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Abstract. We study the security of interaction protocols when incen-
tives of participants are taken into account. We begin by formally defin-
ing correctness of a protocol, given a notion of rationality and utilities of
participating agents. Based on that, we propose how to assess security
when the precise incentives are unknown. Then, the security level can
be defined in terms of defender sets, i.e., sets of participants who can
effectively “defend” the security property as long as they are in favor of
the property. In terms of technical results, we present a theoretical char-
acterization of defendable protocols under Nash equilibrium, and study
the computational complexity of related decision problems.

1 Introduction

Interaction protocols are ubiquitous in multi-agent systems: As soon as two
machines communicate, a protocol is required. Protocols can be modeled as
games, since every participant in the protocol has several strategies that she can
employ. From a game-theoretic perspective, protocols are an interesting class of
games since they have a goal, i.e., a set of outcomes that are preferred by the
designer of the protocol. A subclass of protocols are security protocols which use
cryptography to enforce their goals against any possible behavior of participants.
Such a protocol is deemed correct with respect to its goal if the goal is achieved
in all runs where a predefined subset of players follows the protocol.

We point out that this definition of correctness can be too strong, since
violation of the goal may be achievable only by irrational responses from the
other players. On the other hand, the definition may also prove too weak when
the goal can be only achieved by an irrational strategy of agents supporting the
goal, in other words: one that they should never choose to play. To describe
and predict rational behavior of agents, game theory has proposed a number of
solution concepts [18]. Each solution concept captures some notion of rationality
which may be more or less applicable in different contexts. We do not fix a
particular solution concept, but consider it to be a parameter of the problem.

Our main contributions are the following. First, in Section 3.1, we define a
parametrized notion of rational correctness for security protocols, where the pa-
rameter is a suitable solution concept. Secondly, based on this notion, we define



a concept of defendability of security in a protocol, where the security property
is guaranteed under relatively weak assumptions (Section 3.3). Thirdly, we give
complexity results for verification of rational protocol correctness and defend-
ability (see Section 4). Fourthly, in Section 5, we propose a characterization of
defendable security properties when rationality of participants is based on Nash
equilibrium. Finally, we extend the results to mixed strategies in Section 6.

1.1 Related Work

There are several meeting points of security protocols and game theory. Some
researchers have considered protocol execution as a game with the very pes-
simistic assumption that the only goal of the other participants (“adversaries”)
is to break the intended security property of the protocol. In this pessimistic
analysis, a protocol is correct if the “honest” participants have a strategy such
that, for all strategies of the other agents, the goal of the protocol is satisfied
(cf. e.g. [14]). Recently, protocols have been analyzed with respect to some game
theoretic notions of rationality [10, 2] where preferences of participants are taken
into account. An overview of connections between cryptography and game the-
ory is given in [8]. Another survey [1, 16] presents arguments suggesting that
study of incentives in security applications is crucial.

Game theoretic concepts have been applied to analysis of specific security
properties in a number of papers. Kremer and Raskin [15] used graph games to
verify non-repudiation protocols. However, their method used neither a model
of incentives nor of rationality. Buttyán, Hubaux and Čapkun [5] model games
in a way similar to ours, and also use incentives to model the behavior of agents.
However, they restrict their analysis to strongly Pareto-optimal Nash equilibria
which is not necessarily a good solution concept for security protocols. First, it
is unclear why agents would individually converge to a strongly Pareto-optimal
play. Moreover, in many protocols it is unclear why agents would play a Nash
equilibrium in the first place. Our method is more general, as we use the solution
concept as a parameter to our analysis.

Asharov et al. (2011) [2] use game theory to study gradual-release fair ex-
change protocols, i.e., protocols in which at any round, the probability of any
party to predict the item of the other player increases only by a negligible
amount. They model this in a game-theoretical setting, where in every round, the
player can either continue or abort. In every round, the item of the other player
is predicted. The situation where the player predicts correctly and the other one
does not has the highest utility, and the situation where the player predicts in-
correctly and the other one predicts correctly the lowest. Then a protocol is said
to be game-theoretically fair if the strategy that never aborts the protocol is a
computational Nash-equilibrium (i.e., a configuration where no player can gain
non-negligible advantage by polynomial-time computable unilateral deviations).
They show that no protocol is both fair and effective, but fairness without ef-
fectiveness is achievable. They also show that their analysis allows for solutions
that are not admitted by the traditional cryptographic definition.



Groce and Katz [12] show that if agents have a strict incentive to achieve fair
exchange, then gradual-release fair exchange without trusted third party (TTP)
is possible under the assumption that the other agents play rational. Chadha et.
al [6] show that in any fair, optimistic, timely contract-signing protocol, there is
a point where one player has a strategy to determine whether or not to complete
the protocol and obtain a contract. Although they reason about strategies, they
do not model incentives explicitly, and do not take different solution concepts
into account. Syverson [19] presents a rational exchange protocol for which he
shows that “enlightened, self-interested parties” have no reason to cheat.

Chatterjee & Raman [7] use assume-guarantee synthesis for synthesis of con-
tract signing protocols. Finally, in [9], a logic for modeling coordination abilities
between agents is presented, but incentives are not taken into account. [11] also
studies coordination and applies iterated elimination of dominated strategies.

In summary, rationality-based correctness of protocols has been studied in a
number of papers, but usually with a particular notion of rationality in mind.
In contrast, we define a concept of correctness where a game-theoretic solution
concept is a parameter of the problem. Even more importantly, our concept of
defendability of a security property is completely novel. The same applies to our
characterizations of defendable properties under Nash equilibrium.

2 Protocols and Games

We begin by recalling standard concepts used for modeling protocols on the one
hand, and games on the other. We also point out where the two meet.

2.1 Security Protocols

A protocol is a specification of how agents should interact. Protocols can contain
choice points where several actions are available to the agents. An agent is honest
if he follows the protocol specification, and dishonest otherwise. In the latter
case, the agent is only restricted by the physical and logical actions that are
available in the environment. For instance, in a cryptographic protocol, dishonest
agents can do anything that satisfies properties of the cryptographic primitives,
assuming perfect cryptography (as in [15]). The protocol specification, together
with a model of the environment of action, a subset of agents who are assumed
to be honest, and the operational semantics of action execution, defines a multi-
agent transition system that we call the model of the protocol. In the rest of
the paper, we focus on protocol models, and abstract away from how they arise.
We also do not treat the usual “network adversary” that can intercept, delay
and forge messages, but essentially assume the existence of secure channels. The
issue of the “network adversary” is of course highly relevant for the protocols
we consider, but orthogonal to the aspects we discuss in this paper. A complete
analysis of a protocol needs to take both aspects into account.

As a running example, we consider two-party contract signing protocols. Two
agents, Alice and Bob, intend to sign a contract. The two main objectives in such
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Fig. 1. Two contract-signing protocols

protocols are fairness and effectivity. Fairness requires that if one agent gets the
signature of the other agent, the other agent will eventually get the signature of
the first agent as well. A protocol run is effective if, at the end of the run, both
agents have the signature of the other agent.

Example 1. Figure 1 displays two simple contract signing protocols. In the proto-
col on the left, Alice sends her signature to Bob, who responds with his signature.
Alice and Bob can stop the protocol at any moment (thereby deviating from the
protocol). Clearly, the run where Bob and Alice both send their signatures is
fair. However, not all protocol runs are fair. In particular, if Bob is dishonest,
he can stop the protocol right after receiving the signature of Alice.

The protocol on the right [4] uses a trusted third party (TTP) T , assumed
to be honest. First, Alice sends her signature sA to the TTP, then the TTP
requests Bob’s signature with the message sig?. Subsequently, Bob sends his
signature sB to the TTP. Finally, the TTP forwards the signatures to Bob and
Alice. Again, each participant can stop executing the protocol at any point.
Fairness is guaranteed as long as the TTP is honest.

2.2 Game Theoretic Models of Interaction

We use normal-form games as abstract models of interaction in a protocol.

Definition 1 (Frames and games). A game frame is a tuple Γ = (N,Σ,Ω, o),
where N = {A1, . . . , A|N |} is a finite set of agents, Σ = ΣA1

× · · · ×ΣA|N|
is a

set of strategy profiles, Ω is the set of outcomes, and o : Σ → Ω is a function
mapping each strategy profile to an outcome.

A normal-form (NF) game is a game frame plus a utility profile u = {u1, . . . , u|N |}
where ui : Σ → R is a utility function assigning utility values to strategy profiles.

Game theory uses solution concepts to define which strategy profiles capture
rational interactions. Let G be a class of games with the same strategy pro-
files Σ. Formally, a solution concept for G is a function SC : G → P(Σ) that,
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Fig. 3. NF games for contract signing: : (a) naive protocol, (b) protocol with TTP

given a game, returns a set of rational strategy profiles. Well-known solution con-
cepts include e.g. Nash equilibrium (NE), dominant and undominated strategies,
Stackelberg equilibrium, Pareto optimality etc. For a detailed discussion, see [18].

2.3 Protocols as Games

Let P be a model of a protocol. We will investigate properties of P through the
game frame Γ (P ) in which strategies are conditional plans in P , i.e., functions
that specify for each choice point which action to take. A set of strategies, one
for each agent, uniquely determines a run of the protocol, i.e., a sequence of
actions that the agents will take. Γ (P ) takes runs to be the outcomes in the
game, and hence maps strategy profiles to runs.

Example 2. Consider the protocols in Figure 1. Alice and Bob have the following
strategies: Stop (stopping before sending the signature) and Sign (running the
protocol honestly). The protocol can be modeled as game frame Γ = (N,Σ,Ω, o)
with N = {A,B, T }, ΣT = {−} (the trusted third party T is deterministic),
ΣA = ΣB = {Stop, Sign}, Ω = P({signA, signB}), here signA (signB) denotes
the event that Alice (Bob) gets a signed copy of the contract. For the protocol
with TTP protocol we also have o(σ) = {signA, signB} if σ = (Sign, Sign,−),
and o(σ) = ∅ otherwise. The game frame is displayed in Figure 2(b).

The “naive” protocol can be modeled in a similar way (Figure 2(a)). The
available strategies are the same, but in this case o(Sign, Stop,−) = {signB}.

We model agents’ preferences with respect to outcomes by utility profiles.

Example 3. Assume the following utility function for A: uA({signA}) = 3,
uA({signA, signB}) = 2, uA(∅) = 1, uA({signB}) = 0, and symmetrically for
B. Thus, both agents prefer the exchange of signatures over no exchange; more-
over, the most preferred option for an agent is to get the signature while the
other agent does not, and the least preferred option is not to get the signatures
while the other agent does. Combining this utility profile with the game frames
from Figure 2 yields the normal-form games depicted in Figure 3.



Security protocols are designed to achieve one or more security requirements
and/or functionality requirements. We only consider requirements that can be
expressed in terms of individual runs having a certain property. We model this
by a subset of outcomes, called the objective of the protocol.

Definition 2. Given a game frame Γ = (N,Σ,Ω, o), an objective is a non-
empty set γ ⊆ Ω. We call γ nontrivial in Γ iff γ is neither impossible nor
guaranteed in Γ , i.e., ∅ 6= γ 6= Ω.

Example 4. Consider the following simple definition of fairness. A run is fair iff
either both agents obtain the signature of the other agent, or none of them does.
Moreover, the run is effective iff both agents obtain the other agent’s signature.
We can represent that by γfair = {∅, {signA, signB}} for the fairness objective,
and γeff = {{signA, signB}} for effectiveness.

3 Incentive-Based Security Analysis

In this section, we give a definition of correctness of security protocols that takes
into account rational decisions of agents, based on their incentives. In NF games,
it is often assumed that the mapping o is a bijection, i.e., every strategy profile
determines a unique outcome. We therefore often identify Σ with Ω, and omit
Ω and o from the representation of games to simplify notation.

3.1 Incentive-Based Correctness

As we have pointed out, the requirement that all strategy profiles satisfy the
objective might be too strong. Instead, we will require that all rational runs
satisfy the objective. In case there are no rational runs, all outcomes are equally
rational; then, we adopt the usual pessimistic view and require that all outcomes
must satisfy γ.

Definition 3. A protocol model represented as game frame Γ = (N,Σ) with
utility profile u is correct with respect to objective γ under solution concept
SC, written (Γ, u) |=SC γ, iff:

{

SC(Γ, u) ⊆ γ if SC(Γ, u) 6= ∅
γ = Σ otherwise.

Protocol verification is the following decision problem:

– Input: A protocol model P , a utility function u, an objective γ and a solution
concept SC.

– Question: Does (Γ (P ), u) |=SC γ hold?

Example 5. Consider game G1 from Figure 3(a) for the naive contract signing
protocol. We saw that if Alice signs, Bob might stop the protocol, resulting in
the worst possible utility for Alice. Therefore, Alice might consider it safer to



never sign. This kind of reasoning can be captured by using Nash equilibrium as
the solution concept, since NE(G1) = {(Stop, Stop)}. For γeff = {(Sign, Sign)},
we have NE(G1) 6⊆ γeff, and thus G1 is not effective under Nash equilibrium. On
the other hand, for γfair = {(Stop, Stop), (Sign, Sign)}, we have NE(G1) ⊆ γfair,
so G1 guarantees fairness under Nash equilibrium.

Moreover, if we think that the players are willing to take risks in order to
obtain a better outcome, then using e.g. Halpern and Rong’s maximal perfect
collaborative equilibrium [13] as the solution concept is more appropriate. Since
MPCE(G1) = {(Sign, Sign)} ⊆ γeff ⊆ γfair, we have that the protocol is both
fair and effective under MPCE.

The above example highlights that, for different situations, different solution
concepts are appropriate.

3.2 Unknown Incentives

In the previous section, we studied correctness of a protocol when a utility profile
is given. However, the exact utility profiles are often unknown. One way out is
to require the protocol to be correct for all possible utility profiles.

Definition 4. A protocol model represented by game frame Γ is valid with re-
spect to objective γ under solution concept SC (written Γ |=SC γ) iff (Γ, u) |=SC

γ for all utility profiles u.

Protocol validity is the following decision problem:

– Input: A protocol model P , an objective γ and a solution concept SC.
– Question: Does Γ (P ) |=SC γ hold?

It turns out that, under some reasonable assumptions, protocols are only
valid for trivial objectives.

Definition 5. Let G = (N,Σ, (u1, . . . , un)). Let π = (π1, . . . , πn), where for
all i ∈ N , πi : Σi → Σi is a permutation on Σi. We slightly abuse the no-
tation by writing π((s1, . . . , sn)) for (π1(s1), . . . , πn(sn)). A solution concept
is closed under permutation iff s ∈ SC((N,Σ, (u′

1, . . . , u
′
n))) if and only if

π(s) ∈ SC((N,Σ, (u′
1 ◦ π

−1
1 , . . . , u′

n ◦ π−1
n ))).

Being closed under permutation is a very natural property. Essentially, it
means that “renaming” of strategies does not have an effect on the output of
the game. All solution concepts that we know of are closed under permutation.

Theorem 1. If SC is closed under permutation, then Γ |=SC γ iff γ = Σ.

Proof. Let Γ be a game frame, SC be a solution concept closed under permu-
tation of utilities, and γ be an objective. Fix u such that ui(s) = 0 for all i ∈ N
and s ∈ Σ. First, if SC(Γ, u) = ∅ then γ must be equal to Σ by Definition 3. On
the other hand, suppose that s ∈ SC(Γ, u), and consider any other s′ ∈ Σ. It is
easy to see that there is a permutation π such that π(s) = s′. Also, (Γ, u ◦ π) is
the same game as (Γ, u) for this very special utility function u. By the closure
property, s′ ∈ SC(Γ, u ◦ π) = SC(Γ, u), which concludes the proof.



Thus, correctness for all distributions of incentives is equivalent to correctness
in all possible runs. This characterization is natural: If we do not make any
assumptions about the incentives of the participating agents, then no run can be
regarded as “irrational,” hence all runs need to be taken into account. Clearly,
incentive-based analysis needs some assumptions about the incentives of the
agents participating in a protocol.3

In the next section we look at the case where a subset of agents D, called
the defenders of the protocol, have a genuine interest in achieving the objective
of the protocol.

3.3 Defendability of Protocols

Typical analysis of a protocol implicitly assumes some participants to be aligned
with its purpose. E.g., one usually assumes that communicating parties are in-
terested in exchanging a secret without the eavesdropper getting hold of it, that
a bank wants to prevent web banking fraud etc. In this section, we formalize this
idea by assuming a subset of agents, called the defenders of the protocol, to be
in favor of its objective. Our new definition of correctness says that a protocol is
correct with respect to some objective γ if and only if it is correct with respect
to every utility profile in which the preferences of all defenders comply with γ.

Definition 6. A group of agents D ∈ N supports the objective γ in game
(N,Σ, u) iff for all i ∈ D, if s ∈ γ and s′ ∈ Σ \ γ then ui(s) > ui(s

′).
A protocol model represented as game frame Γ is defended by agents D,

written Γ |=SC [D ]γ, iff (Γ, u) |=SC γ for all utility profiles u such that D
supports γ in game (Γ, u).

Protocol defendability is the following decision problem:

– Input: Protocol model P , objective γ, set of agents D, solution concept SC.
– Question: Does Γ (P ) |=SC [D ]γ hold?

For example, it makes sense to assume that if Alice signs the contract then she
prefers to get it also signed by Bob. In other words, Alice supports fairness for
herself. Note that the issue of support is different from that of honest execution
of a protocol. The former is about preferences of a party; the latter about the
actions that the party is bound to select. In particular, there might be protocols
in which the objective can be only obtained by deviating from the protocol.4

We do not go deeper into that, and focus only on defendability. We first note

3 An interesting special case of Theorem 1 appears in a study of rational secret sharing:
Asharov and Lindell [3] proved that the length (number of rounds) of a protocol for
rational secret sharing must depend on the utilities of the involved agents for the
possible protocol outcomes. In particular, there can be no single protocol which
works for every possible set of incentives of the agents. Their result even holds under
some plausibility assumptions on the agents’ incentives (i.e., agents prefer to learn
the secret over not learning it, etc.).

4 Arguably, that would mean that the protocol is badly designed.



that Γ (P ) |=SC [D ]γ is not equivalent to D having a strategy to achieve γ: It
is possible that such a strategy exists, but is not rational in the sense of the
solution concept SC. We begin by investigating the borderline cases, where
either none or all of the agents are defenders. Clearly, if there are no defenders,
then defendability is equivalent to ordinary protocol validity.

Proposition 1. If Γ is a game frame and SC is a solution concept, we have
that Γ |=SC [∅]γ iff Γ |=SC γ.

If all agents are defenders, any protocol is correct, as long as the solution
concept does not select strongly Pareto-dominated strategy profiles.

Definition 7. A solution concept is weakly Pareto iff it never selects a strongly
Pareto dominated outcome (i.e., such that there exists another outcome strictly
preferred by all the players). It is efficient iff it never returns the empty set.

Theorem 2. If Γ is a game frame and SC is an efficient weakly Pareto solution
concept then Γ |=SC [N ]γ.

Proof. Let Γ be a game frame, and let u be a utility function such that D sup-
ports γ in game (Γ, u). We have SC(Γ, u) 6= ∅ by assumption. Now we prove that
SC(Γ, u) ⊆ γ. Assume s ∈ SC(Γ, u) and s 6∈ γ. Let s′ ∈ γ. Then ui(s

′) > ui(s)
for all i ∈ N . However, this implies that s 6∈ SC(Γ, u), which is a contradiction.

Theorem 2 says that if our notion of rationality is efficient and weakly Pareto
then designing a protocol for friendly agents is very easy. That is, rather unsur-
prisingly, if all players are defenders of the a goal γ then as long as there is some
way of achieving the goal, the players will identify a working strategy. Many
solution concepts are both efficient and weakly Pareto, for example: Stackelberg
equilibrium, maximum-perfect cooperative equilibrium, backward induction and
subgame-perfect Nash equilibrium in perfect information games. However, us-
ing such a solution concept is based on optimistic assumptions about both the
players’ goodwill and their ability to coordinate their strategies. In practice,
other solution concepts are used, which in general do not satisfy the precon-
ditions of Theorem 2. For example, Nash equilibrium is neither weakly Pareto
nor efficient,5 and equilibrium in dominant strategies is weakly Pareto but not
necessarily efficient.

Given a protocol model, a solution concept and an objective, we can de-
termine the smallest set of defenders for which the protocol is correct. Clearly,
defendability of a protocol is monotonic with respect to the set of defenders.

Proposition 2. For every D ⊆ D′ ⊆ N , if Γ |=SC [D ]γ then Γ |=SC [D ′]γ.

This justifies the following definition.

Definition 8. The game-theoretic security level of protocol P is the antichain
of minimal sets of defenders that make the protocol correct.

5 We will look closer at defendability under Nash equilibrium in Section 5.



Intuitively, the game-theoretic security level is the set of minimal coalitions
C ⊆ N such that if C supports the goal, then every rational play will fulfill it.
Note that due to Proposition 2, the game-theoretic security level of a protocol
is nonempty (i.e., the goal of the protocol can be defended) if and only if the
“grand coalition” N of all players can defend the goal. We will concentrate on
defendability by the grand coalition in Section 5.

4 Computational Complexity: General Case

In this section, we study the complexity of protocol verification, validity, and
defendability for the general case when the solution concept is a parameter of
the problem (and hence a part of the input). Algorithms for this case are useful
to evaluate a protocol with respect to different solution concepts. Also, they give
upper bounds for every specific subclass of the problem.6 Since our definitions
of correctness are parametrized by a solution concept and a security property,
our results are relative to the complexity of verification for the two.

Theorem 3. Let us measure the complexity w.r.t. the size of the NF game (i.e.,
the number of strategy profiles), and let SC, Obj be the complexity of verification
for the solution concept and the objective of the protocol, respectively. Then:

1. Protocol verification is in PSC∪Obj which is the class of decision problems
that can be solved by a deterministic Turing machine running in polynomial
time and making calls to an oracle for problems in SC ∪Obj;

2. Protocol validity is in coNPSC∪Obj (problems solvable by a TM for coNP,
calling an oracle for SC ∪Obj);

3. Protocol defendability is also in coNPSC∪Obj.

Proof. Ad. 1. For protocol verification, it suffices to check the outcome of every
strategy profile whether it is not accepted by the solution concept or accepted
by the objective. This can be done by a deterministic algorithm running in
polynomial time (wrt to the number of strategy profiles) and making calls to
oracles verifying the solution concept and the objective, respectively;

Ad. 2. We can reduce protocol validity to an instance of coSAT making
calls to oracles for the solution concept and the objective. This is because every
solution concept can be equivalently rephrased in terms of preference relations
over outcomes rather than utility profiles. Since there are exponentially many
such relations, they can be encoded by polynomially many binary variables.
Then, a protocol is valid iff it is correct for all possible valuations of the variables ;

Ad. 3. Protocol defendability reduces analogously.

The next theorem proposes a lower bound.

Theorem 4. Protocol validity and protocol defendability are coNP-hard.

6 In Section 5, we will give complexity results for the specific case when the notion of
rationality is based on Nash equilibrium.



Proof. We prove hardness by a reduction of coSAT to protocol validity. Since
protocol validity is a special case of defendability (Theorem 1), coNP-hardness
for defendability follows as well.

Let x1, . . . , xn be Boolean variables and ϕ a formula in DNF. We construct
an instance of protocol validity by simulating valuations of x1, . . . , xn by util-
ity profiles, and formula ϕ by the solution concept. Formally, let Γ consist of
N = {1, . . . , n} and Σ =

{

s0, s1
}

, and SC be defined as: SC(Γ, u) =
{

s1
}

if ϕ
(

(u1(s
1) ≥ u1(s

0)), . . . , (un(s
1) ≥ un(s

0))
)

and
{

s0
}

otherwise. Finally, let

γ =
{

s1
}

. Note that membership in SC(Γ, u) and γ can be verified in polynomial
time. Now, coSAT(x1, . . . , xn, ϕ) iff Γ |=SC γ.

In practice, a protocol model is rarely given as a normal form game, but rather
as a sequence of transitions (cf. for example Figure 1). For this representation,
the following theorem gives the complexity of protocol verification and validity:

Theorem 5. Let SC, Obj be as above. Protocol verification, protocol validity,
and protocol defendability are in coNPSC∪Obj wrt the number of possible tran-
sitions in the protocol model.

Proof. We observe that a strategy profile in an extensive game can be encoded
by an array of choices, one per agent and game position (i.e., protocol state in
our case). Since the array has polynomial size wrt the size of the game tree, we
obtain the result by analogous reasoning to the proof of Theorem 3.

We note that some natural solution concepts can be verified in deterministic
polynomial time (e.g., Stackelberg equilibrium in NF games, subgame-perfect
Nash equilibrium in EF games, etc.). Also, many objectives can be verified in
polynomial time. Then, we obtain the following.

Theorem 6. If the solution concept and the objective can be verified in polyno-
mial time then:

1. Protocol verification is P-complete wrt to the size of the NF game and
coNP-complete wrt the number of transitions in the protocol;

2. Protocol validity and protocol defendability are coNP-complete with respect
to both types of input.

5 Characterizing Defendability under Nash Equilibrium

In this section, we turn to properties that can be defended if agents’ rationality
is based on Nash equilibrium or Optimal Nash Equilibrium.

5.1 Defendability under Nash Equilibrium

From Theorem 1, we know that no protocol is valid under Nash equilibrium (NE)
for any nontrivial objective, since NE is closed under permutation. Do things get
better if we assume some agents to be in favor of the security objective? We now



t1 t2

s1 hi, hi 0, 0
s2 0, 0 lo, lo

(a)

t1 t2 t3

s1 hi, lo lo, hi 0, 0
s2 lo, hi hi, lo 0, 0
s3 0, 0 0, 0 0, 0

(b)

Fig. 4. (a) HiLo game for 2 players; (b) Extended matching pennies. In both games,
we assume that hi > lo > 0, e.g., hi = 100 and lo = 1

look at the extreme variant of the question, i.e., defendability by the grand
coalition N . Note that, by Proposition 2, nondefendability by N implies that
the objective is not defendable by any coalition at all.

Our first result in this respect is negative: we show that in every game frame
there are nontrivial objectives that are not defendable under NE.

Theorem 7. Let Γ be a game frame with at least two players and at least two
strategies per player. Moreover, let γ be a singleton objective, i.e., γ = {ω} for
some ω ∈ Σ. Then, Γ 6|=NE [N ]γ.

Proof. Assume wlog thatN = 2,Σ1 = {s1, s2},Σ2 = {t1, t2}, and γ = {(s1, t1)}.
Now, consider the utility function uhl of the well known HiLo game (Figure 4(a)).
Clearly, N support γ in uhl. Moreover, NE(Γ, uhl) 6= ∅. On the other hand,
NE(Γ, uhl) = {(s1, t1), (s2, t2)} 6⊆ γ, which concludes the proof.

In particular, the construction from the above proof shows that, as mentioned
before, there are cases where the “defending” coalition has a strategy to achieve
a goal γ, but there are still rational plays in which the goal is not achieved.

To present the general result that characterizes defendability of security ob-
jectives under Nash equilibrium, we need to introduce additional concepts. In
what follows, we use s[ti/i] to denote (s1, . . . , si−1, ti, si+1, . . . , sN), i.e., the strat-
egy profile that is obtained from s when player i changes her strategy to ti.

Definition 9. Let γ be a set of outcomes (strategy profiles) in Γ . The deviation
closure of γ is defined as Cl(γ) = {s ∈ Σ | ∃i ∈ N, ti ∈ Σi . s[ti/i] ∈ γ}.

Cl(γ) extends γ with the strategy profiles that are reachable by unilateral
deviations from γ. Thus, Cl(γ) can be seen as the closure of γ with the outcomes
that are relevant for Nash equilibrium. Moreover, the following notion captures
strategy profiles that can be used to construct sequences of unilateral deviations
ending up in a cycle.

Definition 10. A strategic knot in γ is a subset of strategy profiles S ⊆ γ
such that there is a permutation (s1, . . . , sk) of S where: (a) for all 1 ≤ j < k,
sj+1 = sj [sj+1

i /i] for some i ∈ N , and (b) sj = sk[s1i /i] for some i ∈ N, j < k.

Essentially, this means that every strategy sj+1 is obtained from sj by a
unilateral deviation of a single agent. If these deviations are rational (i.e., increase



the utility of the deviating agent), then the knot represents a possible endless
loop of rational, unilateral deviations which precludes a group of agents from
reaching a stable joint strategy. We now state the main result of this section.

Theorem 8. Let Γ be a finite game frame and γ a nontrivial objective in Γ .
Then, Γ |=NE [N ]γ iff Cl(γ) = Σ and there is a strategy profile in γ that belongs
to no strategic knots in γ.

Proof. “⇒” Let Γ |=NE [N ]γ, and suppose that Cl(γ) 6= Σ. Thus, there exists
s0 ∈ Σ which is not in Cl(γ). Consider a HiLo-style utility function u(s) = hi
if s ∈ γ, lo if s = s0, and 0 otherwise (for some values hi > lo > 0). Clearly, s0
is a Nash equilibrium in (Γ, u), and thus NE(Γ, u) 6= ∅ but also NE(Γ, u) 6⊆ γ,
which is a contradiction.

Suppose now that Cl(γ) = Σ but every s ∈ γ belongs to a strategic knot.
We construct the utility function akin to the extended matching pennies game
(Figure 4(b)), i.e., for every node s in a strategic knot ui(s) = hi for the agent
i who has just deviated, and lo for the other agents.7 Moreover, ui(s) = 0 for
all i ∈ N, s /∈ γ. Clearly, ui is consistent with γ for every i ∈ N . On the
other hand, no s ∈ Σ is a Nash equilibrium: if s is outside of γ then there is
a profitable unilateral deviation into γ, and every s inside γ lies on an infinite
path of rational unilateral deviations. Thus, NE(Γ, u) = ∅. Since γ is nontrivial,
we have Γ 6|=NE [N ]γ, a contradiction again.

“⇐” Assume Cl(γ) = Σ and s ∈ γ belongs to no strategic knot in γ. Let
u be a utility function such that for every i ∈ N, s ∈ γ, s′ ∈ Σ \ γ it holds that
ui(s) > ui(s

′). Take any ω /∈ γ. Since ω ∈ Cl(γ), there is an agent i with a
unilateral deviation to some s ∈ γ. Note that ui(ω) < ui(s), so ω /∈ NE(Γ, u).
Thus, NE(Γ, u) ⊆ γ. Moreover, s is a Nash equilibrium or there is a sequence of
unilateral deviations leading from s to a Nash equilibrium (since Γ is finite and
s does not lie on a knot). Thus, also NE(Γ, u) 6= ∅, which concludes the proof.

Example 6. Consider contract signing with TTP, cf. Figure 1 (right). The prop-
erties of effectiveness and fairness can be defined as γeff = {(Sign, Sign)} and
γfair = {(Stop, Stop), (Sign, Sign)}. By Theorem 8, fairness in the protocol is
N -defendable under Nash equilibrium. On the other hand, effectiveness is not.

It is important to note that the above result makes verification of defend-
ability significantly easier than the general results from Section 4 suggest:

Theorem 9. Let Γ be a finite game frame and γ a nontrivial objective in Γ .
Then, checking Γ |=NE [N ]γ can be done in polynomial time wrt the size of γ.

Proof (sketch). Checking if Cl(γ) = Σ: we look at every s /∈ γ and check if it
can be “moved” to γ by a flip of an individual strategy.

Checking strategic knots: (i) Take Θ to be the deviation grid for γ, i.e.,
the graph containing strategy profiles from γ as vertices and individually ratio-
nal deviations as edges; (ii) Construct the minimal spanning graph MSG(Θ)

7 If a node lies on several knots, we need to assign several different hi values in a
careful way; we omit the details here due to lack of space.



(Kruskal or a similar algorithm); (iii) Let Knotty = ∅. For every edge (s, s′) in
Θ \MSG(Θ): add the vertices on the path from s to s′ in MSG(Θ) to Knotty;
(iv) For every s ∈ Θ \Knotty: add it to Knotty iff there is a path in Θ between
s and some s′ ∈ Knotty. (v) The answer is “yes” iff Θ \Knotty 6= ∅.

5.2 Optimal Nash Equilibria

Nash equilibrium is a natural solution concept for a game played repeatedly until
the behavior of all players converges to a stable point. For a one-shot game, NE
possibly captures convergence of the process of deliberation. It can be argued
that, among the available solutions, no player should contemplate those which
are strictly worse for everybody when compared to another stable point. This
gives rise to the following refinement of Nash equilibrium: OptNE(Γ, u) is the
set of optimal Nash equilibria in game (Γ, u), defined as those equilibria that
are not strongly Pareto-dominated by another Nash equilibrium. Defendability
by the grand coalition under OptNE has the following simple characterization.

Theorem 10. Let Γ be a finite game frame and γ a nontrivial objective in
Γ . Then, Γ |=OptNE [N ]γ iff there is a strategy profile in γ that belongs to no
strategic knots in γ.

Proof. “⇒” If all s ∈ γ lie on strategic knots in γ then there is u such that
no s ∈ γ is a Nash equilibrium in (Γ, u), cf. the proof of Theorem 8. Since
OptNE(Γ, u) ⊆ NE(Γ, u) and γ is nontrivial, this implies that Γ 6|=OptNE [N ]γ.

“⇐” Let u be any utility profile. By analogous reasoning to Theorem 8,
there must be a strategy profile s ∈ γ in game (Γ, u) which is an optimal Nash
equilibrium. Thus, OptNE(Γ, u) 6= ∅. Suppose that there exists another optimal
NE s′ /∈ γ. But then s′ would be strictly Pareto-dominated, which cannot be the
case. Thus, also OptNE(Γ, u) ⊆ γ, and hence Γ |=OptNE [N ]γ.

It is easy to see that checking N -defendability under OptNE is in P.

6 Defendability in Mixed Strategies

So far, we considered only deterministic (pure) strategies. It is well known that
for many games and solution concepts, rational strategies exist only when taking
mixed strategies into account. We now extend our definition of correctness to
mixed strategies, i.e., randomized conditional plans represented by probability
distributions over pure strategies from ΣAi

. Let dom(s) be the support (domain)
of a mixed strategy profile s, i.e., the set of pure strategy profiles that have
nonzero probability in s. We extend the notion to sets of mixed strategy profiles
in the obvious way. By SCm we denote the variant of SC in mixed strategy
profiles. A protocol is correct in mixed strategies iff all the possible behaviors
resulting from a rational (mixed) strategy profile satisfy the goal γ; formally:
Γ, u |=m

SC γ iff dom(SCm(Γ, u)) ⊆ γ when SCm(Γ, u) 6= ∅ and γ = ΣΓ otherwise.
The definitions of protocol validity and defendability in mixed strategies (Γ |=m

SC



γ and Γ |=m
SC [D ]γ) are analogous. For defendability in mixed strategies under

Nash equilibrium, we have the following, rather pessimistic result.

Theorem 11. Let Γ be a finite game frame, and γ an objective in it. Then,
Γ, u |=m

NE [N ]γ iff γ = Σ.

Proof. “⇐” Straightforward. For “⇒”, we observe the following:
(i) Cl(γ) = Σ by the same reasoning as for pure strategies.
(ii) Let Conv(γ) be the convex closure of γ, i.e., the set of strategy profiles

obtained by combining individual strategies occurring in γ. Then, Conv(γ) = γ.
(Proof: suppose that it is not the case, then there must be s, s′ ∈ γ such that one
of their convex combinations s′′ is not in γ. We play the Coordination game with
1 assigned to s, s′, 0 to the other nodes in γ and −1 to the rest of nodes. The
strategy profile ([sA1

/0.5, s′A1
/0.5], . . . , [sA|N|

/0.5, s′A|N|
/0.5]) is a mixed strategy

Nash equilibrium, and clearly s′′ is in its support. Since Γ, u |=m
SC [N ]γ, we have

that s′′ ∈ γ, which is a contradiction.)
(iii) By (i), every i’s strategy must be a part of some strategy profile in γ.

Thus, Conv(γ) = Σ, and hence γ = Σ.

On the other hand, it turns out that optimal Nash equilibrium yields a simple
and appealing characteristics of N -defendable properties:

Theorem 12. Γ |=m
OptNE [N ]γ iff γ = Conv(γ), i.e., γ is closed under convex

combination of strategies.

Proof (sketch). “⇒” Analogous to point (ii) in the proof of Theorem 11.

“⇐” Consider any utility profile u. By the result of Nash [17], (Γ, u) has
a Nash equilibrium in mixed strategies. Moreover, γ = Conv(γ) implies that all
the Nash equilibria s such that dom(s) 6⊆ γ are strongly Pareto-dominated by a
mixed NE in γ. Hence, OptNE(Γ, u) is nonempty and entirely contained in γ.

Corollary 1. Γ |=m
OptNE [N ]γ iff there exist subsets of individual strategies

χ1 ⊆ Σ1, . . . , χ|N | ⊆ Σ|N | such that γ = χ1 × · · · × χ|N |.

That is, security property γ is defendable by the grand coalition in Γ iff γ can
be decomposed into constraints on individual behavior of particular agents.

7 Conclusions

We propose a framework for analyzing security protocols (and other interac-
tion protocols), that takes into account the incentives of agents. In particular,
we consider a novel notion of defendability that guarantees that all the runs
of the protocol are correct as long as a given subset of the participants (the
“defenders”) is in favor of the security property. We have obtained some char-
acterization results for defendability under Nash equilibria and optimal Nash
equilibria. We also studied the computational complexity of the corresponding
decision problems, both in the generic case and in some special cases based on
Nash equilibrium. In the future, we plan to combine our framework with results
for protocol verification using game logics (such as ATL), especially for those
solution concepts that can be expressed in that kind of logics.
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Roughgarden, Éva Tardos, and Vijay V. Vazirani, editors, Algorithmic Game The-
ory, chapter 8, pages 181–208. 2007.

9. B. Finkbeiner and S. Schewe. Coordination logic. In Anuj Dawar and Helmut
Veith, editors, CSL, volume 6247 of Lecture Notes in Computer Science, pages
305–319. Springer, 2010.

10. G. Fuchsbauer, J. Katz, and D. Naccache. Efficient rational secret sharing in
standard communication networks. In D. Micciancio, editor, TCC, volume 5978 of
Lecture Notes in Computer Science, pages 419–436. Springer, 2010.

11. H. Ghaderi, H. Levesque, and Y. Lespérance. A logical theory of coordination and
joint ability. ACM Press, New York, New York, USA, May 2007.

12. A. Groce and J. Katz. Fair Computation with Rational Players. In EUROCRYPT,
pages 81–98, 2012.

13. J.Y. Halpern and N. Rong. Cooperative equilibrium (extended abstract). In Pro-
ceedings of AAMAS 2010, pages 1465–1466, 2010.

14. S. Kremer and J. Raskin. Game analysis of abuse-free contract signing. In Pro-
ceedings of the 15th IEEE Computer Security Foundations Workshop (CSFW’02),
pages 206–220. IEEE Computer Society Press, 2002.

15. S. Kremer and J. Raskin. A game-based verification of non-repudiation and fair
exchange protocols. Journal of Computer Security, 11(3), 2003.

16. T. Moore and R. Anderson. Economics and internet security: a survey of recent an-
alytical, empirical and behavioral research. Technical Report TR-03-11, Computer
Science Group, Harvard University, 2011.

17. J. Nash. Non-cooperative games. PhD thesis, Princeton, 1950.
18. M. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
19. P. Syverson. Weakly secret bit commitment: Applications to lotteries and fair

exchange. In CSFW, pages 2–13, 1998.


