
Alternating-time Temporal Logics with Irrevocable Strategies

Thomas Ågotnes
Dept. of Computer Engineering

Bergen University College,
Bergen, Norway

tag@hib.no

Valentin Goranko
School of Mathematics

Univ. of the Witwatersrand
Johannesburg, South Africa
goranko@maths.wits.ac.za

Wojciech Jamroga
Department of Informatics

Clausthal Univ. of Technology
Clausthal, Germany

wjamroga@in.tu-clausthal.de

Abstract

In Alternating-time Temporal Logic (atl),
one can express statements about the strate-
gic ability of an agent (or a coalition of
agents) to achieve a goal φ such as: “agent
i can choose a strategy such that, if i fol-
lows this strategy then, no matter what other
agents do, φ will always be true”. How-
ever, strategies in atl are revocable in the
sense that in the evaluation of the goal φ the
agent i is no longer restricted by the strategy
she has chosen in order to reach the state
where the goal is evaluated. In this paper
we consider alternative variants of atl where
strategies, on the contrary, are irrevocable.
The difference between revocable and irrevo-
cable strategies shows up when we consider
the ability to achieve a goal which, again,
involves (nested) strategic ability. Further-
more, unlike in the standard semantics of
atl, memory plays an essential role in the
semantics based on irrevocable strategies.

1 Introduction

Logics for game-like scenarios have received much in-
terest recently [1, 5, 6, 8], for example as a part of the
foundations of multi-agent systems. Alternating-time
Temporal Logic atl [1] is probably the most popu-
lar logic of this kind now. Atl is an extension of the
Computational Tree Logic ctl [2], one of the most
successful temporal logics in computer science. The
main semantic assumption behind atl is that a sys-
tem at a given time is in one of several possible states,
and that the next state of the system is determined
by the current state and the actions chosen by each of
κ agents present in the system. Atl involves strate-
gic quantifiers (called cooperation modalities), such as
〈〈C 〉〉X and 〈〈C 〉〉G where C is a set of agents. For-

mula 〈〈C 〉〉Xφ is intended to mean that coalition C can
achieve φ in the neX t state of the system, or, in more
detail, that the agents in C can choose their strategies
so that, if they use these strategies then φ will be true
in the next state – no matter what the agents outside
C do. Similarly, 〈〈C 〉〉Gφ means that C can force φ to
be true in all future states (Globally).

An interesting feature of atl is that strategies in the
logic are revocable, in the sense that in the evaluation
of the goal φ an agent i ∈ C is no longer restricted by
the strategy she has chosen. That is, if φ includes a
nested cooperation modality for a coalition including
i , then i is again free to choose any strategy to demon-
strate the truth of φ. This is very much in agreement
with the semantics of ctl path quantifiers, where it
is natural to express facts like “there is a path, such
that the system can always deviate from the path to
another path which satisfies φ” (EGEφ). On a more
general level, this reflects the way in which quantifiers
are treated in classical mathematical logic: in the for-
mula ∃x (x = 1 ∧ ∃x x = 0), the second occurrence
of ∃x supersedes the first one in its scope of binding,
and in consequence the formula is true in any sensible
arithmetics. The semantics of the strategic quantifiers
in atl works similarly, and there are many scenarios,
where one would like to talk about strategies and abil-
ities exactly in this way, too. However, it somehow
contradicts the usual game-theoretical view of a strat-
egy as a conditional plan that completely specifies the
agent’s future behavior. In this paper, we focus on the
latter view, and consider a variant of atl, in which
strategies are irrevocable – they are chosen once and
forever.

We begin by recalling the language and semantics of
atl, and an informal discussion on possible semantics
of strategic quantifiers. Then, we present and study
our alternative semantics of cooperation modalities in
a formal way. Validity, satisfiability, and model check-
ing problems are discussed in the subsequent sections.
Irrevocable strategies are also used in the context of



atl in [7], but in a different way. The relationship is
discussed in Section 9.

2 Preliminaries: Alternating-time
Temporal Logic

Here we recall briefly the semantic and syntactic basics
of atl. For full details, see any of [1, 3, 4].

A concurrent game structure (CGS) is a tuple M =
(Σ,Π,Q , π,Act , d , δ) where Σ = {1, . . . , κ}, for some
κ > 0, is the set of agents (players); Π is a set of
atomic propositions; Q is a set of states; π : Q → ℘(Π)
is the labeling function; Act is a (usually finite) set
of actions; d is a mapping such that for each player
i ∈ Σ and state q ∈ Q , di(q) ⊆ Act is the non-empty
set of actions available to player i in q ; and δ is the
transition function, mapping every pair (q ∈ Q , α ∈
D(q)), where D(q) = d1(q) × · · · × dκ(q) is the set of
joint actions at q , to an outcome state δ(q , α) ∈ Q .

For α ∈ D(q), let αi denote the i -th component of
α. Likewise, α(C ) denotes the projection of α onto
C ⊆ Σ, and D(q ,C ) denotes the projection of D(q)
onto C . Whenever necessary, we may write D(M , q)
and D(M , q ,C ) in order to indicate the CGS explicitly.
A pointed CGS is a pair (M , q) where M is a CGS and
q is a state in M .

Given a CGS M , C ⊆ Σ, a state q in M , and a tuple of
actions α(C ) ∈ D(q ,C ), one for each agent in C , we
denote by out(M , q , α(C )) the set of outcome states
of all joint actions extending α(C ). Formally,

out(M , q , α(C )) =
{δ(q , α′) | α′ ∈ D(q), and α′(C ) = α(C )}.

Thus, in particular, out(M , q , α) = {δ(q , α)}. Also,
we simply write out(M , q) for the set out(M , q , α(∅))
of all possible outcome states from q ; when M is fixed,
we simply write out(q).

A computation λ is an infinite sequence of states; λ =
q0q1 · · · , where for each j ≥ 0 there is a joint action
α ∈ D(qj ) such that δ(qj , α) = qj+1. By λ[j ] we will
denote the element (qj ) in λ with index j ; respectively
λ|j will denote the initial segment of λ ending with
λ[j ]. Such an initial segment will be called a finite
computation. The last state of a finite computation
σ will be denoted by l(σ). Without risk of confusion,
whenever suitable we will regard a state q as a one
step computation, and then l(q) = q .

A simple (or memoryless) strategy for a player i is a
function fi : Q → Act with fi(q) ∈ di(q) for each q ∈
Q . That is, the strategy maps each state to an action
for player i . A memory-based strategy for a player i is
a function fi : Q+ → Act with fi(σ) ∈ di(l(σ)), i.e.,

it maps possible histories of the play to i ’s choices.
Clearly, memoryless strategies can be seen as special
cases of memory-based strategies, where fi(q1 . . . qn)
only depends on the last state qn .

A joint strategy for C ⊆ Σ is a tuple of strategies,
one per i ∈ C ; by Str(M ,C ) we denote the set of
joint memoryless strategies for C in M . We then
denote by fC (q) the tuple of respective actions fi(q)
for i ∈ C , and adopt the notation out(M , q , fC ) for
out(M , q , fC (q)). Given a state q and a joint memo-
ryless strategy fC for C , comp(M , q , fC ) denotes the
set of possible computations starting in state q where
the agents in C use the strategies fC . Formally,
λ ∈ comp(M , q , fC ) iff λ[0] = q and for all j ≥ 0,
λ[j + 1] ∈ out(M , λ[j ], fC ). For the set comp(M , q , ∅)
of possible computations starting in state q of CGS
M , we simply write comp(M , q). The sets of finite
computations starting from q , fincomp(M , q , fC ), in
particular fincomp(M , q), are defined likewise.

A language for atl is determined by the set of atomic
propositions Π and the set of agents Σ, and will be
denoted by atl(Π,Σ). The formulae of atl(Π,Σ) are
defined recursively as follows:

φ ::=
> | p | ¬φ | φ ∧ φ | 〈〈C 〉〉Xφ | 〈〈C 〉〉Gφ | 〈〈C 〉〉φUφ

where p ∈ Π and C ⊆ Σ.

We use the standard derived propositional connectives,
in addition to 〈〈C 〉〉Fφ for 〈〈C 〉〉(>Uφ), and sometimes
write AXφ, AGφ, A(φ1Uφ2) respectively for 〈〈∅〉〉Xφ,
〈〈∅〉〉Gφ and 〈〈∅〉〉(φ1Uφ2), and EXφ, EGφ, E(φ1Uφ2)
respectively for 〈〈Σ〉〉Xφ, 〈〈Σ〉〉Gφ and 〈〈Σ〉〉(φ1Uφ2).
We also write [[C ]]Xφ and [[C ]]Gφ respectively for the
duals ¬〈〈C 〉〉X¬φ and ¬〈〈C 〉〉F¬φ.

Truth of a formula ψ in a state q of a CGS M is defined
via the standard clauses for the Boolean connectives
and the following clauses for the strategic temporal
operators:1

M , q |=atl 〈〈C 〉〉Xφ⇔
∃fC ∈ Str(M ,C )∀λ ∈ comp(M , q , fC )
(M , λ[1] |=atl φ)

M , q |=atl 〈〈C 〉〉Gφ⇔
∃fC ∈ Str(M ,C )∀λ ∈ comp(M , q , fC )∀j ≥ 0
(M , λ[j ] |=atl φ)

M , q |=atl 〈〈C 〉〉φ1Uφ2 ⇔
∃fC ∈ Str(M ,C )∀λ ∈ comp(M , q , fC )∃j ≥ 0
((M , λ[j ] |=atl φ2) and
∀0 ≤ k < j (M , λ[k ] |=atl φ1)).

1We deviate from the original semantics of atl [1] in
that we use memoryless rather than memory-based strate-
gies. However, both types of strategies yield equivalent
semantics for “pure” atl [6].



We further say that: φ is atl-valid in M (denoted
M |=atl φ) if M , q |=atl φ for every q ∈ Q ; φ is atl-
valid (|=atl φ) if M |=atl φ for every CGS M .

3 Revocable vs. Irrevocable Strategies

The ctl heritage in particular – and compositionality
of the atl semantics on a more abstract level – im-
ply that agents’ strategies are revocable in atl, as the
following example demonstrates.

Example 1 We are given a system with a shared re-
source, and are interested in reasoning about whether
agent a has access to the resource. Let p denote the
fact that agent a controls the resource. The atl for-
mula 〈〈a〉〉Xp expresses the fact that a is able to ob-
tain control of the resource in the next moment, if she
chooses to. Now imagine that agent a does not need to
access the resource all the time, but she would like to
be able to control the resource any time she needs it.
This can be expressed in atl by formula 〈〈a〉〉G〈〈a〉〉Xp,
saying that a has a strategy which guarantees that, in
any future state of the system, a can always force the
next state to be one where a controls the resource.

α1q1 q2 q3 α1

¬p ¬p

α1

α2

p

Figure 1: System M0 with a single agent a. The transi-
tions between states are labeled by the actions chosen
by a.

Consider system M0 from Figure 1. We have that
M0, q1 |= 〈〈a〉〉Xp: a can choose action α2, which
guarantees that p is true next. But we also have that
M0, q1 |= 〈〈a〉〉G〈〈a〉〉Xp: a’s strategy in this case is
to always choose α1, which guarantees that the sys-
tem will stay in q1 forever and, as we have seen,
M0, q1 |= 〈〈a〉〉Xp. However, this system does not have
the exact property we had in mind because, by follow-
ing that strategy, the agent a dooms herself to never
access the resource – in which case it is maybe counter-
intuitive that 〈〈a〉〉Xp should be true. In other words,
a can ensure that she is forever able to access the re-
source – but only by never actually accessing it. In-
deed, while a can force the possibility of achieving p to
be true forever, the actual achievement of p destroys
that possibility.

The above example shows that strategies can be re-
voked by agents in atl – and they are bound to be
this way, due to the compositionality of atl semantics.

That is, the set of states that satisfy 〈〈a〉〉Xφ depends
only on the extensions of its parts (φ in this case), and
the way in which those parts are combined (〈〈a〉〉X in
this case). In particular, it does not depend on the
semantic choices made to evaluate subformula φ, or a
larger formula, of which 〈〈a〉〉Xφ might be a part it-
self. Philosphically, this corresponds to strategies that
are not “committed”; the agents merely intend to ex-
ecute them, but they are free to change their minds as
soon as the next choice point (i.e., next cooperation
modality) is encountered.

On the other hand, a strategy in game theory is usu-
ally understood as a complete plan that prescribes the
player’s behaviour in all conceivable situations, and for
all future moments. In this view, it is somehow coun-
terintuitive to maintain that an agent behaves accord-
ing to one strategy, and yet she may start behaving in a
different way. Under this interpretation, 〈〈a〉〉G〈〈a〉〉Xp
cannot hold in M0, q1, because a can only play accord-
ing to the first or the second strategy, but not to both
of them at the same time. Irrevocable strategies are
often naturally assumed, not only in game theory, but
also in controller synthesis (the controller is an irre-
vocable strategy), and in planning in AI, where the
actual achievement of certain subgoals may affect the
possibility of achieving other subgoals.

Note that the first interpretation (strategies as inten-
tions) views strategies as entities internal to, and fully
controllable by the agent. The second interpretation
corresponds to an objective view of the agent’s be-
haviour, as perceived by a fully omniscient observer.
Alternatively, we can see such strategies as ones that
the agents committed to execute; then, they are inter-
nal to the players, but not controllable by them any
more.

We do not imply that the atl meaning of formulae
like 〈〈a〉〉G〈〈a〉〉Xp in atl is “wrong” or not useful.
However, we believe that there are many situations
in which the “committed” interpretation of strategies
is more appropriate. In this paper, we introduce al-
ternative semantics for strategic quantifiers based on
this assumption, and study properties of the resulting
logics.

Remark 2 It turns out that, unlike the standard se-
mantics for atl, memory plays essential role in the
semantics based on irrevocable strategies. Thus, two
natural variations of atl emerge: iatl, referring to
memoryless irrevocable strategies, and miatl, refer-
ring to memory-based irrevocable strategies. There
is a range of other interesting cases, e.g. one with
strategies based on finite memory, and another, where
agents must only adhere to their chosen strategies un-
til their goal is fulfilled, e.g., only for one step if the



goal is Xφ; until φ becomes true if it is Fφ; forever, if
it is Gφ. For lack of space, these will not be discussed
here, and we will mainly focus on iatl.

4 Model Updates and Semantics with
Irrevocable Strategies

We start by considering the memoryless case of irrevo-
cable strategies. First, let us spell out again the intu-
ition behind the semantics with irrevocable strategies:
a formula such as 〈〈C 〉〉Xφ means that there is a joint
strategy for C such that, if the actions of the agents
from C are thereafter fixed by the choices prescribed
by the strategy, φ will necessarily be true in the next
state; likewise for the other temporal operators. This
motivates the notion of a model update, similar to the
one in [9, 7]: the update of a model by a joint memo-
ryless strategy for C is a model obtained by fixing the
choices of every agent in C in each state as prescribed
by the strategy for that agent in that state.

Definition 3 (Model Update) Let M be a CGS, C
a coalition, and fC ∈ Str(M ,C ) a memoryless strat-
egy. The update of M by fC , denoted M † fC , is the
same as M , except that the choices of each agent i ∈ C
are fixed by the strategy fi : di(q) = {fi(q)} for each
state q.

The language of the logic iatl – atl with irrevocable
strategies – is the same as the language of atl. Let q
be a state in a CGS M . The semantics of the strategic
operators in iatl is defined as follows:

M , q |=iatl 〈〈C 〉〉Xφ⇔
∃fC ∈ Str(M ,C )∀λ ∈ comp(M † fC , q , fC )
(M † fC , λ[1] |=iatl φ)

M , q |=iatl 〈〈C 〉〉Gφ⇔
∃fC ∈ Str(M ,C )∀λ ∈ comp(M † fC , q , fC )
∀j ≥ 0(M † fC , λ[j ] |=iatl φ)

M , q |=iatl 〈〈C 〉〉(φ1Uφ2) ⇔
∃fC ∈ Str(M ,C )∀λ ∈ comp(M † fC , q , fC )
∃j ≥ 0(M † fC , λ[j ] |=iatl φ2

and ∀0 ≤ k < j (M † fC , λ[k ] |=iatl φ1))

Note, again, that the logic iatl is defined with mem-
oryless strategies. We also define a version of the irre-
vocable strategies semantics for memory-based strate-
gies, called miatl (memory-based iatl). The lan-
guage of the logic miatl is the same as the language
of iatl. Unlike in iatl, in miatl we cannot update
the model directly, but must first unfold the model
into an (equivalent) tree-like structure, and then elimi-
nate the branches which represent computations which
do not conform to the strategy we update with. The
tree-unfolding of a CGS M from a state q is denoted

T (M , q), see appendix B for a (standard) definition.
Note that a memory-based strategy in M is equivalent
to a memoryless strategy in T (M , q). Thus, the miatl
semantics can be defined as follows:

M , q |=miatl φ⇔ T (M , q), q |=iatl φ

Intuitively, the miatl meaning of the cooperation
modalities involves pruning the model by a memory-
based strategy.

The difference between the above interpretations and
the original atl interpretations is that in the former
the subformula φ of a formula 〈〈C 〉〉Tφ is evaluated in
an updated model, where the actions of group C are
fixed, while in the latter the subformula φ of 〈〈C 〉〉Tφ
is still evaluated in the original model. Consider model
M0 from Example 1 again. We have that M0, q1 |=atl

〈〈a〉〉G〈〈a〉〉Xp, but M0, q1 6|=iatl 〈〈a〉〉G〈〈a〉〉Xp, and
M0, q1 6|=miatl 〈〈a〉〉G〈〈a〉〉Xp. To that iatl and miatl
are different, it is enough to observe that M0, q1 |=miatl

〈〈a〉〉X 〈〈a〉〉Xp, but M0, q1 6|=iatl 〈〈a〉〉X 〈〈a〉〉Xp.

5 Non-Invariance of IATL/MIATL
under Bisimulations

An important difference between the semantics of atl
and iatl/miatl emerges when we consider bisimula-
tions between pointed models. A definition of bismu-
lation for cgss, invariance results for atl, and related
definitions and results are presented in Appendix A2.

Proposition 4 Truth of formulae in iatl is not in-
variant under bisimilations.

Proof: Let M ,M ′ be the two CGSs shown in Fig-
ure 2. Note that (M , q1) and (M ′, q ′1) are bisimilar
(take q1βq ′1, q2βq ′2, q3βq ′3, q5βq ′3 and q4βq ′4), so atl
cannot discern between them.

However, observe that

M , q1 |=iatl 〈〈1〉〉X ((〈〈2〉〉XAX¬p) ∧ 〈〈2〉〉XAXp)

– the strategy for the first path quantifier (agent 1) is
q3 7→ α1, q5 7→ α2; the strategy for the second path
quantifier (agent 2) is q2 7→ β1; the strategy for the
third path quantifier (agent 2) is q2 7→ β2. Similarly,
we have that

M , q1 |=miatl 〈〈1〉〉X ((〈〈2〉〉XAX¬p) ∧ 〈〈2〉〉XAXp)

(the memory-based strategies for the three quantifiers
are q1q2q3 7→ α1, q1q2q5 7→ α2; q1q2 7→ β1 and q1q2 7→
β2, respectively).

2Although these are standard notions from modal logic
adapted to cgss and atl, we are not aware that they have
appeared in the literature before.



α1, β

q1 ¬p

α, β1

α2, β

q3 q5

q4

q2

¬p ¬p

p

α, β

α, β

α2, β

α1, βα1, β

α, β2

¬p

¬p

p

α, β

α, β1
α, β2

α2, β

α, β

q ′
1

q ′
2

q ′
3

q ′
4

Figure 2: CGSs M (left) and M ′ (right), each with
two agents.

In other words, the strategy witness for the first quan-
tifier (agent 1) makes different choices in the two bisim-
ilar states q3 and q5. This is “detectable” by iatl, be-
cause this strategy is still in “effect” when the second
and third quantifier are evaluated.

However, we also have that

M ′, q ′1 6|=iatl 〈〈1〉〉X ((〈〈2〉〉XAX¬p) ∧ 〈〈2〉〉XAXp)

and

M ′, q ′1 6|=miatl 〈〈1〉〉X ((〈〈2〉〉XAX¬p) ∧ 〈〈2〉〉XAXp).

2

Corollary 5 Coalitional ability under irrevocable
strategies is not expressible in atl.

6 Comparing ATL, IATL, and MIATL

In this section, atl, iatl, and miatl will also denote
the sets of validities of the respective logics. Here we
will present some basic facts relating these sets, let
us but first point out that the semantics of iatl and
miatl coincide for a special class of models.

Definition 6 A cgs is tree-like if there is a state
(root) from which every state can be reached by a
unique finite computation. A typical example of tree-
like CGS is the tree-unfolding T (M , q) of a given CGS
M from a given state q in it (see the Appendix B for
details).

Since every state in a tree-like CGS has a unique
history (the path from the root), memoryless and
memory-based strategies coincide in tree-like CGSs,
and therefore iatl and miatl are equivalent in them.
More precisely:

Proposition 7 For every pointed tree-like CGS
(M , q) and an atl-formula φ:

M , q |=iatl φ iff M , q |=miatl φ.

Theorem 8

1. atl * iatl, and atl * miatl;

2. iatl * atl, and miatl * atl;

3. iatl ⊆ miatl;

4. miatl * iatl.

Proof:

1. It follows from the fact that iatl and miatl are
not closed under uniform substitution. Indeed,
the ATL axiom ¬〈〈∅〉〉Xp → 〈〈Σ〉〉Xp is valid in
each of iatl and miatl, too, but the result of
substitution of 〈〈Σ〉〉Xp ∧ 〈〈Σ〉〉X¬p for p in it is
no longer valid in either of them.

2. 〈〈C 〉〉X 〈〈C 〉〉Xφ ↔ 〈〈C 〉〉X 〈〈∅〉〉Xφ, for C 6= ∅, is a
validity of both iatl and miatl, but not of atl.

3. If an atl formula φ is iatl-valid, then it is iatl-
valid in every tree-like CGS. Therefore, by Propo-
sition 7, it is miatl-valid in every every tree-like
CGS. Hence, by Corollary 24, it is miatl-valid in
every CGS.

4. Let φ ≡ ¬p ∧ 〈〈∅〉〉G(¬p → 〈〈∅〉〉Xp) ∧ 〈〈∅〉〉G(p →
〈〈Σ〉〉Xp ∧ 〈〈Σ〉〉X¬p). Let us divide the set of
states of a given model into those that satisfy p,
and those that do not. Formula φ says (roughly)
that, for the first set, the system is free stay within
it or to proceed to the other set; from the latter
set, however, the system is bound to come back
to the first set in one step. Moreover, the current
state must belong to the second set. Now, for-
mula Ψ ≡ φ → 〈〈Σ〉〉X (〈〈∅〉〉Xp ∧ 〈〈∅〉〉X 〈〈∅〉〉X¬p)
is miatl-valid, with the following strategy that
demonstrates it. First, for the history consist-
ing only of the current state q , the agents execute
any combination of actions, which leads to a state
q ′ |= p. Then, for qq ′, they execute a combination
of actions that leads to q ′′ |= p. Finally, for qq ′q ′′,
they execute actions that lead to q ′′′ 6|= p.

We now demonstrate that Ψ is not iatl-valid. Let
M be the CGS depicted in Figure 3. We have
that M , q2 |=iatl φ, but there is no memoryless
strategy that satisfies the right-hand side of Ψ in
q2.



¬pq1 q2

α1

α2

pα1

Figure 3: CGS with a single agent. Transitions are
labeled with the possible choices of the agent.

2

These observations indicate that there is no straight-
forward way of reducing the decidability of satisfia-
bility and complete axiomatization of the validities in
iatl to those in atl established in [4].

7 Normalizing Formulae of IATL

〈〈∅〉〉Xφ expresses the fact that φ is inevitably true in
the next state. We can say that a coalition C has no
choice wrt. a formula φ if C can achieve φ in the next
state precisely when φ is inevitable:

NoChoice(C , φ) = 〈〈C 〉〉Xφ↔ 〈〈∅〉〉Xφ.

Now, for any formula φ and coalitions C ,C ′ we define:

Irrevocable(C ,C ′, φ) = [[C ]]GNoChoice(C ′, φ).

Proposition 9 After a coalition C has committed to
a strategy, all its sub-coalitions have no choice any
more. Formally, for any formula φ and coalitions
C ,C ′ such that C ′ ⊆ C:

|=iatl Irrevocable(C ,C ′, φ).

The above can be generalized to:

|=iatl [[C ]]G(〈〈C ′〉〉Xφ↔ 〈〈C ′ \ C 〉〉Xφ)

for any coalitions C ,C ′.

We denote the last formula scheme by Normal. Given
any formula φ, by repeated use of Normal, one can
subsequently remove from the internal coalition C ′ in
every subformula 〈〈C 〉〉 . . . 〈〈C ′〉〉 . . . of φ all agents in
C ∩ C ′, and thus eventually show the following.

Definition 10 An atl-formula φ is normal if it
contains no nested occurrences of strategic opera-
tors with intersecting coalitions. Formally, φ is
normal if it contains no subformula of the type
〈〈A1〉〉 . . . 〈〈A2〉〉 . . . where A1 ∩A2 6= ∅.

Proposition 11 Every formula is iatl-equivalent to
an effectively computable normal formula.

Consequently, testing iatl-satisfiability of any formula
can be effectively reduced to testing iatl-satisfiability
of a normal formula, which in turn can be established
by suitably modifying the construction of alternat-
ing tree automata associated with such formulae, pre-
sented in [4].

The importance of normal formulae derives from the
fact that their iatl-semantics is essentially compo-
sitional and they behave in many respects as in
atl. However, one additional effect of the irrevoca-
ble strategies is that once all agents commit to their
strategies, only one computation remains possible, i.e.
the system becomes deterministic, which admits an ad-
ditional atl-valid scheme. This yields a new scheme
of iatl-valid formulae which are only atl-valid in de-
terministic systems:

[[Σ]]G([[∅]]Xp → 〈〈∅〉〉Xp).

Thus, within the scope of 〈〈Σ〉〉 all cooperation modali-
ties are completely trivialized and can be simply omit-
ted; the result is an LTL formula, evaluated on the
unique computation determined by the committed col-
lective strategy of all agents.

8 Model Checking Irrevocable
Strategies

In this section we consider the complexity of verifica-
tion of iatl formulae through model checking. The
(local) model checking problem asks whether a given
formula φ holds in a given model M and state q . We
prove that model checking is NP-hard and ∆P

2 -easy in
the size of models, and length of formulae. As the gap
between these two classes is not large (they both be-
long to the first level of the polynomial hierarchy), we
conjecture that the problem is probably ∆P

2 -complete,
and leave the definite answer for future work.

We begin with sketching algorithm mcheck(M , q , φ)
that returns “yes” if M , q |=iatl φ and “no” other-
wise, running in nondeterministic polynomial time.
Let mctl(φ,M ) be a ctl model checker that returns
the set of all states that satisfy φ in M .

• Cases φ ≡ p, φ ≡ ¬ψ, φ ≡ ψ1 ∧ ψ2: straightfor-
ward (proceed as usually).

• Case φ ≡ 〈〈A〉〉Gψ:

1. Run mcheck(ψ,M , q) for every q ∈ Q , and
label the states in which the answer was “yes”
with an additional proposition yes (not used
elsewhere).

2. Guess the best strategy of A, and “trim”
model M by removing all the transitions



inconsistent with the strategy (yielding a
sparser model M ′).

3. Return “yes” iff Q ⊆ mctl(AGyes,M ′).

• Cases φ ≡ 〈〈A〉〉Xψ and φ ≡ 〈〈A〉〉ψ1 Uψ2: analo-
gous.

Note that the size of a strategy is polynomial in the
number of transitions, and mctl(φ,M ) runs in poly-
nomial time wrt. the size of M and φ. Thus, the al-
gorithm runs in nondeterministic polynomial time for
the simple formulae that include only one cooperation
modality. For more complex formulae, it requires a
polynomial number of calls to an oracle of range NP:
namely, the oracle is mcheck itself, and the number of
calls is the number of subformulae in φ. This gives us
the following.

Proposition 12 Model checking iatl is in ∆P
2 wrt

the size of the model and the formula.

Now we can briefly sketch the NP-hardness proof,
which follows by a reduction of the model checking
problem for a subset of Schobbens’s ATLir [6], which
is a variant of ATL for agents with imperfect informa-
tion and imperfect recall. Models of ATLir extend con-
current game structures with indistinguishability rela-
tions ∼a (equivalences), one per agent a ∈ Σ. Then,
these relations are used to define agents’ strategies that
specify the same choice in indistinguishable states: sA
is uniform iff q ∼a q ′ implies sa(q) = sa(q ′) for all
q , q ′ ∈ Q , a ∈ A. Now:

M , q |= 〈〈A〉〉irXφ iff there is a uniform strategy sA
such that, for each a ∈ A, q ′ with q ∼a q ′, and
λ ∈ out(q ′,SA), we have M , λ[1] |= φ

and similarly for 〈〈A〉〉irGφ, 〈〈A〉〉irφUψ.

Regarding model checking complexity, the NP-
hardness proof from [6] can be easily adapted to show
the following:

Proposition 13 Let M1 be the class of ATLir models
that include only one agent (i.e., Σ = {1}), and let
ATL−ir be the sublanguage of ATLir that includes only
formulae 〈〈1〉〉irFp (where p is a proposition). Model
checking ATL−ir over M1 is NP-complete.

Let the following be given: an ATLir model M ∈M1,
a state q in M , and an ATL−ir formula φ ≡ 〈〈1〉〉irFp.
First, we construct a model M ′ in which the last action
of the agent is “remembered” in the subsequent state,
as in [3, Proposition 16]. Then, for each α ∈ Act ,
we add a new proposition α such that α holds exactly
in the states after α has been executed (i.e., states

(q , α)). Finally, we add a new state q0 with a sole
outgoing transition to q , and no incoming transitions.
Note that the number of states in M ′ is linear in the
transitions of M , and the number of transitions in M ′

is at most quadratic in the transitions of M . Let us
consider the following formula of iatl extended with
epistemic operators Ka :3

Ψ ≡ 〈〈1〉〉X 〈〈∅〉〉(uniform Up), where

uniform ≡
∨

α∈Act

K1〈〈∅〉〉Xα.

The formula uniform characterizes uniformity of the
presently executed strategy with respect to the current
state (and states indistinguishable from it). Thus, for-
mula Φ says that there is a strategy such that, if agent
1 commits to executing it (through 〈〈1〉〉X ), a sequence
of uniform moves will follow that end up in a state sat-
isfying p.4 To get rid of the epistemic operators and
relations, we use the satisfaction-preserving construc-
tion from [3, Section 4.4], that yields a CGS M ′′ and
iatl formula Ψ′. Now, M , q |= φ iff M ′′, q0 |= Ψ′′,
which concludes the reduction.

Proposition 14 Model checking iatl is in NP-hard
wrt the size of the model and the formula.

9 Related Work

Counterfactual atl (catl) [7] extends atl with
“counterfactual commitment” operators Ci(σ, φ)
where i is an agent, σ is a term symbol standing for
a strategy, and φ is a formula. The models of atl
(CGSs) are extended to provide an interpretation
of the new operators; in particular, a function || · ||
interpreting term symbols such that ||σ|| is a strategy.
The informal reading of Ci(σ, φ) is supposed to be “if
it were the case that agent i commited to strategy σ,
then φ would hold”. Formally:

M , q |=catl Ci(σ, φ) ⇔ M † ||σ||i , q |=catl φ

where updates are defined similarly to in this paper.

It is clear that iatl does not subsume catl, since for-
mulae of the latter logic can refer directly to a strategy,
and to the same strategy in difference places in a sin-
gle formula (indeed, this expressive power is the main
motivation behind catl). On the other hand, catl
does not seem to subsume iatl either. Take the iatl
formula 〈〈i〉〉Xφ. One attempt to write this property

3We recall the standard semantics: M , q |= Kaφ iff
M , q ′ |= φ for every q ′ such that q ∼a q ′.

4Note that the epistemic operator Ka refers to incom-
plete information, but 〈〈1〉〉 refers now to arbitrary (i.e., not
necessarily uniform) strategies.



in catl could be
∨

σi∈Υi
Ci(σi ,AXφ), where Υi is the

set of term symbols that can be used to refer to strate-
gies for agent i . These two formulae are equivalent if
there is a one-to-one correspondence between the set
{||σi || : σi ∈ Υi} and the set of possible strategies
for agent i . This is not necessarily the case however;
there is no such restrictions on the models of catl.
The number of strategies, even memoryless, available
to an agent at a given state depends on the CGS and
there is no upper bound for that number, so the for-
mula above can only work in a fixed CGS, where for
every such strategy there is a term in the language.
While catl can quantify over strategies in another
way, namely using the atl connectives, there is no
way to connect the witness of the existential strategy
quantifier 〈〈i〉〉 to a strategy term σ in an expression
Ci(σ, φ). Although catl has a mechanism of irrevo-
cable commitment, it does not seem to model strategic
ability under irrevocable commitment, like iatl does.

10 Conclusions

This paper is a preliminary report on a study of multi-
agent logics with irrevocable strategies. Our main ob-
jectives here have been to raise and discuss the is-
sue and to demonstrate that the range of semantics
based on irrevocable strategies present a natural and
meaningful alternative to the standard compositional
semantics of atl – an alternative that is both con-
ceptually interesting and technically challenging. We
have shown that the non-compositionality comes at a
price, as many comfortable features of the composi-
tional Tarski-style semantics cease to hold, and the
intuition built on that semantics can often be deluded
when dealing with irrevocable strategies. However, we
claim that this price is worth paying, as it brings the
semantics of multi-agent logics closer to the spirit of
the traditional game-theoretical concept of strategy.

References

[1] R. Alur, T. A. Henzinger, and O. Kupferman.
Alternating-time Temporal Logic. Journal of the
ACM, 49:672–713, 2002.

[2] E. A. Emerson. Temporal and modal logic. In
J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume B, pages 995–1072. El-
sevier Science Publishers, 1990.

[3] V. Goranko and W. Jamroga. Comparing seman-
tics of logics for multi-agent systems. Synthese,
139(2):241–280, 2004.

[4] V. Goranko and G. van Drimmelen. Complete ax-
iomatization and decidability of the Alternating-

time Temporal Logic. Theoretical Computer Sci-
ence, 353:93–117, 2006.

[5] M. Pauly. A modal logic for coalitional power
in games. Journal of Logic and Computation,
12(1):149–166, 2002.

[6] P. Y. Schobbens. Alternating-time logic with im-
perfect recall. Electronic Notes in Theoretical
Computer Science, 85(2), 2004.

[7] W. van der Hoek, W. Jamroga, and
M. Wooldridge. A logic for strategic reason-
ing. In Proceedings of AAMAS’05, pages 157–164,
2005.

[8] W. van der Hoek and M. Pauly. Modal logic
for games and information. In Johan van Ben-
them, Patrick Blackburn, and Frank Wolter, ed-
itors, Handbook of Modal Logic, pages 1077–1148.
Elsevier, 2006.

[9] W. van der Hoek, M. Roberts, and M. Wooldridge.
Social laws in alternating time: Effectiveness, fea-
sibility and synthesis. Synthese, 2005.

A Bisimulations between CGSs

Here, we present some standard semantic notions and
results from modal logic, adapted to atl and CGSs.
Consider a fixed language atl(Π,Σ).

Definition 15

1. Given two CGSs M1 = (Σ,Π,Q1, π1,Act1, d1, δ1)
and M2 = (Σ,Π,Q2, π2,Act2, d2, δ2), and a set of
agents C ⊆ Σ, a relation β ⊆ Q1 × Q2 is a (global)
C -bisimulation between M1 and M2, denoted M1 �C

β

M2, iff for any q1 ∈ Q1 and q2 ∈ Q2, q1βq2 implies
that

Local harmony π1(q1) = π2(q2),

Forth For any α1(C ) ∈ D1(q1,C ), there ex-
ists α2(C ) ∈ D2(q2,C ) such that for every
s2 ∈ out(M2, q2, α2(C )), there exists s1 ∈
out(M1, q1, α1(C )) such that s1βs2.

Back Likewise, for 1 and 2 swapped.

2. If M1 �C
β M2 and q1βq2, then we also say that β is

a local C -bisimulation between (M1, q1) and (M2, q2),
denoted (M1, q1) �C

β (M2, q2).

3. If β is a C -bisimulation between M1 and M2 for
every C ⊆ Σ, we call it a (full global) bisimulation
between M1 and M2, denoted M1 �β M2. Likewise,
we define a full local bisimulation between (M1, q1) and
(M2, q2), denoted (M1, q1) �β (M2, q2).



Given a pointed CGS (M , q), C ⊆ Σ, and a joint
strategy fC , we define the set reach(M , q , fC ) of all
states in M which are last states of finite compu-
tations in fincomp(M , q , fC ), i.e., reach(M , q , fC ) =
{l(σ) | σ ∈ fincomp(M , q , fC )}. In particular, we
write reach(M , q) for reach(M , q , ∅). Likewise, given
a CGS M a finite computation σ in it, C ⊆ Σ,
and a joint strategy fC , we put reach(M , σ, fC ) :=
reach(M , l(σ), fC ). Note that a CGS M can be nat-
urally restricted to a CGS over reach(M , q), denoted
by Reach(M , q).

Proposition 16 For any pointed CGS (M , q), the
identity relation in M restricted to reach(M , q) is a
bisimulation between (M , q) and (Reach(M , q), q).

Proof: Straightforward. 2

Proposition 17 Given pointed CGSs (M1, q1) and
(M2, q2) and a relation β ⊆ reach(M1, q1) ×
reach(M2, q2):

(M1, q1) �β (M2, q2) iff
(Reach(M1, q1), q1) �β (Reach(M2, q2), q2).

Proof: Follows from prop. 16 and the fact that a
composition of bisimulations is a bisimulation. 2

For a fixed C ⊆ Σ we denote by atl(Π[C ]) the frag-
ment of atl(Π,Σ) consisting of only those formulae
generated by

φ ::=
> | p | ¬φ | φ ∧ φ | 〈〈C 〉〉Xφ | 〈〈C 〉〉Gφ | 〈〈C 〉〉φUφ.

Theorem 18

1. If M1 �C
β M2 and q1βq2, then

M1, q1 |=atl φ iff M2, q2 |=atl φ

for every formula φ ∈ atl(Π[C ]).

2. If, furthermore, Dom(β) = Q1 and Rng(β) = Q2,
then

M1 |=atl φ iff M2 |=atl φ

for every formula φ ∈ atl(Π[C ]).

Proof: Claim 1. The proof goes by a induction on
formulae. The key step is to show that every strat-
egy on reach(M1, q1) can be ‘simulated’ by a strategy
on reach(M2, q2) and vice versa. We will prove this
for memoryless strategies, but the proof can be easily
adapted to the memory-based semantics.

For instance, consider the case of 〈〈C 〉〉Gφ, assum-
ing that the claim holds for φ. Suppose M1, q1 |=atl

〈〈C 〉〉Gφ and let f 1
C be a joint strategy for C in M1 that

ensures M1, s1 |=atl φ for every s1 ∈ reach(M1, q1, f 1
C ).

Note that, assuming the set of actions in M1 is at most
countable, the set reach(M1, q1, f 1

C ) will be at most
countable, too; then we fix an enumeration of it5.

We will define a joint strategy f 2
C for C in M2 that

ensures M2, s |=atl φ for every s ∈ reach(M2, q2, f 2
C ),

as follows.

First, we define, simultaneously by induction on n the
following:

(i) a chain of sets

reach0(M2, q2) ⊆ . . . ⊆ reachn(M2, q2) ⊆
. . . ⊆ reach(M2, q2),

(where reachn(M2, q2) will be the set of states in
M2 reachable in at most n steps from q2 if the
agents in C follow the joint strategy f 2

C );

(ii) a chain of mappings

ζ0 ⊆ . . . ⊆ ζn ⊆ . . . ,

such that ζn : reachn(M2, q2) → reach(M1, q1, f 1
C ),

and

ζn(s)βs for every s ∈ reachn(M2, q2);

(iii) and a chain of partial joint strategies for C in M2:

f0(C ) ⊆ . . . ⊆ fn(C ) ⊆ . . .

where the domain of fn(C ) is reachn−1(M2, q2).

(We put reach−1(M2, q2) := ∅, to get the inductive
construction going).

First, we put reach0(M2, q2) := {q2}, ζ0(q2) = q1, and
f0(C ) := ∅.

Now, assuming that reachn(M2, q2), ζn , and fn(C ) are
defined accordingly, we define reachn+1(M2, q2), ζn+1,
and fn+1(C ) as follows.

Let Sn := reachn(M2, q2) \ reachn−1(M2, q2). For ev-
ery s ∈ Sn , let s ′ = ζn(s). Since s ′βs, wee can
choose a joint action α(s,C ) for C from s in M2,
corresponding to the joint action for C from s ′ in
M1 determined by f 1

C , so as to ensure that for ev-
ery t ∈ out(M2, s, α(s,C )) there is a β-bisimilar state
ζ(t) ∈ out(M1, s ′, f 1

C ). In case t ∈ reachn(M2, q2) we
put ζ(t) = ζn(t), otherwise – the first suitable state in
the enumeration of reach(M1, q1, f 1

C ) (such state exists
since s ′βs). Note, that ζ(t) does not depend on s.

Now, we define

reachn+1(M2, q2) :=
reachn(M2, q2) ∪

⋃
s∈Sn

out(M2, s, α(s,C )) ,

5In general, the construction in the proof would require
application of Axiom of Choice, though.



ζn+1 := ζn ∪ ζ,

and
fn+1(C ) := fn(C ) ∪

⋃
s∈Sn

α(s,C ).

It is immediate from the construction that
reachn+1(M2, q2), ζn+1, and fn+1(C ) satisfy the
requirements set above. This completes the inductive
definition.

Finally, we define

f 2(C ) :=
⋃
n∈ω

fn(C ),

and extend it arbitrarily (but constructively) to all
states in M2 where it is not defined, to obtain the
desired f 2

C .

It follows from the definition, and from the main in-
ductive hypothesis of the proof (applied to φ), that

reach(M2, q2, f 2
C ) =

⋃
n∈ω

reachn(M2, q2),

and that M2, s |=atl φ for every s ∈ reach(M2, q2, f 2
C ).

Thus, M2, q2 |=atl 〈〈C 〉〉Gφ.

The converse direction is completely symmetric.

The proof for the case 〈〈C 〉〉φ1Uφ2 is similar and the
details are left to the reader.

Claim 2 is an immediate consequence from Claim 1.

2

Corollary 19 If M1 �β M2 and s1βs2, then

M1, s1 |=atl φ iff M2, s2 |=atl φ

for every formula φ ∈ atl(Π,Σ).

If, furthermore, Dom(β) = Q1 (the set of states of
M1) and Rng(β) = Q2 (the set of states of M2), then

M1 |=atl φ iff M2 |=atl φ

for every formula φ ∈ atl(Π,Σ).

Corollary 20 For any pointed CGS (M , q) and for-
mula φ ∈ atl(Π,Σ),

M , q |=atl φ iff Reach(M , q), q |=atl φ.

B Tree-unfoldings of CGS

Definition 21 (Tree-unfolding of a CGS) Given
a CGS

M = (Σ,Π,Q , π,Act , d , δ)

and q ∈ Q, the tree-unfolding T (M , q) of M from q
is defined as follows:

T (M , q) = (Σ,Π,fincomp(M , q), π∗,Act , d∗, δ∗),

where:

π∗(σ) = π(l(σ)), d∗i (σ) = di(l(σ)), and δ∗(σ, α) =
σδ(l(σ), α), i.e. the outcome state in T (M , q) from
σ under the joint action α is the finite computation
obtained from σ by appending the outcome state in M
from the last state of σ under α.

It is immediate from the definition that every tree un-
folding T (M , q) is a tree-like CGS.

Since every state in a tree has a unique history (path
to the root), we have the following.

Proposition 22 For any pointed CGS (M , q),
(T (M , q), q) �L (M , q), where L = {(σ, l(σ)) | σ ∈
fincomp(M , q)}.

Proof:

First, l(q) = q , hence qLq .

The ’Local harmony’ condition π∗(σ) = π(l(σ)), is
satisfied by definition.

For the ‘Forth’ condition: let α(C ) ∈
D(T (M , q), σ,C ). Then α(C ) ∈ D(M , l(σ),C ),
and for every every s ∈ out(M , l(σ), α(C )), we have
that (σ ◦ s)Ls and σ ◦ s ∈ out(T (M , q), σ, α(C )),
where σ ◦ s is the computation obtained from σ by
appending s to it.

Finally, the ‘Back’ condition: let α(C ) ∈
D(M , l(σ),C ). Then α(C ) ∈ D(T (M , q), σ,C ) and
for every σ′ ∈ out(T (M , q), σ, α(C )) we have that
σ′ = σδ(l(σ), α′) for some α′ ∈ D(T (M , q), σ)
such that α′(C ) = α(C ). Then δ(l(σ), α′) ∈
out(M , l(σ), α(C ) and σ′Lδ(l(σ), α′). 2

Proposition 23 Let (M , q) be a pointed CGS and φ
any atl-formula. Then the following are equivalent.

1. M , q |=miatl φ.

2. T (M , q), q |=miatl φ.

3. T (M , q), q |=iatl φ.

Corollary 24 If a formula is miatl-satisfiable, then
it is miatl-satisfiable in a tree-like CGS.


	Text1: NOTE: the model checking complexity results in Section 8 are correct only for formulae in Positive Normal Form, i.e., ones in which negation occurs only on the level of literals!


