Let X =
{x1, . . . , xn} be a countable set of possible outcomes (typi-
cally, values of a given random variable), and Pr ∈ Dist(X)
a probability distribution over X . Then, its Shannon entropy
is defined as HS(X) = −

∑n
i=1 Pr(xi) logPr(xi). Clearly,

Shannon entropy is minimal (and equal to 0) if p is a Dirac
distribution, i.e., we are certain with probability 1 which out-
come is the right one. Conversely, HS is maximal when Pr
is uniform, i.e., the subjective randomness of the system is
highest. In that case, Shannon entropy coincides with Hartley
uncertainty, defined as H(X) = log(|X|) [Hartley, 1928b].
Syntax. PATLH extends PATL with a family of operators
H∝m

a Φ, where a ∈ Agt, Φ is a finite nonempty subset of
PATLH formulas, and ∝∈ {<,≤, >,≥,=}. The reading of
H∝m

a {φ1, . . . , φn} is “the uncertainty of a about the actual
values of φ1, . . . , φn is at least (at most, equal to, etc.) m.”
Semantics. We define the semantics of PATLH over
SOCGMs, as for PATLK and PATLC. We follow the ap-
proach of [Tabatabaei and Jamroga, 2023]. The idea is that,
in order to measure agent a’s uncertainty about formulas
Φ = {φ1, . . . , φn}, we take the different valuations of Φ as
the “possible outcomes.” Then, we take a’s subjective proba-
bilities about each possible valuation, and compute Shannon
entropy for the resulting distribution.

Formally, we start by defining relation ∼φ∈ St × St that
connects states with the same valuation of φ, i.e.: s ∼φ

t iff M, s |= φ⇔M, t |= φ. This can be lifted to indiscerni-
bility of states w.r.t. a set of formulas Φ in a natural way:
∼Φ=

⋂n
φ∈Φ ∼φ. Moreover, we combine syntactic and se-

mantic indistinguishability through relation ∼Φ
a=∼a ∩ ∼Φ.

In other words, s ∼Φ
a t iff s and t are epistemically indistin-

guishable and no formula in Φ can distinguish between them.
Clearly, ∼Φ

a is an equivalence relation.
Next, we define the relevant outcomes as the abstraction

classes of ∼Φ
a that are contained in the current epistemic class

due to ∼a, i.e.: Ra,s(Φ) = {[t]∼Φ
a

| t ∼a s}. Then, we con-
struct Pra,s,Φ ∈ Dist(Ra,s(Φ)) with Pra,s,Φ([t]) being the
(normalized) aggregate probability that a associates with the
states in [t] when the real state of the system is s, i.e.:

Pra,s,Φ([t]∼Φ
a
) =

∑
t′∈[t]∼Φ

a

obsa(t
′|s).
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Finally, we can define the semantics of Shannon uncertainty
modalities via the following clause:

M, s |= H∝m
a Φ iff

(
−

∑
[t]∈Ra,s(Φ)

Pra,s,Φ([t]) logPra,s,Φ([t])
)
∝m.

Simple Example Consider the following scenario: a voter
v decides to vote for or against A, by choosing (at the ini-
tial state s0) whether to proceed to state s1 (with proposi-
tion VA) or to s2 (with ¬VA). After v has voted, the coercer
c learns the value of the vote with 70% confidence, repre-
sented by: obsc(s1|s1) = obsc(s2|s2) = 0.7, obsc(s2|s1) =
obsc(s1|s2) = 0.3. The following PATLC formula holds in
s0:
⟨⟨v⟩⟩♢(VA ∧ ¬K≥0.9

c VA) ∧ ⟨⟨v⟩⟩♢(¬VA ∧ ¬K≥0.9
c ¬VA),

expressing that the voter can vote for or against A in such
a way that the coercer does not learn about that with con-
fidence 90% or more. Note that the analogous formula for
confidence level of 0.7 would not be true anymore. More-
over, the following PATLH formula is also true in s0:
⟨⟨v⟩⟩□H≥0.88

c {VA,¬VA}, saying that the voter can keep the
coercer’s uncertainty about v’s vote at a reasonable level of at
least 0.88 bits.

The above formulas allow us to pinpoint two distinct fla-
vors of information leakage: one based on the coercer’s in-
creased confidence in the actual value of the vote, and the
other on the reduction of his subjective information entropy.

4 Model Checking
In this section we show that adding probabilistic knowledge
and uncertainty does not increase the complexity of verifica-
tion. More precisely, model checking of all the considered
logics (PATLH, PATLK, and PATLC) is ∆P

2 -complete for
uniform deterministic strategies of the coalition, and thus no
worse than for ATLir and PATLir. Since the input to model
checking should be finite, we only consider finite state and
action spaces, and rational probability values.
Theorem 1. Model checking of PATLK with deterministic ir-
strategies is ∆P

2 -complete.

Proof. We recall that model checking of epistemic logic is
in P [Halpern and Vardi, 1991], and model checking PATL
with deterministic ir-strategies is ∆P

2 -complete w.r.t. the size
of the model and the length of the formula [Belardinelli et al.,
2023b]. Moreover, model checking PATL formulas of type
⟨⟨C⟩⟩γ with no nested strategic operators is NP-complete.

The lower bound for PATLK is immediate from the fact
that PATLK subsumes PATL. The upper bound can be ob-
tained via the standard recursive algorithm that starts from
the simplest subformulas (i.e., ones with no nested strate-
gic nor epistemic modalities), computes their extensions (i.e.,
subsets of states that satisfy the formula), and replaces each
of them with a fresh atomic proposition with exactly the
same extension. Clearly, the complexity of the algorithm is
PP∪NP = ∆P

2 .

The next results are proved analogously.
Theorem 2. Model checking of PATLCir with deterministic
ir-strategies is ∆P

2 -complete

Proof. The lower bound for PATLC is immediate as PATLC
subsumes PATL. For the upper bound, it suffices to prove
that the extension of K∝q

a φ in model M , for φ containing no
nested modal operators, can be computed in polynomial time.

To do this, for each state s ∈ St, we compute
Bel(s, a, φ) =

∑
t∈Sat(M,φ) obsa(t|s), and check if

Bel(a, s, φ) ∝ q. Clearly, the procedure runs in polynomial
time w.r.t. the number of states, transitions, and representa-
tion of probabilities in the model and the formula.

To model-check an arbitrary formula of PATLC, we apply
the same recursive algorithm as in Theorem 1.

Theorem 3. Model checking of PATLH with deterministic
ir-strategies is ∆P

2 -complete.

Proof. The lower bound is immediate as PATLH subsumes
PATL. For the upper bound, we prove that the extension of
H∝m

a Φ, for Φ = {φ1, . . . , φn} containing no nested modal
operators, can be computed in polynomial time.

To do this, for each state s ∈ St, we construct the set
of equivalence classes Ra,s(Φ) by checking the values of
φ1, . . . , φn in all states t ∈ [s]∼a

. Then, we compute
Pra,s,Φ(x) for every x ∈ Ra,s(Φ). Finally, we calculate the
Shannon entropy HS(Ra,s(Φ)) and compare it with m ac-
cording to operator ∝. The procedure runs in polynomial time
w.r.t. the number of states, transitions, representation of prob-
abilities, and the precision with which logarithms are com-
puted. For arbitrary formulas, we proceed recursively.

5 Expressiveness
We start by recalling the semantic concepts of comparative
expressiveness [Wang and Dechesne, 2009]. Then, we prove
that PATLC is strictly more expressive than PATLH.
Definition 1 (Distinguishing and expressive power). Let
L1 = (L1, |=1) and L2 = (L2, |=2) be two logical sys-
tems with sets of formulas L1,L2 and semantic relations
|=1, |=2 interpreted over the same class of models M. By
Sat (ϕ) = {(M, q) | M, q |= ϕ}, we denote the class of
pointed models that satisfy ϕ in the semantics given by |=.
Likewise, Sat (M,ϕ) = {q |M, q |= ϕ} is the set of states
(or, equivalently, pointed models) that satisfy ϕ in a given
structure M .
L2 is at least as expressive as L1 (L1 ⪯e L2) iff for every

ϕ1 ∈ L1 there is ϕ2 ∈ L2 such that SatL1
(ϕ1) = SatL2

(ϕ2).
L2 is at least as distinguishing as L1 (L1 ⪯d L2) iff for

every model M and formula ϕ1 ∈ L1 there exists ϕ2 ∈ L2

such that SatL1
(ϕ1,M) = SatL2

(ϕ2,M). Equivalently: ev-
ery pair of pointed models that can be distinguished by some
ϕ1 ∈ L1 can be also distinguished by some ϕ2 ∈ L2.

Note that L1 ⪯e L2 implies L1 ⪯d L2. By transposition,
it also holds that L1 ̸⪯d L2 implies L1 ̸⪯e L2.
Theorem 4. PATLH covers neither the expressive nor the
distinguishing power of PATLC.

Proof. We show that PATLC ̸⪯d PATLH, and thus also
PATLC ̸⪯e PATLH.

Take two models M1,M2, each with a single agent a, two
states s1, s2, only self-loops as transitions, and a sole propo-
sition p holding only in s2. The observations in (M1, s1) are:
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obs(s1|s1) = 1
4 , obs(s2|s1) = 3

4 ; in (M2, s1): obs(s1|s1) =
3
4 , obs(s2|s1) = 1

4 . Notice that: (1) (M1, s1) and (M2, s1)
satisfy the same formulas of PATL (obvious), and the only
nontrivial uncertainty formulas are H∝q

a {p} (or, equivalently,
H∝q

a {¬p}. But the Shannon entropy for Φ = {p} is the same
in (M1, s1) and (M2, s1). So, they satisfy exactly the same
formulas of PATLH. (2) The models can be discerned by the
PATLC formula K≥3/4

a p, which holds in (M1, s1) but not in
(M2, s1). Hence, we have that PATLC ̸⪯d PATLH.

Theorem 5. PATLC covers both the expressive and the dis-
tinguishing power of PATLH.

Proof. We show a translation of formulas H∝q
a {Φ} into

PATLC that preserves the set of satisfying pointed models.
Let Φ = {φ1, . . . , φn}, and let VΦ be the set of all possi-

ble valuations for Φ (there are 2n such valuations). We write
φi ∈ v iff v(φi) = true. Clearly, each v ∈ VΦ can be charac-
terized by a conjunction ψv ≡

(∧
φi∈v φi

)
∧
(∧

φi /∈v ¬φi

)
.

Moreover, given a pointed model (M, s), each v ∈ VΦ corre-
sponds to a different outcome [tv] ∈ Ra,s(Φ), assigned prob-
ability pv = Pra,s,Φ([tv]).1

Now, the condition for M, s |= H∝q
a {Φ} can be written as

−
∑

v∈VΦ
pv log pv ∝ q (*). The set of probability distribu-

tions (pv)v∈VΦ
satisfying (*) is a finite union of hypercubes

H1, . . . ,Hm ∈ [0, 1]|VΦ|, obtained as the solution of inequal-
ity (*), together with constraints (**) pv ≥ 0, v ∈ VΦ, and
(***)

∑
v∈VΦ

pv = 1. Moreover, each hypercube Hi can be
characterized by a conjunction of conditions pv ∝i

v q
i
v, v ∈

VΦ,2 and hence equivalently by
∧

v∈VΦ
Pra,s,Φ([tv]) ∝i

v q
i
v

which is in turn equivalent to M, s |=
∧

v∈VΦ
K∝i

vq
i
v

a φv .
Putting it all together, we obtain
M, s |= H∝q

a {Φ} iff M, s |=
∨m

i

∧
v∈VΦ

K∝i
vq

i
v

a φv .

Thus,
∨m

i

∧
v∈VΦ

K∝i
vq

i
v

a φv is an extension-preserving trans-
lation of H∝q

a {Φ}, which concludes the proof.

Corollary 1. PATLC has strictly more expressive and distin-
guishing power than PATLC.

So, formulas based on probabilistic knowledge allow
for expressing a strictly larger class of properties than
uncertainty-based ones. This is a big surprise, and makes
probabilistic logics distinctly different from non probabilis-
tic ones (where both kinds of modalities were equally expres-
sive). On the other hand, note that the PATLC translation
of H∝q

a {Φ}, used in Theorem 5, is quite complicated and at
least exponentially longer than its PATLH counterpart. As
we show in the next section, this is no coincidence.

6 Succinctness
The concept of succinctness focuses on whether there is a
substantial difference in the length of encodings provided by
logics L1, L2 for some scalable property [Stockmeyer, 1972;

1Possibly with probability pv = 0.
2Note that the comparison operators ∝i

v do not have to be the
same, and in particular can be different from the operator ∝ in the
translated uncertainty formula.

Wilke, 1999; Adler and Immerman, 2001]). In this sec-
tion, we show that PATLH is exponentially more succinct
than PATLC. To prove this, we follow [Tabatabaei and Jam-
roga, 2023] and use formula size games (FSG) introduced
in [French et al., 2013b]. Specifically, we demonstrate that
there is a sequence of PATLH formulas (φn)n∈N with length
O(n), such that any PATLC formula ψn with the extension
as φn has a parse tree with at least 2n distinct vertices, and
thus that the length of ψn must be at least O(2n).3

Definition 2 (Succinctness, [Adler and Immerman, 2001]).
Let L1 = (L1, |=1) and L2 = (L2, |=2) be two logical sys-
tems as in Definition 1. Further, suppose f, g : N → N are
two functions such that f(n) = O(g(n)) is a strictly increas-
ing function.
L1 is exponentially more succinct thanL2 (L1 ̸⪯subexp

M L2)
iff for each n ∈ N there are formulas φn ∈ L1 and ψn ∈ L2

with: (1) |φn| = f(n), (2) |ψn| = 2g(n), (3)ψn is the shortest
formula in L2, equivalent to φn.

We now adapt the one-person formula size games
of [French et al., 2013a], where the player, called the spoiler
tries to synthesize a formula to discern between sets of mod-
els A and B, i.e., some φ ∈ PATLC such that A |= φ and
B |= ¬φ.

Definition 3 (FSG for Credences). The game is defined for
two given sets of pointed models A,B ⊆ M̂ , and played ac-
cording to the following rules. The player, called the spoiler,
constructs a game tree in such a way that each vertex is la-
beled with a pair (C,D) of subsets of pointed models. The
possible moves for the spoiler on each vertex of the tree
are {{p}p∈AP¬,∨, {K∝q

a }a∈Agt;q∈Q∩[0,1]}. A vertex can be
open or closed, and once it becomes closed, no further move
can be played from it. The rules for each of possible moves
are defined as follows:

1. (Atomic move (p ∈ AP )): the spoiler chooses p ∈ AP
s.t. C |= p and D |= ¬p. The vertex becomes closed.

2. (¬ move): A new vertex (D,C) is added to the tree.

3. (∨ move): two vertices (C1, D) and (C2, D) are added
to the tree, whereC1∪C2 = C are chosen by the spoiler.

4. (K∝q
a move): For each (M, s) ∈ C the spoiler

chooses a subset of pointed models Cs ⊆ M̂ such that
obsa(Cs|s) ∝ q. Moreover, for each (M, s) ∈ D, the
spoiler chooses a subset of pointed models Ds ⊆ M̂
such that obsa(Cs|s)∝̂1 − q, where =̂ denotes ̸=, ≥̂
is >, ≤̂ is <, and vice versa. Then a new vertex
(
⋃

s∈C Cs,
⋃

s∈DDs) is added to the tree.

We say that the spoiler wins the FSG starting at (A,B) in n
moves iff there exists a game tree T with the root (A,B) and
precisely n vertices such that every leaf of T is closed.

We can now state the following result, which is an adapta-
tion of a classical theorem in [French et al., 2013b] to proba-
bilistic modal operators.

3The length of formula φ is defined as the total number of sym-
bols in φ, including atomic propositions, boolean, modal and arith-
metic operators, and numbers (treated each as a single symbol).
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Theorem 6. Spoiler can win FSG starting at (A,B) in n
moves iff there exists a PATLC formula φ (without strategic
operators) where A |= φ, B |= ¬φ, and |φ| = n.

Proof. The proof is analogous to [French et al., 2013b, The-
orem 3.2], using credence moves instead of epistemic ones.
Each credence move corresponds to aK∝q

a operator in φ.

The purpose of Theorem 6 is to use Formula Size Games
for proving that PATLH is exponentially more succinct than
PATLC. Analogous results were presented in [French et al.,
2013b] for mutual knowledge vs. standard epistemic logic,
and in [Tabatabaei and Jamroga, 2023] for Hartley uncer-
tainty vs. standard knowledge. Unfortunately, those proofs
cannot be easily adapted to the case of Shannon uncertainty
vs. probabilistic beliefs. We are still convinced that the anal-
ogous relationship holds, but for now we only formulate it as
a conjecture, and leave its ultimate proof for future work.

Conjecture 1. PATLH ̸⪯subexp PATLC.

Proof idea. For every natural number n ∈ N, we define a for-
mula φn in the language of PATLH and consider the shortest
formula ψn in the language of PATLC that is expressively
equivalent to φn. The existence of such ψn is guaranteed by
Theorem 5. Further, we construct two sets of pointed models
An and Bn, such that An |=H φn and Bn |=H ¬φn,

The idea is to use An = {M} with two agents {a, b} and
the state space divided into n “layers,” where obsa is defined
within each layer according to the geometric probability dis-
tribution (a.k.a. Furry distribution), and obsb leads to states
in the subsequent layer. Moreover, Bn is the set of possi-
ble variants of M obtained by removal of an arbitrary state
within each layer. Then, we take: ϕ1 ≡ H≥q

a {p1, . . . pk},
ϕ2 ≡ H≥q

a {H=0
b H≥q

a {p1, . . . pk}, . . . pk}, and so on, for an
appropriately chosen q.

We will thus have that An |= ψn and Bn |= ¬ψn. Hence,
in the FSG with the starting point at the vertex labelled by
(An, Bn), the spoiler has a winning strategy given by playing
the moves in accordance with the syntactic structure of ψn.
Still, the last step remains to demonstrate that any such win-
ning strategy requires that the length of the play of the game
(starting at (An, Bn)) is no shorter than 2n.

7 Case Studies
Scenario 1: Probabilistic Analysis of Voting ThreeBal-
lot [Rivest, 2006], is an end-to-end verifiable voting protocol
designed to ensure both vote privacy and coercion resistance.
In this protocol, each voter fills out three ballots per issue. To
cast a ‘yes‘ vote for an issue, the voter fills two of the three
corresponding fields, leaving one blank. Conversely, for a
‘no‘ vote, the voter fills one field and leaves the other two
blank. The voter then separates the three columns to create
three individual ballots, retains one as a receipt, and submits
the rest to the ballot box. After tallying, all ballots are pub-
lished on a public bulletin board for verification.

A key property of ThreeBallot is coercion resistance. A co-
ercer, even with access to a voter’s receipt, cannot deduce the
voter’s complete voting choice due to the indistinguishability
sets formed by the combinations of filled and blank spaces.

VA
Yes
60%

¬VA
No

40%

VB
Yes
70%

¬VB
No

30%

Figure 1: Opinion poll probabilities for the two-issue referendum.
Each circle represents a possible vote outcome with its probability.

An example ThreeBallot configuration for a two-issue ref-
erendum is shown in Table 1. The voter votes ‘yes‘ on Issue
A and ‘no‘ on Issue B, resulting in the following ballots:

• Ballot 1: Filled for Issue A, blank for Issue B.
• Ballot 2: Filled for both Issues A and B.
• Ballot 3: Blank for Issue A, filled for Issue B.

Issue A Issue B Resulting Ballots
× □ Ballot 1: {F,B}
× × Ballot 2: {F, F}
□ × Ballot 3: {B,F}

Table 1: Example of a ThreeBallot vote. Here, ‘F‘ denotes a filled
space and ‘B‘ a blank space. The voter votes ‘yes‘ on Issue A and
‘no‘ on Issue B.

In contrast to [Tabatabaei and Jamroga, 2023], we consider
a probabilistic model of ThreeBallot, with the probabilities
coming from opinion polls about voters’ preferences. Based
on that, we will demonstrate how PATLH and PATLC cap-
ture coercion resistance in stochastic models of voting.
Probabilistic model of voting. Consider a two-issue refer-
endum with propositions A and B. The voters’ preferences
are influenced by opinion polls, which provide the following
probabilities for the outcomes: p(VA) = 0.6, p(¬VA) = 0.4,
p(VB) = 0.7, p(¬VB) = 0.3. Here, VA and VB represent
votes in favor of A and B, while ¬VA and ¬VB represent
votes against them. The ballots are filled following the Three-
Ballot rules: voters fill two fields for a ”yes” vote and one for
a ”no” vote for each issue. After filling the ballots, voters
retain one as a receipt and submit the others to the ballot box.
How to specify coercion resistance. The coercer attempts
to deduce the voter’s choices using the receipt and published
data. To ensure coercion resistance, we evaluate the uncer-
tainty of the coercer about the voter’s choices using PATLH
and PATLC. In what follows we use (V1 = Vi) in as an
atomic proposition that is evaluated as true if V1 is equal to Vi.
Condition (V1 ̸= V2) is interpreted in an analogous manner.

The coercion resistance property can be expressed in
PATLH as∧
Vi∈V otes

¬⟨⟨v, c⟩⟩♢(V1 = Vi ∧ V2 ̸= V1 → H<1.8
c {VA, VB}),

where V otes = {VAVB , VA¬VB ,¬VAVB ,¬VA¬VB} repre-
sents all possible combinations of votes. Here, Hc quantifies
the coercer’s entropy regarding the voter’s choices. By main-
taining an entropy of at least 1.8 bits, the coercer’s maximal
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s1 s2

obs(s1|s1)
M1 : 1

4

M2 : 3
4

obs(s2|s1)
M1 : 3

4

M2 : 1
4

Signal integrity:
Partially corrupted

Signal integrity:
Fully recovered

Figure 2: Signal integrity: states and observation probabilities

uncertainty about the votes is guaranteed. This formula en-
sures that no strategy allows the coercer to achieve a lower
level of uncertainty.

Following the translation from Theorem 5, we can express
the same property in PATLC as:∧
Vi∈V otes

¬⟨⟨v, c⟩⟩♢
(
V1 = Vi∧V1 ̸= V2 →

m∨
j

∧
v∈VΦ

K∝j
v1.8

j
v

c φv

)
,

where Φ = {VA, VB}, VΦ is the set of valuations for Φ,
and 1.8jv are the numbers corresponding to the hypercubes
in [0, 1]|VΦ|, as in the proof of Theorem 5. This formula en-
sures that no strategy allows the coercer to achieve a degree
of belief exceeding max{1.8jv : v ∈ VΦ, j = 1, . . . ,m} for
any specific vote combination. Clearly, using PATLH, we
express the same property more succinctly.
Analysis and comparison. The PATLH representation
leverages entropy to directly capture the coercer’s uncer-
tainty, avoiding the need to enumerate all vote combinations
explicitly. This succinctness highlights PATLH’s advantage
in scenarios with probabilistic uncertainty.

In contrast, PATLC relies on probabilistic beliefs, which,
while expressive, require detailed enumeration of strategies
and outcomes. Both approaches demonstrate coercion resis-
tance, but PATLH provides a more compact formalization.
Scenario 2: Signal Integrity To illustrate the differences
between the expressive power of PATLC and PATLH, con-
sider a story of a cybersecurity analyst, Alice, investigating
potential vulnerabilities in a communication system. Alice is
analyzing two models of data transmission security, M1 and
M2, to assess their ability to handle interference. Both mod-
els describe a device operating in two states: s1 represents a
state where data is partially corrupted but recoverable, and s2
represents a state of complete recovery. The device transmits
a key signal σ, which holds specific integrity information: in
s2, the signal σ is fully verified as correct (pσ), while in s1, it
is not (¬pσ).

The device observations of its signal integrity are modeled
as follows. In M1, the probabilities are obs(s1|s1) = 1

4 and
obs(s2|s1) = 3

4 ; in M2, the probabilities are obs(s1|s1) = 3
4

and obs(s2|s1) = 1
4 , see also Figure 2. We emphasize that

agent a in the model represents the entity making observa-
tions about the signal integrity and reasoning about its states,

i.e., the device. Alice is an external entity using PATLH and
PATLC to evaluate the properties of the system.

Alice first uses PATLH to evaluate the system’s uncer-
tainty. By calculating the Shannon entropy for Φ = {pσ},
she finds that the entropy is identical in both models, and thus
they satisfy the same formulas of PATLH.

However, Alice may turn to PATLC to gain a more gran-
ular understanding. In particular, she can check formula
K≥3/4

a pσ , which is satisfied in (M1, s1) but not in (M2, s1).
This allows Alice to identify M1 as a system where the de-
vice has higher probabilistic confidence in its recovery signal,
a critical feature in detecting and managing interference.

8 Summary
This work introduces PATLH, a groundbreaking extension
of probabilistic alternating-time temporal logic. PATLH in-
corporates Shannon entropy to provide a formal framework
for reasoning about uncertainty and information gain. By
combining strategic reasoning with a measure of probabilis-
tic uncertainty, PATLH fills a significant gap in the study of
stochastic MAS where agents operate under imperfect infor-
mation. The logic enables a nuanced approach to both reduc-
ing and maintaining uncertainty, addressing real-world needs
in scenarios like privacy protection and information security,
where agents aim to control the flow of sensitive information.

The introduction of entropy-based reasoning is particularly
innovative, as it allows for the modeling of agents’ strate-
gic capabilities in controlling uncertainty, something that pre-
vious epistemic logics have struggled to express succinctly.
PATLH ’s application to security and privacy concerns in
multi-agent systems sets a new standard for addressing these
challenges, providing a richer, more flexible framework for
researchers and practitioners alike. Moreover, the work also
extends the capabilities of existing probabilistic logics by in-
troducing PATLC, which facilitates reasoning about prob-
abilistic beliefs (credences) instead of full knowledge, and
turns out to be strictly more expressive than PATLH.
Future work. First and foremost, we plan to complete the
proof of the succinctness claim. As for longer-term plans, the
study opens the door to further extensions in strategic log-
ics. One particularly promising avenue for future research is
extending PATLH to more expressive frameworks, such as
Strategy Logic (SL, see e.g., [Berthon et al., 2017]). These
extensions would enable reasoning about complex solution
concepts like Nash equilibria, subgame-perfect equilibria,
and other cooperative or adversarial strategies in multi-agent
systems. SL, which allows explicit quantification over strate-
gies, would benefit from the integration of entropy-based rea-
soning, enabling the representation of complex objectives re-
lated to information control and uncertainty.
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