
Agents, Actions and Goals in Dynamic Environments

Peter Novák∗
Department of Cybernetics, FEL

Czech Technical University in Prague
Czech Republic

Wojciech Jamroga†
Computer Science and Communications

University of Luxembourg
Luxembourg

Abstract

In agent-oriented programming and planning,
agents’ actions are typically specified in terms of
postconditions, and the model of execution as-
sumes that the environment carries the actions out
exactly as specified. That is, it is assumed that the
state of the environment after an action has been
executed will satisfy its postcondition.
In reality, however, such environments are rare: the
actual execution of an action may fail, and the en-
visaged outcome is not met. We provide a con-
ceptual framework for reasoning about success and
failure of agents’ behaviours. In particular, we pro-
pose a measure that reflects how ”good” an envir-
onment is with respect to agent’s capabilities and a
given goal it might pursue. We also discuss which
types of goals are worth pursuing, depending on the
type of environment the agent is acting in.

1 Motivation
In dynamic environments agent’s actions can fail. This might
be either directly due to failing effectors of the agent, or in-
directly due to incompleteness of information. The latter situ-
ation may arise either because precise and complete inform-
ation is inherently impossible (think of a robot dealing with
complex physical phenomena, such as the weather), or tech-
nically infeasible, resp. undesirable in the given application
domain (e.g., high space complexity of the environment rep-
resentation, or high rate of environment change in relation to
the speed of the agent’s deliberation).

Construction of agents in the face of unexpected failures is
difficult. As a reaction to difficulties with classical planning
in dynamic environments, the paradigm of agent-oriented
programming (AOP) based on reactive planning (e.g., [Bor-
dini et al., 2006]) became one of the state-of-the-art tech-
niques for construction of intelligent agents. Even though
the motivation behind AOP is rooted in the idea that more∗Supported by the Czech Ministry of Education, Youth and
Sports, grant MSM6840770038 and the Grant Agency of the Czech
Technical University in Prague, grant SGS10/189/OHK3/2T/13.
†Supported by the FNR (National Research Fund) Luxembourg

under project S-GAMES – C08/IS/03.

reactive style of deliberation is more appropriate for agent’s
interaction with a dynamic environment, the precise charac-
teristics of the relationship have not yet been deeply studied.

In this paper we precisely investigate the relationships
between capabilities and control mechanisms of an agent, its
design objectives, the goal, and characteristics of the envir-
onment it is embodied in. As a conceptual framework sup-
porting the discourse, in Section 2 we introduce a series of
agent behaviour performance measures. We start from re-
lating the set of agent’s generic capabilities to an environ-
ment in which actions can fail. Subsequently, we introduce
agent programs constructed from the basic actions and based
on their performance in the environment, we provide a tax-
onomy of their mutual matchings. Finally, in Section 3 we
consider the relationship between a program, its design ob-
jective, a goal it is aimed to fulfil, and characteristics of the
environment. We study the relationships of the triad using
Probabilistic Dynamic CTL* logic (pDCTL*), a novel tem-
poral logic framework facilitating reasoning about agent sys-
tem specifications and actual programs aimed at realising it.
We observe, that imperfect performance of agent programs
situated in dynamic environments w.r.t. their goals can in fact
be caused by two distinct phenomena. While the environ-
ment by its dynamics can make the program fail, it can be
also the program itself, which is not implemented perfectly
w.r.t. the goal. We conclude the discourse of the paper by dis-
cussion in Section 4 of how program construction influences
its performance w.r.t. the design specification, and finally, in
Section 5 we formally relate the two causes of program im-
perfection. In particular, we introduce an impact metric, a
measure indicating how much the imperfections in program
implementation influence the chances for reaching the goal.

2 Agents, actions, environments
We focus on actions of an agent acting in an environment.
The agent’s actions can change the state of the environment,
possibly in a probabilistic way. Other agents, if present in the
system, are not relevant at this stage and are assumed to be
appropriately modelled as a part of the environment. Due to
this characteristics, we will model environments as Markov
decision processes (MDP’s) [Bellman, 1957]. By this, we
implicitly assume that agents can always exactly recognise
the current state of the environment. We leave analysis of the
more general case (partial observability) for future work.

2.1 Basic notions
Definition 2.1 (Environment). Environment E is modelled
as a Markov decision process (S, E , P) where S is a set of
states the environment can be in, E is a set of events which
can happen in E and P : S×E ×S → [0, 1] is a probabilistic
transition function with transitions labelled by events. That
is, P (s, e, s′) defines the probability that, upon occurrence of
the event e in the state s, the next state of the environment will
be s′. We will adopt the convention that if e is not enabled in
s then P (s, e, s′) = 0 for all s′ ∈ S.

Furthermore, we assume that some propositional language
L is available to characterise properties of states of E. L
comes with a standard satisfaction relation |=, with E, s |= φ
meaning that the formula φ ∈ L holds in the state s of the
environment E.

An agent consists of a template that specifies how it can
act (i.e., provides a set of basic operations available to the
agent) and a program that prescribes how it will act (e.g., by
defining its deliberation mechanism). An agent must match
its environment in the sense that its actions must be events in
the environment. Moreover, each action is annotated with a
specification of its envisaged effects. In an ideal environment,
the annotation should hold after the action has been executed.

Definition 2.2 (Agent template). Let E = (S, E , P) be
an environment. An agent template (Act ,Ann) situated in
E specifies the set of basic actions (capabilities) Act ⊆ E
that the agent can execute in E, together with the function
Ann : Act → L that annotates the agent’s actions by formal
descriptions of their expected effects.

Definition 2.3 (Macro actions and traces). A macro action
is a possibly infinite sequence of actions ρ = a1, . . . , an, . . .
with ai ∈ Act .

An execution trace λ of macro action ρ rooted in a state
s0 ∈ S of environment E is a (finite or infinite) sequence of
labelled transitions s0

a1→ s1
a2→ · · · an→ sn

an+1→ · · · such that
si ∈ S and P (si−1, ai, si) > 0 for all i. By λ[i] = si, we
denote the ith state on λ, and λ[i..j] = si

ai+1→ . . .
aj→ sj

denotes the “cutout” from λ from position i to j. The ith
prefix and suffix of λ are defined by λ[0..i] and λ[i..∞], re-
spectively. |λ| denotes the number of transitions in λ. In
the case λ is infinite, we write |λ| = ∞. For a given
trace λ = s0

a1→ s1
a2→ · · · an→ sn

an+1→ · · · , we denote
ρ(λ) = a1, a2, . . . , an, . . . the macro action, execution of
which resulted in λ.

Definition 2.4 (Situated agent). An agent is represented by
a tupleA = (Act ,Ann, τ) where (Act ,Ann) is an agent tem-
plate situated in an environmentE, and τ is an agent program
over Act . The set P of well-formed programs is defined as
follows:

• a is a program for every a ∈ Act ;

• If τ, τ ′ are programs, then also τ ∪ τ ′, τ ; τ ′ and τ∗ are
programs denoting non-deterministic choice, sequential
composition and unbounded iteration respectively;

• Additionally, fixed iteration τn is defined recursively as
τ1 = τ and τn+1 = τn; τ .

The semantics of an agent program is defined in terms of the
set of traces TE(τ, s0) it induces in the environmentE, rooted
in some initial state s0. Formally, TE(τ, s0) is defined induct-
ively

• TE(〈a〉, s0) = {s0
a→ s1 | P (s0, a, s1) > 0},

• TE(τ ; τ ′, s0) = {λ | there exists i : λ[0..i] ∈ TE(τ, s0)
and λ[i..∞] ∈ TE(τ ′, λ[i])},

• TE(τ ∪ τ ′, s0) = TE(τ, s0) ∪ TE(τ ′, s0),
• TE(τ∗, s0) = {λ | λ[0] = s0, k0 = 0 and there exist
k1, k2, . . . s.t., λ[ki, ki+1] ∈ TE(τ, λ[ki])}.

Additionally, TE(τ) denotes the set of all traces induced by
τ in states of E, i.e., TE(τ) =

⋃
s∈S TE(τ, s). Moreover,

given a set of sequencesX , we will use Fin(X) to denote the
set of finite prefixes of the sequences from X . For example,
Fin(TE(τ)) is the set of finite histories that can occur during
execution of τ in E.

Note, that the generic form of agent programs we define
in Definition 2.4, serves only for exposition of ideas in this
paper. In fact, any succinct way of encoding of agent’s beha-
viour in terms of enabled execution traces (intended system
evolutions) would serve equally well. This broader under-
standing of agent behaviours naturally includes various plan-
ning mechanisms, as well as most state-of-the-art AOP lan-
guages.

Hereafter, unless specifically stated otherwise, we will as-
sume an agent A = (Act ,Ann, τ) situated in an environment
E = (S, E , P), s.t. the annotation function Ann is expressed
in some propositional language L with a satisfaction relation
|= that interprets formulae of L in states of E.

2.2 Probabilistic execution of actions and
programs

Annotations play dual role in the specification of agents’ cap-
abilities. On one hand, they put forward the envisaged out-
come of an action in an ideal environment. On the other, they
allow to define the notion of successful execution of the ac-
tion (and, dually, the notion of execution failure).
Definition 2.5 (Success and failure of actions). A transition
s

a→ s′ is a successful execution of a if s′ |= Ann(a), other-
wise it is a failure.

Given a state s ∈ S, the probability of successful execution
of action a ∈ Act in s is defined as

Pok (a, s) =
∑

s′|=Ann(a)

P (s, a, s′)

Straightforwardly, the probability of failure of a in s is
Pfail(a, s) = 1− Pok (a, s).

A macro action is successful if and only if all its compon-
ents succeed along the trace.
Definition 2.6 (Success of macro actions). Let ρ =
a1, . . . , an be a macro action. The probability of successful
execution is extended to macro actions as follows:

Pok (〈a1, . . . , an〉, s0) =
∑

λ=so
a1→···an→sn

si|=Ann(ai)

n∏
i=1

P (si−1, ai, si).

Note that Pok is a probability distribution determining ex-
ecution success of sequences of actions in states of E.

Now we are ready to introduce probability-based measures
of successful execution of actions and programs in an envir-
onment.
Definition 2.7 (Execution success measures: actions). Let
ρ be a (macro) action. The minimal certainty of successful
execution of ρ in the environment E is defined as:

P−ok (ρ,E) = min
s∈S

Pok (ρ, s).

Similarly, we define the maximal certainty of successful
execution of ρ in E:

P+
ok (ρ,E) = max

s∈S
Pok (ρ, s).

Definition 2.8 (Execution success measures: programs).
Let τ ∈ P be an agent program over the actions of some
agent A. The minimal certainty of successful execution of τ
w.r.t. a state s in the environmentE is the minimal probability
of execution success among the individual traces induced by
the program rooted in s:

P−ok (τ, s) = min
λ∈TE(τ,s)

P−ok (ρ(λ), s)

Moreover, the minimal certainty of execution success for
program τ in the environment E is defined as

P−ok (τ, E) = min
s∈S

P−ok (τ, s).

The notions of maximal certainty of successful execution
P+
ok (τ, s) and P+

ok (τ, E) for an agent program are defined
analogically.

2.3 Classification of environments w.r.t agent
templates

In the first approach, we gauge how well the agent’s basic
capabilities (e.g., effectors of a robot) match the environment
in which the agent is to be situated.
Definition 2.9 (Taxonomy of environments w.r.t. success of
actions). Given an agent template (Act ,Ann) in an envir-
onment E, we can distinguish several relations between the
two, depending on how well the template specification meets
the dynamics of the environment. Formally, we say that the
matching between (Act ,Ann) and E is:

ideal iff P−ok (a,E) = 1 for all a ∈ Act ,

consistent iff P−ok (a,E) > 0 for all a ∈ Act ,

strictly consistent iff it is consistent and P+
ok (a,E) < 1 for

all a ∈ Act ,
inconsistent otherwise.

We argue, that the most interesting cases of relationship
between an agent and an environment is when from the
agent’s perspective the environment is strictly consistent, or
at least contains a significant strictly consistent fragment. For
a mobile robot, a controlled indoor environment is usually
ideal. Examples of (strictly) consistent agent-environment
systems include e.g., outdoor robots operating in rain, snow,

on icy, or sandy surfaces, or on gravel roads. From a robot’s
perspective, an environment is also strictly consistent when
it features only imprecise sensors and/or unreliable effectors.
For the agent’s controller, such situation is indistinguishable
from the case when the failures are truly exogenous.

The view promoted in the Definition 2.9 is rather pessim-
istic. Especially for agent templates based on large libraries
of actions, even if one action does not match the environment,
the whole agent template is seen as a mismatch. In a more
complex agent program, designer might want to take into ac-
count also some failures of actions e.g., by encoding various
contingencies, or refining the conditions under which actions
and plans can be executed. The following refinement of the
environment vs. agent classification takes the agent program
as a basis for the matching.

Definition 2.10 (Environments vs. agents). Given an agent
A = (Act ,Ann, τ) in an environment E, we say that the
matching between A and E is:

ideal iff P−ok (τ, E) = 1,

consistent iff P−ok (τ, E) > 0,

strictly consistent iff it is consistent and P+
ok (τ, E) < 1,

inconsistent otherwise.

Still, this notion of matching between agents and environ-
ments is not perfect. In particular, if τ includes unbounded it-
eration (an infinite deliberation cycle in an event-driven agent
is a good example) then it is easy to see that all the envir-
onments are either ideal or inconsistent w.r.t. such an agent.
This is because the notion of success relates executions to
the annotations of all the actions that are going to be per-
formed, regardless of their relevance to a larger context. In
many scenarios, such context is provided by an objective, a
goal, that the agent is supposed to pursue. We will formalise
the concept and discuss the consequences in the next section.

3 Reasoning about temporal goals
In the previous section, we showed how “perfectness” of an
environment can be classified with respect to the agent’s re-
pository of actions and/or its main algorithm. However, the
classification is quite rough in the sense that it depends on all
the actions behaving as expected (according to the provided
annotations). An alternative is to consider a particular object-
ive, and to measure how the environment reacts in the context
of the objective.

Objectives that refer to execution patterns (like achieve-
ment of a property sometime in the future, or maintenance
of a safety condition in all future states) can be conveniently
specified in linear time logic. LTL [Pnueli, 1977] enables
reasoning about properties of execution traces by means of
temporal operators g(in the next moment) and U (strong un-
til). To facilitate reasoning about finite sequences of actions
and compositions thereof, we will use a version of LTL that
includes the “chop” operator C [Rosner and Pnueli, 1986].

3.1 Temporal goals: LTL
Formally, the version of LTL used in this paper is defined as
follows.

Definition 3.1 (LTL). The syntax of LTL is given by the fol-
lowing grammar:

φ ::= p | ¬φ | φ ∧ φ | gφ | φUφ | φCφ.
Other Boolean operators (disjunction ∨, material implica-

tion →, etc.) are defined in the usual way. The semantics
is defined through the clauses below (where E is an environ-
ment and λ is an execution trace of some macro action of an
agent A situated in E):
E, λ |= p iff E, λ[0] |= p,
E, λ |= ¬φ iff E, λ 6|= φ,
E, λ |= φ ∧ φ′ iff E, λ |= φ and E, λ |= φ′,
E, λ |= gφ iff E, λ[1..∞] |= φ,
E, λ |= φUφ′ iff there exists i ≥ 0, such that E, λ[i..∞] |=

φ′, and E, λ[j..∞] |= φ for every 0 ≤ j < i,
E, λ |= φCφ′ iff there exists i ≥ 0, such that E, λ[0..i] |= φ

and E, λ[i..∞] |= φ′.
Additional operators ♦ (sometime in the future) and � (al-

ways in the future) are defined as ♦φ ≡ >Uφ and �φ ≡
¬♦¬φ. Note that achievement goals can be naturally spe-
cified with formulae of type ♦φ, whereas a goal to maintain
φ corresponds to the formula �φ. Finally, we say that LTL
formula φ is valid in E w.r.t. a program τ (written E, τ |= φ)
iff for all s ∈ S, φ holds on every trace λ ∈ T (τ, s) .

For an agent situated in an environment, we can easily
define how likely the agent is to bring about a given goal.
Definition 3.2 (Probabilistic fulfilment of goals). Given an
agent program τ situated in an environment E = (S, E , P)
and an LTL formula φ, we first define the probability space
(TE(τ, s),Fin(TE(τ, s)), pr) induced by the next-state trans-
ition probabilities P . In this space, elementary outcomes are
runs from TE(τ, s), events are sets of runs that share the same
finite prefix (i.e., ones from Fin(TE(τ, s))), and the probab-
ility measure pr : Fin(TE(τ, s))→ [0, 1] is defined as

pr(s0
a1→ · · · an→ sn) = P (s0, a1, s1) · . . . · P (sn−1, an, sn).

Then, the probability of fulfilling goal φ from state s on is
defined through the following Lebesgue integral:

Pok (τ, s, φ) = lim
k→∞

∑
λ∈Tkφ (τ,s)

pr(λ), where

T kφ (τ, s) = {λ ∈ Fin(TE(τ, s)) | E, λ |= φ and |λ| = k}.

The interested reader is referred to [Kemeny et al., 1966]
for details of the construction and a proof of correctness.

Analogously to Section 2.2, the basic measure of fulfilment
for a whole environment is based on the worst case analysis.
Definition 3.3 (Fulfilment of goals: P−ok , P

+
ok). Let τ ∈ P

be an agent program over the actions of some agent A. The
minimal certainty of fulfilment of goal φ by τ in an environ-
ment E is the probability of fulfilment from the “worst” state
in E:

P−ok (τ, φ) = min
s∈S

Pok (τ, s, φ).

The maximal certainty of fulfilment is defined analogously.

3.2 Reasoning about goals in pDCTL*
In order to reason about the expected fulfilment of goals,
we propose a refinement of the branching-time logic
CTL* [Emerson, 1990] with explicit quantification over pro-
gram executions and probability thresholds. In the extension,
[τ]ζφ reads as “agent program τ fulfils goal φ with probab-
ility at least ζ”. The logic is called “probabilistic Dynamic
CTL*” (pDCTL*). It is a straightforward extension of “dy-
namic CTL*” from [Novák and Jamroga, 2009] (which in
turn can be seen as a variant of Harel’s process logic [Harel
and Kozen, 1982]) along the lines of probabilistic temporal
logics [Aziz et al., 1995; Hansson and Jonsson, 1994].
Definition 3.4 (pDCTL*). The syntax of pDCTL* is defined
as an extension of LTL by the following grammar:

θ ::= p | ¬θ | θ ∧ θ | [τ]ζφ
φ ::= θ | ¬φ | φ ∧ φ | gφ | φUφ | φCφ

where p is a propositional formula from L, and τ is an agent
program.

The semantics of pDCTL* extends that of LTL by the
clauses below:
E, λ |= θ iff E, λ[0] |= θ,
E, s |= p iff s |= p,
E, s |= ¬θ iff E, s 6|= θ,
E, s |= θ1 ∧ θ2 iff E, s |= θ1 and E, s |= θ2,
E, s |= [τ]ζφ iff the probability of fulfilling φ by τ from s on

is at least ζ, i.e., Pok (τ, s, φ) ≥ ζ.
pDCTL* formula θ is valid inE (writtenE |= θ) iffE, s |= θ
for every state s of E. Finally, ψ is a semantic consequence
of φ (written: φ ⇒ ψ) iff for every environment E, E |= φ
implies E |= ψ.

The following proposition is straightforward and shows
a strong relationship between formulae of pDCTL* and the
measures of goal fulfilment introduced in Section 3.1.
Proposition 3.5. E |= [τ]ζφ iff P−ok (τ, φ) ≥ ζ.

Additionally, we define [τ]φ as [τ]1φ. It is easy to see
that the semantics of [τ]φ in pDCTL* and DCTL* coin-
cide. Moreover, pDCTL* validity corresponds to LTL valid-
ity w.r.t. a program (the proofs are straightforward).
Proposition 3.6. For every environment E, program τ
and DCTL* formula φ, we have E, s |=DCTL* [τ]φ iff
E, s |=pDCTL* [τ]φ.
Proposition 3.7. For every environment E, program τ and
LTL formula φ, we have: E, λ |=LTL φ for every λ ∈ TE(τ)
iff E |=pDCTL* [τ]φ.

We note that the operator dual to [τ]ζ has almost the same
meaning, except of being underpinned by strict, instead of
weak inequality.
Proposition 3.8. Let 〈τ〉ζφ ≡ ¬[τ]1−ζ¬φ.
Then E, s |= 〈τ〉ζφ iff Pok (τ, s, φ) > ζ.

Proof. E, s |= 〈τ〉ζφ iff E, s 6|= [τ]1−ζ¬φ iff
Pok (τ, s,¬φ) < 1 − ζ iff 1 − Pok (τ, s, φ) < 1 − ζ iff
Pok (τ, s, φ) > ζ.

Thus, pDCTL* allows also to refer to the exact probability
of fulfilment by [τ]=ζφ ≡ [τ]ζφ ∧ ¬〈τ〉ζφ.

3.3 Classifying environments w.r.t. goals
Assuming a particular temporal goal allows for a finer-
grained taxonomy of environments than we proposed in Sub-
section 2.3.
Definition 3.9 (Taxonomy of environments w.r.t. goal ful-
filment). Given an agent program τ and a goal φ, we can
distinguish between several types of environments according
to the probability of fulfilment of φ by τ . We say that E is:
ideal iff P−ok (τ, φ) = 1 (alternative formulation: E |= [τ]φ),

manageable iff P−ok (τ, φ) ≥ ζ for some ζ > 0 (equival-
ently: E |= [τ]ζφ for some ζ > 0). Note that, for fi-
nite environments, it is equivalent to P−ok (τ, φ) > 0 (and
E |= 〈τ〉0φ);

strictly manageable iff the environment is manageable and
P+
ok (τ, φ) < 1,

hopeless P−ok (τ, φ) = 0 (or equivalently: E |= [τ]=0φ).
Consider the mobile robot from Subsection 2.3. Aiming

to move along a pre-defined path, an outdoor environment
is manageable for the robot, but a crowded place could even
turn hopeless due to continuously moving people interfering
with the robot. In effect, such a classification can give a good
formal hint on limitations of usability of the robot.

For agent programs inducing only finite traces, we can dis-
tinguish environments w.r.t. the degree of iteration needed for
the program to achieve a goal.
Definition 3.10 (Taxonomy of environments cont.). Given
a program τ such that |λ| <∞ for every λ ∈ TE(τ), we can
distinguish between several additional types of environments
according to the certainty of fulfilment of φ by τ in E:
iteratively manageable w.r.t. some ζ > 0 iff there exists

k ∈ N s.t. E |= [τk]ζφ,
completely hopeless iff E |= [τ∗]=0φ.
Additionally, we define the following limit cases:
• E |= [τ∗]φ, but there is no k ∈ N : E |= [τk]φ,
• there exists ζ > 0, s.t. E |= [τ∗]ζφ, but there is no
k ∈ N : E |= [τk]ζφ, and

• for all k ∈ N, there exists ζ > 0, s.t. [τk]ζφ, however
[τ∗]=0φ.

This line of thought can be elaborated upon further by con-
sidering special types of programs. E.g., τ = a1 ∪ · · · ∪ an,
where Act = {a1, . . . , an}. Now TE(τ) include all the pos-
sible plans which can be constructed out of the actions in Act .

4 Program composition vs. goals
In this section, we turn our interest to the the following ques-
tion: how program composition affects the certainty level of
goal fulfilment by agents in dynamic environments? In partic-
ular, we are interested in how likelihood of fulfilling general
maintenance and achievement goals (involving the � and ♦
modalities respectively) relates to the way how the corres-
ponding programs are constructed. Throughout this section,
we implicitly assume that environments are strictly manage-
able w.r.t. programs and goals in consideration.

The following theorem articulates the intuition, that con-
catenation of programs leads to a strict decrease of the cer-
tainty of goal fulfilment by the joined program.

Theorem 4.1. If τ1, τ2 are programs, s.t., E |= [τ1]=ζφ1 ∧
E |= [τ2]ζφ2 and at the same time E |= ¬[τ1]ζφ2, then E |=
¬[τ1; τ2]ζφ1Cφ2.

Proof sketch. The idea behind the proof is that due to the
independence of τ1 and τ2 w.r.t. φ2 (E |= ¬[τ1]ζφ2), to
establish Pok ((τ1; τ2), so, φ1Cφ2), we must consider traces
induced by τ1 prolonged by traces induced by τ2. By
approximating the sum of probabilities for sets of such
prolongations rooted in terminal states of traces of τ1
by ξ = P+

ok (τ2, E, φ2), we arrive to the inequality
Pok ((τ1; τ2), so, φ1Cφ2) ≤ ξ · ζ. Since the environment is
only strictly manageable w.r.t. τ2 and φ2, by necessity ξ < 1,
hence ξ · ζ < ζ, i.e., the minimal certainty of execution suc-
cess of τ1; τ2 w.r.t. the goal φ1Cφ2 and the environment E is
strictly less than the original ζ.

In Theorem 4.1 we used the C operator for joining the goal
formulae. Concatenation and further iteration of the same
program leads to the following property of maintenance goals
involving � modality on ever longer traces.

Corollary 4.2. Given τ is a program, s.t., E |= [τ]=ζφ, then
E |= ¬[τk]ζ�φ.

Let’s assume that the behaviour of an agent conforms to
some performance quality measure when continuously oper-
ating at a particular level of probability of fulfilment of its
goal by the agent program in a particular environment. We
can formulate the following informal consequence of The-
orem 4.1 and Corollary 4.2: in dynamic environments, beha-
viour specifications involving temporal maintenance goals of
the form �φ are undesirable. The main reason behind this
conjecture is, that to ensure satisfaction of strict maintenance
goals, such as �p, necessarily programs have to be joined by
sequential composition, what leads to decrease of the level
of certainty of execution success w.r.t. the envisaged goal. In
fact, by subsequently prolonging the induced traces by se-
quential program composition, the level of certainty eventu-
ally eventually drops below the minimal required perform-
ance threshold.

Let’s turn our attention to achievement goals, i.e., those
which involve the ♦ modality.

Theorem 4.3. Given τ is a program, s.t., E |= [τ]ζφ, then
E |= [τk]ζ♦φ for every k > 0.

Proof sketch. The idea behind the proof is that by inductively
iterating τk, the traces which satisfy ♦φ are i) those on which
the goal was already satisfied for lower k’s and prolonged by
any trace regardless whether it satisfies ♦φ, or not; plus ii) all
the traces which did not satisfy ♦φ for lower k’s prolonged
by the traces induced by τ which satisfy ♦φ. In result, for
every k, the number of traces which satisfy the formula ♦φ is
not decreasing, nor is the ratio to those which do not satisfy
the goal.

In fact, we hypothesise that if E |= [τ]=ζφ, then we should
have E |= [τk]=ξ♦φ, where ξ > ζ and k > 0.

5 Program perfection vs. fulfilment
Agent programs in dynamic environments can perform in an
imperfect manner w.r.t. their goals due to two reasons. Firstly,
it can be the environment by its dynamics which can cause the
program not to fulfil its goal. Secondly, it can be the imple-
mentation of the program itself, which results in execution
traces along which the goal is not fulfilled. In the following,
we look at the probability of goal fulfilment had the imple-
mentation of the agent’s capabilities been ideal. This allows
us to measure the impact of the imperfection in the imple-
mentation on the fulfilment likelihood.

Definition 5.1 (Idealised environment). The idealised vari-
ant of an environment E = (S, E , P) with respect to an agent
template (Act ,Ann) is defined as the environment EAnn =
(S, E , PAnn) where the new probabilistic transition relation
PAnn is as follows:

PAnn(s, a, s′) =

{
0 iff s′ 6|= Ann(a)

P (s,a,s′)∑
s′′|=Ann(a) P (s,a,s′′) otherwise

That is, we take the transition relation P in E and remove
all the transitions that do not conform with Ann (normalising
P afterwards). Note that this scheme can be seen as a prob-
abilistic version of model update similar to the one in Public
Announcement Logic [Baltag, 2002].

The idealised probability of fulfilling a goal φ is the prob-
ability of fulfilment of φ under the assumption that the agent’s
actions will behave as specified.

Definition 5.2 (Idealised fulfilment of φ). PAnn
ok (τ, s, φ)

(resp. PAnn
ok (τ, φ)) in an environment E is simply defined

as Pok (τ, s, φ) (resp. P−ok (τ, φ)) in the idealised environment
EAnn.

Now we can measure the impact of imperfect implement-
ation as the difference in certainty of fulfilment between the
ideal and the real case:

Definition 5.3 (Impact metric Imp). Given environment
E = (S, E , P), agent A = (Act ,Ann, τ), and goal φ, we
define

Imp(φ) = PAnn
ok (τ, φ)− P−ok (τ, φ).

Imp(φ) indicates how much the imperfections in imple-
mentation of the agent’s capabilities influence the chances for
reaching the goal φ. In this context, it can be interpreted in
two ways:

• Imp indicates how inaccurate the agent implementation
is with respect to the given goal. In contrast, P−ok (τ, φ)
shows only the general inaccuracy of the agent imple-
mentation.

• Assuming that the designer has some control over the
deployment of the agent in the environment, Imp can
be understood as a measure of how much they should
improve the implementation of the agent’s capabilities
in order to get the objective met.

6 Final remarks
The discussion in the last two sections only scratched the sur-
face of what the introduced conceptual framework allows to
rigorously investigate. One of interesting examples is the no-
tion of a planning horizon. I.e., given a set of agent’s cap-
abilities, a goal and a specific level of certainty with which
it should be satisfied, we can ask: what is the maximal plan
length beyond which the probability of fulfilling the goal de-
creases below the required quality threshold? An estimate of
the planning horizon could have an impact on parametrisa-
tion of planning algorithms used in dynamic environments,
or can lead to constraints on lengths of plans in a library of
a reactive planner. Similarly, deeper insights into how pro-
gram composition influences the impact metric of the res-
ulting programs have a potential to influence formulation of
useful code patterns for agent programming, such as those
introduced in [Novák and Jamroga, 2009]. We leave these
interesting issues for further work along this line of research.

References
[Aziz et al., 1995] A. Aziz, V. Singhal, R. K. Brayton, and

A. L. Sangiovanni-Vincentelli. It usually works: The tem-
poral logic of stochastic systems. In Proceedings of CAV,
volume 939 of LNCS, pages 155–165, 1995.

[Baltag, 2002] A. Baltag. A logic for suspicious players.
Bulletin of Economic Research, 54(1):1–46, 2002.

[Bellman, 1957] R. Bellman. A Markovian decision process.
Journal of Mathematics and Mechanics, 6:679–684, 1957.

[Bordini et al., 2006] Rafael H. Bordini, Lars Braubach, Me-
hdi Dastani, Amal El Fallah Seghrouchni, Jorge J. Gomez-
Sanz, João Leite, Gregory O’Hare, Alexander Pokahr,
and Alessandro Ricci. A survey of programming lan-
guages and platforms for multi-agent systems. Informat-
ica, 30:33–44, 2006.

[Emerson, 1990] E. A. Emerson. Temporal and modal lo-
gic. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume B, pages 995–1072. Elsevier
Science Publishers, 1990.

[Hansson and Jonsson, 1994] H. Hansson and B. Jonsson. A
logic for reasoning about time and reliability. Formal As-
pects of Computing, 6(5):512–535, 1994.

[Harel and Kozen, 1982] D. Harel and D. Kozen. Process lo-
gic: Expressiveness, decidability, completeness. Journal
of Computer and System Sciences, 25(2):144–170, 1982.

[Kemeny et al., 1966] J. G. Kemeny, L. J. Snell, and A. W.
Knapp. Denumerable Markov Chains. Van Nostrand,
1966.

[Novák and Jamroga, 2009] P. Novák and W. Jamroga. Code
patterns for agent oriented programming. In Proceedings
of AAMAS’09, pages 105–112, 2009.

[Pnueli, 1977] A. Pnueli. The temporal logic of programs.
In Proceedings of FOCS, pages 46–57, 1977.

[Rosner and Pnueli, 1986] R. Rosner and A. Pnueli. A
choppy logic. In Proceedings of LICS, pages 306–313,
1986.

