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Abstract. Nash equilibrium is based on the idea that a strategy profile is stable
if no player can benefit from a unilateral deviation. We observe that some lo-
cally rational deviations in a strategic form game may not beprofitable anymore
if one takes into account the possibility of further deviations by the other play-
ers. As a solution, we propose the concept of farsighted pre-equilibrium, which
takes into account only deviations that do not lead to a decrease of the player’s
outcome even if some other deviations follow. While Nash equilibria are taken to
include plays that are certainly rational, our pre-equilibrium is supposed to rule
out plays that arecertainly irrational. We prove that positional strategies are suf-
ficient to define the concept, study its computational complexity, and show that
pre-equilibria correspond to subgame-perfect Nash equilibria in a meta-game ob-
tained by using the original payoff matrix as arena and the deviations as moves.

1 Introduction

The optimal strategy for an agent depends on his prediction of the other agents’ be-
havior. For example, in security analysis, some predictions of the users’ (or even the
intruders’) behavior can be useful when designing a particular solution. However, if the
users (resp. intruders) do not behave in the predicted way, this solution might give rise
to new vulnerabilities. To obtain a ‘more secure’ solution concept, we therefore weaken
the assumptions made by agents when playing Nash equilibrium, and introduce a new
solution concept based on these weaker assumptions.

Nash equilibrium (NE) defines a play to be stable when, if the players knew what
the others are going to do, they would not deviate from their choices unilaterally. Con-
versely, if some player can beneficially deviate from strategy profiles, then the profile
is assumed to describe irrational play. In this paper, we point out that some of these
deviations may not be profitable anymore if one takes into account the possibility of
further deviations from the opponents. As a solution, we propose the concept offar-
sighted pre-equilibrium (FPE)which takes into account only those deviations of player
i that do not lead to decrease ofi’s outcome, even if some other deviations follow. In
consequence, we argue that the notion of irrational play canbe meaningfully relaxed.

Rational vs. Irrational Play We call the new conceptpre-equilibriumbecause we do
not imply that all FPEs are necessarily stable. Our point is rather that all strategy profiles
outside FPEs are certainlyunstable: a rational player should deviate even if he considers
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it possible that other players react to his change of strategy. Formally, FPE is strictly
weaker than NE, with the following intuition: Nash equilibria correspond to play which
is certainly rational, strategy profiles that arenot pre-equilibria are certainly irrational,
and the profiles in between can be rational or not, depending on the circumstances.

Farsighted Reasoning about StrategiesThe term “farsighted” refers to the type of
reasoning about strategic choice that players are supposedto conduct according to FPE.
Unlike Nash equilibrium, which assumes “myopic” reasoning(only the immediate con-
sequences of a deviation are taken into account), farsighted pre-equilibrium looks at
further consequences of assuming a particular choice. Thistype of strategic reasoning
has been already studied for coalitional games in [2,3,4]. There have been also some
attempts at farsighted stability in noncooperative games [5,6], but, as we argue in Sec-
tion 5, they were based on intuitions from coalitional game theory, incompatible with
the setting of noncooperative games.

Assumptions about Opponents’ PlayOur assumptions about the way in which players
react to another player’s deviation are minimal: we only assume that the reactions are
locally rational. Our view of local rationality is standardfor noncooperative games, i.e.,
it concerns anindividualchange of play that increases the payoff of the deviating player.
In particular, we do not take into account scenarios where a coalition of players makes
a sequence of changes that leads to a beneficial state, but leads through nodes where the
payoff of some members of the coalition decreases. As we see it, such a scenario can
be rational only when the coalition can commit to executing the sequence, which is not
possible in noncooperative games.

Farsighted Play vs. Repeated GamesAn interpretation of Nash equilibrium is that a
player forms an expectation about the other players’ behavior based on his past experi-
ence of playing the game [1]. Then he chooses his best response strategy to maximize
his immediate gain in the next instance of the game, assumingthat this move will not
influence future plays of the game. In other words, it is assumed that the other players
do not best respond to a deviation from the expectation when the game is repeated. In
contrast, in repeated games [7], it is assumed that once a player decides to deviate, the
deviation will be observed by the opponents, and they will adapt to it accordingly. Then,
the player would observe and adapt to their change of behavior, and so on.

In farsighted pre-equilibria, neither of these assumptions are made, as we are look-
ing for a weaknotion of rationality. This means that a farsighted deviation must suc-
ceed against agents that best respond farsightedly (as in the standard setting of repeated
games), agents that best respond myopically, and against ones that satisfy only minimal
rationality constraints (deviations must be profitable).

Structure of the PaperWe begin by defining the concept of farsighted pre-equilibrium
formally and discussing some examples in Section 2. We investigate how the concept
behaves on the benchmark case of then-Player Prisoner’s Dilemma, provide an alter-
native characterization of FPE, and propose a polynomial algorithm for verifying pre-
equilibria. In Section 4, we show that FPEs can be seen as subgame-perfect solutions of
specific extensive form games (“deviation games”). Finally, we compare our proposal
to existing work (Section 5), and conclude in Section 6.



2 Farsighted Pre-Equilibria

We begin by presenting the central notions of our proposal.

2.1 Deviation Strategies and Farsighted Stability

Let G = (N,Σ1, . . . , Σn, out1, . . . , outn) be a strategic game withN = {1, . . . , n}
being a set of players,Σi a set of strategies of playeri, andouti : Σ → R the payoff
function for playeriwhereΣ = Σ1×· · ·×Σn is the set of strategy profiles. We use the
following notation:si is playeri’s part of strategy profiles, s−i is the part ofN \ {i},

ands
i
−→ s′ denotes playeri’s deviation from strategy profiles to s′ (with the obvious

constraint thats′−i = s−i). Sometimes, we write(out1(s), . . . , outn(s)) instead ofs.

Definition 1. Deviation s
i
−→ s′ is locally rational iff outi(s′) > outi(s). Function

Fi : Σ
+ → Σ is adeviation strategy for playeri iff for every finite sequence of profiles

s1, . . . , sk we have thatsk
i
−→ Fi(s

1, . . . , sk) is locally rational orFi(s
1, . . . , sk) =

sk. A sequence of locally rational deviationss1 −→ . . . −→ sk is Fi-compatibleiff

sn
i
−→ sn+1 impliesFi(s

n) = sn+1 for every1 ≤ n < k.

Locally rational deviations turnG into a graph in which the transition relation cor-
responds to Nash dominance inG. Deviation strategies specify how a player can (ratio-
nally) react to rational deviations done by other players.

Definition 2 (Farsighted pre-equilibrium). Strategy profiles is a farsighted pre-equi-
librium (FPE) if and only if there is no playeri with a deviation strategyFi such that:
1) outi(Fi(s)) > outi(s), and 2) for every finiteFi-compatible sequence of locally
rational deviationsFi(s) = s1 −→ . . . −→ sk we haveouti(Fi(s

1, . . . , sk)) ≥ outi(s).

This means that a strategy profiles is potentiallyunstable if there is a deviation
strategy of some playeri such that the first deviation is strictly advantageous, and how-
ever the other players react to his deviations so far,i can always recover to a profile
where he is not worse off than he was originally ins.

Example 1.Consider the Prisoner’s Dilemma game:

C D
C (7,7) (0, 8)
D (8, 0) (1,1)

The farsighted pre-equilibria are printed in bold font. Thelocally rational deviations

are (7, 7)
1
−→ (8, 0), (0, 8)

1
−→ (1, 1), (7, 7)

2
−→ (0, 8) and (8, 0)

2
−→ (1, 1). This im-

plies that(1, 1) is an FPE because there is no playeri with a deviation strategyFi

such thatouti(Fi(1, 1)) > outi(1, 1). On the other hand,(8, 0) is not an FPE be-
causeF2(. . . , (8, 0)) = (1, 1) is a valid deviation strategy. By symmetry,(0, 8) is
neither an FPE. Finally we show thats = (7, 7) is an FPE. All deviation strategies
F1 for player 1 without1(F1(7, 7)) > out1(7, 7) specifyF1(7, 7) = (8, 0). Still,
player 1 cannot recover from theF1-compatible sequence of locally rational deviations

(7, 7)
1
−→ (8, 0)

2
−→ (1, 1) which makes his payoff drop down to 1. The same holds for

deviation strategies of player 2 by symmetry. Therefore,(7, 7) is an FPE.



Theorem 1. Every Nash equilibrium is an FPE.

Proof. Assumes is an NE. Then there exists no deviations
i
−→ s′ to a strategy profile

s′ such thatouti(s′) > outi(s). Therefore, there exists no playeri with a deviation
strategyFi such thatouti(Fi(s)) > outi(s), sos is an FPE.

Corollary 1. FPE is strictly weaker than Nash equilibrium.

2.2 n-Person Prisoner’s Dilemma

As we saw in Example 1, the Prisoner’s Dilemma has two farsighted pre-equilibria:
the NE profile where everybody defects, and the “intuitive” solution where everybody
cooperates. This extends to then-player Prisoner’s Dilemma as defined in [5].

Definition 3 (n-Player Prisoner’s Dilemma). Let N = {1, 2, . . . , n} be the set of
players. Each player has two strategies:C (cooperate) andD (defect). The payoff
function of playeri is defined asouti(s1, . . . , sn) = fi(si, h) whereh is the num-
ber of players other thani who playC in s, and fi is a function with the following
properties:

1. fi(D,h) > fi(C, h) for all h = 0, 1, . . . , n− 1;
2. fi(C, n − 1) > fi(D, 0);
3. fi(C, h) andfi(D,h) are increasing inh.

The first requirement says that defecting is always better than cooperating, assuming
the other players do not change their strategy. The second requirement specifies that the
situation where everyone cooperates is better than the situation where everyone defects.
The third requirement says that the payoff increases for a player when a larger number
of the other players cooperate.

Theorem 2. If G is a n-Player Prisoner’s Dilemma, the strategy profiles(C, . . . , C)
and(D, . . . , D) are FPEs inG.

We leave out the proof because of lack of space.

Example 2.We look at an instance of the 3-player Prisoner’s Dilemma. Player 1 selects
rows, player 2 columns and player 3 matrices.

C C D
C (3,4,4) (1, 5, 2)
D (5,2,2) (4, 3, 0)

D C D
C (1, 2, 5) (0, 3, 3)
D (4, 0, 3) (2,1,1)

The unique Nash equilibrium is(D,D,D), the strategy profile where everyone defects,
so this strategy profile is also an FPE. Furthermore, also thestrategy profile where
everyone cooperates, i.e.,(C,C,C), is an FPE. Finally,(D,C,C) is an FPE, showing
that also other FPEs can exist.



We can interpret these results as follows. A population where every player defects
might be stable: being the first to cooperate is not necessarily advantageous, as the other
players might not follow. A population where all players cooperate might also be stable
if the players consider long-term consequences of damagingthe opponents’ payoffs:
if one player starts defecting, the other players might follow. Finally, a strategy profile
might also be stable if there are only a couple of defecting agents in the population, and
the cooperating players all receive payoffs above some minimal “threshold of fairness”
(which is usually the player’s payoff in the Nash equilibrium (D, . . . , D)). Hence the
asymmetry:(D,C,C) is farsighted stable, but(C,C,D) and (C,D,C) are not, be-
cause they provide player1 with an “unfair” payoff, and player1 is better off heading
for the NE. Another motivation for(D,C,C) to be stable, is that player 1 does not want
to cooperate in the hope that players 2 and 3 do not change their strategy (as is assumed
by NE), while players 2 and 3 do not want to defect out of fear for follow-ups of the
other players (as is assumed in repeated games).

3 Characterizing and Computing Farsighted Pre-Equilibria

In general, deviation strategies determine the next strategy profile based on the full his-
tory of all preceding deviations. In this section, we show that it suffices for the definition
of FPE to consider onlypositionaldeviation strategies, i.e. strategies that determine the
next deviation only based on the current strategy profile, independently of what previ-
ously happened.

Definition 4. A positional deviation strategyfor player i is a strategyFi such that
Fi(s

1, . . . , sk) = Fi(t
1, . . . , tk) wheneversk = tk. We will sometimes writeFi(s

k)
instead ofFi(s

1, . . . , sk) for such strategies. Apositional FPEis an FPE restricted to
positional deviation strategies.

Theorem 3. A strategy profiles ∈ Σ is an FPE iff it is a positional FPE.

Proof. It suffices to prove that there is no playeri with a deviation strategy such that
conditions 1) and 2) from Definition 2 hold iff there is no player i with a positional
deviation strategy such that these conditions hold. Every positional deviation strat-
egy is a deviation strategy, so the ‘only if’ direction is trivial. We prove the ‘if’ di-
rection by contraposition. Assume there exists a playeri with a deviation strategy
such that conditions 1) and 2) from Definition 2 hold ins. Now we define a posi-
tional deviation strategyF ′ as follows. For alls′ ∈ Σ for which there exist finite
Fi-compatible sequences of locally rational deviationsFi(s) = s1 −→ . . . −→ sk = s′,
let Fi(s) = t1 −→ . . . −→ tk = s′ be a shortestFi-compatible sequence of locally ra-
tional deviations. Then we setF ′(sk) = F (s0, s1, . . . , sk). For all others′ ∈ Σ, we
setF ′

i (s
′) = s′. The functionF ′ is clearly positional and a deviation strategy. Because

F ′
i (s) is defined based on the shortest sequence which iss (the only sequence of length

1),Fi(s) = F ′
i (s), and since we assumed that condition 1) holds forFi, it also holds for

F ′
i . Finally we need to check that condition 2) holds. AssumeF ′

i (s) = s1 −→ . . . −→ sk

is a finiteF ′
i -compatible sequence of locally rational deviations. Thenby definition

of F ′
i , there exists also a finiteFi-compatible sequence of locally rational deviations



Fi(s) = t1 −→ . . . −→ tk−1 −→ sk with Fi(t
1, . . . , tk−1, sk) = F ′

i (s
k). By assumption,

outi(Fi(t
1, . . . , tk−1, sk)) ≥ outi(s), so alsoouti(F ′

i (s
k)) ≥ outi(s).

The following theorem provides an alternative characterization of farsighted play.

Theorem 4. L is the set of FPEs iff for alls ∈ L, all i ∈ N and all positional deviation
strategiesFi with Fi(s) 6= s, there exists a finiteFi-compatible sequence of locally

rational deviationss
i
−→ s1 −→ . . . −→ sk such thatouti(Fi(s

1, . . . , sk)) < outi(s).

Proof. By Definition 2, a strategy profiles is an FPE iff there is no playeri with a
deviation strategyFi such that: 1)outi(Fi(s)) > outi(s), and 2) for every finiteFi-
compatible sequence of locally rational deviationsFi(s) = s1 −→ . . . −→ sk we have
outi(Fi(s

1, . . . , sk)) ≥ outi(s). BecauseFi is a deviation strategy, condition 1) is
equivalent toFi(s) 6= s by Definition 1. By using this equivalence and moving the
negation inwards, we find that a strategy profiles is an FPE iff for every playeri and all
deviation strategiesFi such thatFi(s) 6= s, there exists a finiteFi-compatible sequence
of locally rational deviationss = s1 −→ . . . −→ sk such thatouti(Fi(s

1, . . . , sk)) <
outi(s). By Theorem 3, the theorem follows.

Now we will present a procedure that checks if the strategy profile s is a farsighted
pre-equilibrium in gameG. Proceduredev(G, i, s) returnsyesif playeri has a success-
ful deviation strategy froms in G, andnootherwise:

1. forall j ∈ N do compute≺j∈ Σ ×Σ st. t ≺j t
′ iff ∃t

j
−→ t′. outj(t) < outj(t

′);
2. let≺−i :=

⋃
j 6=i ≺j and let≪∗ be the transitive closure of≺−i;

3. letGood := {t | outi(t) ≥ outi(s)}; /profiles at least as good ass/
4. repeat
Good′ := Good;
forall t ∈ Good do

if ∃t′ ≫∗ t. (t′ /∈ Good ∧ ∀t′
i
−→ t′′. t′′ /∈ Good) then removet fromGood′;

until Good′ = Good;
5. if ∃t ∈ Good. s ≺i t then returnyeselsereturnno.

The following is straightforward.

Theorem 5. Strategy profiles is an FPE inG iff dev(G, i, s) = no for all i ∈ N .

Note that the procedure implements a standard greatest fixpoint for a monotonic trans-
former of state sets. As a consequence, we get the following.

Theorem 6. Checking ifs is a farsighted pre-equilibrium inG can be done in polyno-
mial time with respect to the number of players and strategy profiles inG.

4 Deviations as a Game

Deviations can be seen as moves in a “meta-game” calleddeviation gamethat uses
the original payoff matrix as arena. Transitions in the arena (i.e., players’ moves in
the meta-game) are given by domination relations of the respective players. In such a



setting,deviation strategiescan be seen as strategies in the deviation game. A successful
deviation strategy for playeri is one that getsi a higher payoff immediately (like in the
case of NE) but also guarantees thati’s payoff will not drop below the original level
after possible counteractions of the opponents. A node in the original game is an FPE
exactly when no player has a winning strategy in the deviation game.

4.1 Deviation Games

A deviation gameD is constructed from a strategic gameG and a strategy profiles inG,
and consists of two phases. In the first phase, each player caneither start deviating from
s or pass the turn to the next player. If no player deviates, allplayers get the “neutral”
payoff 0 inD. If a playeri deviates, the game proceeds to the second phase in whichi
tries to ensure that his deviation is successful, while all other players try to prevent it.
This phase is strictly competitive: ifi succeeds, he gets the payoff of1 and all the other
players get−1; if i fails, he gets−1 and the other players get1 each..

Formally, given a strategic gameG and a strategy profiles, the deviation game is
an extensive form gameT (G, s) = (N,H, P, out′1, . . . , out

′
n), whereN is the set of

players as inG,H is the set of histories in the deviation game,P is a function assigning
a player to every non-terminal history, and for everyi ∈ N , out′i is a function assigning
the payoff for playeri to every terminal history. A history inH is a sequence of nodes
of the form(i, t, j), with the intended meaning thati ∈ N ∪ {−} is the player whose
deviation strategy is currently tested (where “−” means that no deviation has been made
yet), t ∈ Σ is the current strategy profile under consideration, andj ∈ N ∪ {⊥} is the
player currently going to play (i.e.,P (. . . , (i, t, j)) = j), where⊥ indicates that the
game has terminated. The initial state is(−, s, 1). For every playerj, we defineout′j as
follows:

– out′j(. . . , (−, t,⊥)) = 0;
– if outi(t) ≥ outi(s), then out′j(. . . , (i, t,⊥)) = 1 when j = i, otherwise
out′j(. . . , (i, t,⊥)) = −1;

– if outi(t) < outi(s), then out′j(. . . , (i, t,⊥)) = −1 when j = i, otherwise
out′j(. . . , (i, t,⊥)) = 1.

Now we recursively define the set of historiesH , wherei is defined asmin(N\{i}).

1. (−, s, 1) ∈ H .
2. If h = . . . , (−, s, i) ∈ H andi+ 1 ∈ N thenh, (−, s, i+ 1) ∈ H .
3. If h = . . . , (−, s, i) ∈ H andi = max(N), thenh, (−, s,⊥) ∈ H .

4. If h = . . . , (−, s, i) ∈ H , s
i
−→ s′ is a locally rational deviation andi′ ∈ N\{i}

thenh, (i, s′, i) ∈ H .

5. If h = . . . , (i, s′, i) ∈ H ands′
i
−→ s′′ is a locally rational deviation, then

h, (i, s′′, i) ∈ H .
6. If h = . . . , (i, s′, i) ∈ H , thenh, (i, s′,⊥) ∈ H .

7. If h = . . . , (i, s′, i′) ∈ H , i′ ∈ N\{i} and eithers′
i
−→ s′′ is a locally rational

deviation ors′ = s′′, thenh, (i, s′′, i′) ∈ H whenever bothh, (i, s′′, i′) 6∈ H and
i′ = i impliesh, (−, s′′, i′) 6∈ H .



(−, (7, 7), 1)

(1, (8, 0), 2)

(1, (1, 1), 1)

(1, (1, 1),⊥)

(−1,1)

(1, (1, 1), 2)

(1, (1, 1), 1)

(1, (1, 1),⊥)

(−1,1)

(1, (8, 0), 1)

(1, (8, 0),⊥)

(1,−1)

(−, (7, 7), 2)

(2, (0, 8), 1)

(2, (1, 1), 2)

(2, (1, 1),⊥)

(1,−1)

(2, (1, 1), 1)

(2, (1, 1), 2)

(2, (1, 1),⊥)

(1,−1)

(2, (0, 8), 2)

(2, (0, 8),⊥)

(−1,1)

(−, (7, 7),⊥)

(0,0)

Fig. 1: Deviation game for strategy profile(7, 7) in Prisoner’s Dilemma (Example 1)

Statement 1 specifies the initial history. Statements 2–4 say that if nobody has de-
viated so far, playeri can embark on a deviation strategy or refrain from deviatingand
pass the token further. If no player deviates, the game ends.If player i initiates devia-
tions, the strategy profile changes, and the token goes to thefirst opponent. Statement 5
says that the latter also applies during execution of the deviation strategy. Furthermore,
6 indicates that playeri can stop the game if it is his turn (note that this can only be the
case if the opponents do not want to deviate anymore). Finally, 7 states that an opponent
player can make a locally rational deviation or do nothing ifit is his turn, and pass the
turn to another playeri′ (as long as the player has not had the turn in the new strategy
profile before, to guarantee finite trees).

Now we can see anopponent strategyagainst playeri as a set of strategies for
playersN\{i} such that every deviation is locally rational, and in every strategy profile,
not more than one player deviates. Formally, an opponent strategy against playeri is

a functionF−i : N\{i} × Σ∗ → Σ such that for every playerj ∈ N\{i}, s
j
−→

F−i(j, (. . . , s)) is a locally rational deviation orF−i(j, (. . . , s)) = s and such that
F−i(j, (. . . , s)) 6= s for somej impliesF−i(j

′, (. . . , s)) = s for all j′ 6= j.

Example 3.Figure 1 depicts the deviation gameT (G, s) whereG is the Prisoner’s
Dilemma ands is (7, 7). The moves selected by the minimax algorithm are printed as
thick lines. The minimax algorithm selects outcome(0, 0), so no player has a strategy
yielding more than 0, which indicates that(7, 7) is an FPE.

4.2 Correspondence to FPE

Now we will prove that a strategy profile in the original game is an FPE exactly when no
player has a strategy that guarantees the payoff of1 in the deviation game. We say that
a sequence of strategy profiless1, . . . , sk is (Fi,F−i)-compatibleif for all k′ < k either
F−i(j, (s

1, . . . , sk
′

)) = sk
′+1 for somej ∈ N\{i} or bothFi(s

1, . . . , sk
′

) = sk
′+1

andF−i(j, (s
1, . . . , sk

′

)) = sk
′

for all j ∈ N\{i}. Furthermore, a sequence of strategy
profiless1, . . . , sk is loop-freeif sn 6= sn

′

for 1 ≤ n ≤ n′ ≤ k.



LetG be a strategic form game,s be a strategy profile andi ∈ N be a player. Now
we say that a deviation strategyFi is successful against an opponent strategyF−i, if
1) outi(Fi(s)) > outi(s), and 2) for every loop-free(Fi, F−i)-compatible sequence
of strategy profilesFi(s) = s1, . . . , sk, it holds thatouti(Fi(s

1, . . . , sk)) ≥ outi(s).
The following lemma shows that it is indeed sufficient to lookat loop-free(Fi, F−i)-
compatible sequences.

Lemma 1. Strategy profiles is an FPE in gameG iff there does not exist a playeri
with a deviation strategyFi that is successful against all opponent strategiesF−i.

Proof. First we prove the ‘only if’ direction by contraposition. Assume there exists a
playeri with a deviation strategyFi that is successful against all opponent strategies
F−i, i.e., 1)outi(Fi(s)) > outi(s), and 2) for every loop-free(Fi, F−i)-compatible
sequenceFi(s) = s1, . . . , sk,it holds thatouti(Fi(s

1, . . . , sk)) ≥ outi(s).
Let Fi(s) = s1 −→ . . . −→ sk be a loop-freeFi-compatible sequence of locally

rational deviations. We define opponent strategyF−i such thatF−i(j, s
k) = sk+1

wheneversk
j
−→ sk+1 for j ∈ N\{i}. Thens1, . . . , sk is (Fi, F−i)-compatible, so

we haveouti(Fi(s
1, . . . , sk)) ≥ outi(s) by assumption. Therefore, for every loop-free

Fi-compatible sequence of locally rational deviationsFi(s) = s1 −→ . . . −→ sk, it holds
thatouti(Fi(s

1, . . . , sk)) ≥ outi(s) (∗).
Now let Fi(s) = s1 −→ . . . −→ sk be a finiteFi-compatible sequence of lo-

cally rational deviations. Then we can construct a loop-free sequencet1, . . . , tk with
t1 = s1 and tk = sk. Now outi(Fi(t

1, . . . , tk)) = outi(Fi(s
k)) becauseFi is po-

sitional, andouti(Fi(t
1, . . . , T k)) ≥ outi(s) by (∗). Therefore, for every finiteFi-

compatible sequence of locally rational deviationsFi(s) = s1 −→ . . . −→ sk, it holds
that outi(Fi(s

1, . . . , sk)) ≥ outi(s). This shows that there exists a playeri with a
deviation strategyFi such that 1)outi(Fi(s)) > outi(s), and 2) for every finiteFi-
compatible sequence of locally rational deviationsFi(s) = s1 −→ . . . −→ sk, it holds
thatouti(Fi(s

1, . . . , sk)) ≥ outi(s), i.e.,s is not an FPE.
The ‘if’ direction follows from the fact that every loop-free sequence of strategy

profiles is finite, and the fact that when a sequence of strategy profiles is (Fi,F−i)-
compatible, it is also anFi-compatible sequence of deviations.

We proceed by defining a bijectionφ between strategyFi in G and strategyΦi in
T (G, s) as follows.

If Fi(s) = s thenΦi(−, s, i) = (−, s, i+ 1) wherei + 1 ∈ N ;
If Fi(s) = s thenΦi(−, s, i) = (−, s,⊥) wherei = max(N);
If Fi(s) = s′ thenΦi(−, s, i) = (i, s′, i) wheres 6= s′;
If Fi(s

′) = s′ thenΦi(i, s
′, i) = (i, s′,⊥); wheres 6= s′;

If Fi(s
′) = s′′ thenΦi(i, s

′, i) = (i, s′′, i) wheres 6= s′ 6= s′′.
We call a set of strategiesΦ−i for playersN\{i} non-initially-deviatingwhenever

Φi′(−, s, i
′) = (−, s, i′′) wherei 6= i′. Then anopponent strategyΦ−i in the deviation

game is a set of non-initially-deviating strategiesΦj for playersj ∈ N\{i} such that in
every strategy profile, not more than one player inN\{i} deviates and the other players
always give the turn to the deviating player, i.e.,Φj(i, s

′, j) = (i, s′′, j′) with s′ 6= s′′

for somej, j′ ∈ N\{i} impliesΦi(i, s
′, j′′) = (i, s′, j) for all j′′ 6= j. Now we define



a bijectionψ between an opponent strategyF−i in T and an opponent strategyΦ−i in
T (G, s). Letψ(F−i) = Φ−i, whereΦ−i is defined as follows:

– If F−i(i
′, s′) 6= s′ for somei′ ∈ N\{i}, thenΦi′ (i, s

′, i′) = (i, s′′, i′) and
Φi′′ (i, s

′, i′′) = (i, s′, i′) for i′′ 6= i′.
– If F−i(i

′, s′) = s′ for all i′ ∈ N\{i}, thenΦi′ (i, s
′′, i′) = (i, s′′, i).

It can easily be checked thatφ andψ are indeed bijections.
Let outi(Φi, Φ−i) be the outcome of the game for playeri when playeri plays

strategyΦi and playersN\{i} play strategyΦ−i. When outi(Φi, Φ−i) = ui and
outj(Φi, Φ−i) = u−i for j ∈ N\{i}, we sometimes writeouti,−i(Φi, Φ−i) = (ui, u−i).

Lemma 2. If i ∈ N is a player with a deviation strategyFi andF−i is an opponent
strategy, thenFi is successful againstF−i in gameG and strategy profiles if and only
if outi,−i(φ(Fi), ψ(F−i)) = (1,−1) in T (G, s).

Proof. By construction ofψ andφ, we have runs = s1
i1

−→ s2
i2

−→ . . .
ik−1

−−−→ sk in G iff
(−, s, 1), . . . , (−, s, i), (i, s′, i), . . . , (i, sk, i), (i, Fi(s

k), i), (i, Fi(s
k), i), (i, Fi(s

k),⊥)
is a run inT (G, s). Therefore a run ends insk inGwith outi(Fi(s

1, . . . , sk)) ≥ outi(s)
iff a run ends in(i, Fi(s

k),⊥) in T (G, s) with outi(Fi(s
k)) ≥ outi(s). Therefore,Fi

is successful againstF−i if and only if outi(φ(Fi), ψ(F−i)) = 1.

Theorem 7. Strategy profiles ∈ Σ is an FPE in gameG if and only if all subgame-
perfect Nash equilibria inT (G, s) yield (0, . . . , 0).

Proof. To prove the ‘only if’ direction, assume strategy profiles is an FPE in game
G. By Lemma 1, there does not exist a playeri with a deviation strategyFi that
is successful against all opponent strategiesF−i. Becausef andg are bijections, by
Lemma 2 there does not exist a playeri with a strategyΦi such that for every op-
ponent strategyΦ−i it holds thatouti,−i(Φi, Φ−i) = (1,−1). This means that for
every playeri with a strategyΦi, there exists an opponent strategyΦ−i such that
outi,−i(Φi, Φ−i) 6= (1,−1) (∗). Now we prove that every subgame-perfect Nash equi-
librium (SPNE)(Φ1, . . . , Φn) in the subgame starting at(−, s, i) yields (0, . . . , 0) by
backwards induction oni ∈ (1, . . . , n,⊥). The base case, wherei = ⊥, follows from
the definition ofout. Now assume that the claim holds fori + 1 (wheren + 1 = ⊥).
To show thatΦi(−, s, i) = (i, s, i+ 1), we assume thatΦi(−, s, i) = (i, s′, i) for some
s′ and derive a contradiction. LetΦ−i be an opponent strategy. Nowouti,−i(Φi, Φ−i)
is either(1,−1) or (−1, 1). If outi,−i(Φi, Φ−i) = (1,−1), by (∗), there exists an op-
ponent strategyΦ′

−i such thatouti,−i(Φi, Φ
′
−i) 6= (1,−1) and thusouti,−i(Φi, Φ

′
−i) =

(−1, 1). Now out−i(Φi, Φ
′
−i) > out−i(Φi, Φ−i), which contradicts the assumption

that (Φi, Φ−i) is an NE. If outi,−i(Φi, Φ−i) = (−1, 1), let Φ′
i be a strategy such

that Φ′
i(−, s, n) = (−, s, n + 1) andΦ′

i is a SPNE strategy in the subgame start-
ing at (−, s, n + 1). Thenouti(Φ′

i, Φ
′
−i) ≥ 0 for all opponent strategiesΦ′

−i by i.h..
This implies thatouti(Φ′

i, Φ−i) > outi(Φi, Φ−i), contradicting the assumption that
(Φi, Φ−i) is an NE. This implies that the assumptionΦi(−, s, i) = (i, s′, i) is false, so
Φi(−, s, i) = (i, s, i + 1) or Φi(−, s, i) = (i, s,⊥). By i.h., all SPNE in the subgame
starting at(−, s, i+1) yield (0, . . . , 0). Therefore, all SPNE inT (G, s) yield (0, . . . , 0).



We prove the ‘if’ direction by contraposition. Assume strategy profiles ∈ Σ is not
an FPE in gameG. By Lemma 1, there exists a playeri with a strategyFi that is suc-
cessful against all opponent strategiesF−i. Becauseφ andψ are bijections, by Lemma 2
there exists a playeri with a strategyΦi such that for every opponent strategyΦ−i it
holds thatouti,−i(Φi, Φ−i) = (1,−1) (†). Now let(Φ′

i, Φ
′
−i) be a strategy profile such

that outi(Φ′
i, Φ

′
−i) = 0. Then there exists a strategyΦi such thatouti(Φi, Φ

′
−i) = 1

by (†), soouti(Φi, Φ
′
−i) > outi(Φ

′
i, Φ

′
−i), and therefore(Φ′

i, Φ
′
−i) is not an SPNE. An

extensive game always has an SPNE and(Φ′
i, Φ

′
−i) is the only strategy profile yield-

ing (0, . . . , 0), so there exist SPNEs not yielding(0, . . . , 0), which implies that not all
SPNEs yield(0, . . . , 0).

Note that Theorem 7 provides an alternative way of checking pre-equilibria:s is
an FPE inG iff the minimaxing algorithm [1] onT (G, s) returns0 for every player.
However, the deviation game forG can be exponentially larger thanG itself, so the
algorithm proposed in Section 3 is more efficient.

5 Comparing Farsighted Solution Concepts

There has been a number of solution concepts with similar agenda to FPE. In this sec-
tion, we discuss how they compare to our new proposal.

5.1 Related Work

The discussion on myopic versus farsighted play dates back to the von Neumann-
Morgenstern stable set(VNM) in coalitional games [2], and Harsanyi’sindirect dom-
inanceof coalition structures, leading to thestrictly stable set(SSS) [3]. More recent
proposals are thenoncooperative farsighted stable set(NFSS) [6] and thelargest con-
sistent set(LCS) [4]. Other similar solution concepts include [8,5,9]. Also Halpern and
Rong’scooperative equilibrium[10] can be seen as a farsighted solution concept.

Definitions In order to define the concepts, we introduce three differentdominance
relations between strategy profiles.Direct dominanceof x over y means that player
i can increase his own payoff by deviating from strategy profile x to strategy profile
y. Indirect dominanceof x over y says that a coalition of players can deviate from
strategy profilex to strategy profiley, possibly via a number of intermediate strategy
profiles, such that every coalition member’s final payoff is better than his payoff before
his move. Finally,indirect dominance in Harsanyi’s senseis indirect dominance with
the additional requirement that each individual deviationis locally rational. Formally:

– We say thaty directly dominatesx through playeri (x ≺i y) if there is a locally

rational deviationx
i
−→ y. We also writex ≺ y if x ≺i y for somei ∈ N .

– We say thaty indirectly dominatesx (x ≪ y) if there exists a sequence of (not

necessarily locally rational) deviationsx = x0
i1−→ x1 . . .

ip
−→ xp = y such that

outir (x
r−1) < outir (y) for all r = 1, 2, . . . , p.

– We say thatx indirectly dominatesy in Harsanyi’s sense (x ≪H y) if there exists

a sequence of locally rational deviationsx = x0
i1−→ x1 . . .

ip
−→ xp = y such that

outir (x
r−1) < outir (y) for all r = 1, 2, . . . , p.



It can easily be seen thatx ≺ y impliesx≪H y, andx≪H y impliesx≪ y.

Example 4.In the Prisoner’s Dilemma (Example 1), we have(7, 7) ≺1 (8, 0), (0, 8) ≺1

(1, 1), (7, 7) ≺2 (0, 8) and (8, 0) ≺2 (1, 1) In addition,(7, 7) indirectly dominates
(1, 1) in Harsanyi’s sense, i.e.,(1, 1) ≪H (7, 7).

With these definitions, we can introduce four main farsighted solution concepts.

– A subsetK of Σ is a von Neumann-Morgenstern stable set(VNM) if it satisfies
the following two conditions: (a) for allx, y ∈ K, neitherx ≺ y nory ≺ x; (b) for
all x ∈ Σ\K, there existsx ∈ K such thatx ≺ y [2]. In fact, a VNM corresponds
to stable extensions in the argumentation theory(Σ,≺′), where≺′ is the converse
of ≺, in Dung’s argumentation framework [11].

– If we replace in VNM the direct dominance relation≺ by the indirect dominance
relation≪, we obtain thenoncooperative farsighted stable set(NFSS) [6].

– Furthermore, a subsetS of Σ is astrictly stable set(SSS) if it is a VNM such that
for all x, y ∈ S, neitherx≪H y, nory ≪H x [3].

– Finally, a subsetL ofΣ is consistent in Chwe’s sense if (x ∈ L iff for all deviations

x
i
−→ y there existsz ∈ L such that [y = z or y ≪ z] andouti(x) ≥ outi(z)). Now

the largest consistent set(LCS) is the union of all the consistent sets inΣ [4].

Another solution concept that has been recently proposed isperfect cooperative
equilibrium(PCE) [10]. Like FPE, PCE aims at explaining situations where cooperation
is observed in practice. A player’s payoff in a PCE is at leastas high as in any Nash
equilibrium. However, a PCE does not always exist. Every game has a Pareto optimal
maximum PCE (M-PCE), as defined below. We only give the definition for 2-player
games; the definition forn-player games can be found in [10].

Given a gameG, a strategysi for playeri inG is a best response to a strategys−i for
the players inN\{i} if Ui(si, s−i)) = sups′

i
∈Σi

Ui(s
′
i, s−i). LetBRi(s−i) be the set of

best responses tos−i. Given a 2-player game, letBUi denote the best payoff that player
i can obtain if the other playerj best responds, that isBUi = supsi∈Σi,sj∈BR(si) Ui(s).
A strategy profile is a PCE if fori ∈ {1, 2} we haveUi(s) ≥ BUi. A strategy profile is
anα-PCE ifUi(s) ≥ α+ BUi for all i ∈ N . The strategy profiles is an M-PCE ifs is
anα-PCE and for allα′ > α, there is noα′-PCE.

Example 5.In the Prisoner’s Dilemma (Example 1), there is one VNM ({(1, 1), (7, 7)})
and one NFSS ({(7, 7)}). There is no SSS, and the LCS is{(1, 1), (7, 7)}.

Regarding PCE, we haveBR1(C) = {D}, BR1(D) = {D}, BR2(C) = {D},
andBR2(D) = {D}. This implies thatBU1 = D andBU2 = D. Thus, the set of PCE
outcomes is{(7, 7), (1, 1)}, and(7, 7) is the unique M-PCE (withα = 6).

5.2 FPE vs. Other Farsighted Concepts

The main idea of all introduced farsighted solution concepts (except PCE) is very simi-
lar. One can test whether a given strategy profile is stable bychecking whether a player
or group of players can deviate from the strategy profile in a profitable way, given a
possible follow-up from the other players. However, there are also many differences



L R

T (3, 1) (0,2)
B (1, 1) (0, 0)

(a)

F L R

T (3, 1, 2) (0,2,2)
B (0, 0, 0) (0, 0, 0)

S L R

T (3, 1, 1) (0, 0, 0)
B (1, 1,1) (0, 0, 0)

(b)

L R

T (3, 1) (2,2)
B (1, 1) (0, 0)

(c)

L C R

T (0,0) (3, 1) (0,2)
B (1,3) (2,4) (0, 0)

(d)

Fig. 2: Example games (FPEs are printed in bold)

between the concepts. In this section, we will compare FPE with other farsighted solu-
tion concepts in various aspects.

Scope of FarsightednessIn farsighted reasoning about strategies, players consider fur-
ther consequences of their deviations, as opposed to reasoning in myopic solution con-
cepts like Nash equilibrium. Consider for example the game in Fig. 2a. Strategy profile

(1, 1) is not an NE because(1, 1)
1
−→ (3, 1) is locally rational. However, this deviation

is not necessarilyglobally rational, as it might trigger player 2 to follow up with the

deviation(3, 1)
2
−→ (0, 2). Unlike Nash equilibrium, which only considers (0,2) stable,

the set{(1, 1), (0, 2)} is considered stable in all presented farsighted solution concepts
(VNM, NFSS, SSS, LCS and FPE).

The degree of farsightedness is different across the concepts. The least farsighted
concept is VNM. Here, players only look at whether they can recover from asingle

deviation of the opponents, as the game in Fig. 2b illustrates. The deviation(1, 1, 1)
1
−→

(3, 1, 1) is locally rational but might intuitively be wrong because deviations(3, 1, 1)
3
−→

(3, 1, 2)
2
−→ (0, 2, 2) can spoil its effect. However, since VNM does not take sequences

of deviations into account, it does not consider(1, 1, 1) stable ({(0, 2, 2), (3, 1, 1)} be-
ing the only stable set). The concepts NFSS, LCS and FPE have a“more farsighted”
view, and consider sequences of follow-up deviations. In consequence, they all deem
the profile(1, 1, 1) stable.

Furthermore, the solution concepts evaluate follow-ups differently. In VNM and
NFSS, a follow-up deviation from the opponents is always considered undesirable, even
if it gives a higher payoff for the first deviating player. In LCS and FPE, beneficial
follow-ups only strengthen the success of the original deviation. Consider the game in

Fig. 2c. After(1, 1)
1
−→ (3, 1), the follow-up(3, 1)

2
−→ (2, 2) still leaves player1 with a

payoff higher that his initial one. Thus, both LCS and FPE deem (1, 1) unstable, which
matches intuition, while VNM and NFSS consider(1, 1) stable.

Type of Solution ConceptThe concepts also yield objects of different types. LCS
and FPE both return a set of strategy profiles, thus ascribingrationality to individual
profiles. On the other hand, VNM, NFSS and SSS return a set of sets of profiles each,
hence ascribing rationality tosetsof strategy profiles. In the latter case a rational set of
profiles can be understood as a set of collective decisions towhom the grand coalition
of players can consistently stick. Clearly, this makes sense in coalitional games, but is



less suitable for noncooperative games where the players’ control over collective choice
is limited.

Deviation StrategyVNM, SSS and FPE are built on a pessimistic view of the follow-up
to the first deviation, as they make no assumptions about the other players’ rationality. In
particular, it is not assumed that opponents will help to increase the initiator’s outcome,
even if it is also to their advantage. In consequence, these solution concepts assume
that the deviations of the initiator must always be locally rational. In contrast, NFSS
assumes that a player can make deviations which are not locally rational if he hopes
that other players will further increase his outcome. The game in Fig. 2a illustrates this.
The set{(1, 1), (0, 2)} is a VNM, SSS, LCS and collects all FPEs. On the other hand,
{(0, 2)} is the only NFSS. PCE and M-PCE may also require players to deviate in a
locally irrational way because they do not take into accountthe domination relation
explicitly. For example,(0, 2) in Fig. 2d is neither PCE nor M-PCE, although it is a
Nash equilibrium and hence no player has a locally rational deviation in it. All the other
solution concepts considered here deem(0, 2) stable.

Expected Behavior of OpponentsDifferent solution concepts imply different oppo-
nent models. We have already mentioned that the initiator ofdeviations can either
be optimistic or pessimistic about the follow-up by the opponents. Another distinc-
tion is whether the deviator expects the opponents to be farsighted as well, or whether
they might be regular best-response players. Consider the game in Fig. 2d. Intuitively,

a farsighted player1 would not deviate(2, 4)
1
−→ (3, 1), because the follow-up de-

viation (3, 1)
2
−→ (0, 2) can damage his payoff. Therefore player 2 can safely play

(1, 3)
2
−→ (2, 4) if he is sure that player 1 is farsighted. However, if player 1plays

best response, the deviation(1, 3)
2
−→ (2, 4) might harm player 2, because player 1 will

deviate(2, 4)
1
−→ (3, 1) afterwards. Therefore, if player 2 has no information aboutthe

kind of behavior of player 1, it might be better to stick to strategy profile(1, 3). FPE
is the only solution concept that captures this intuition byconsidering(1, 3), (2, 4) and
(0, 2) to be (potentially) stable; the other formalisms (VNM, SSS,NFSS, LCS) all result
in the stable set{(1, 4), (0, 2)}.

Summary The main difference between our farsighted pre-equilibrium and the other
solution concepts discussed in this section lies in the perspective. It can be argued that
the type of rationality defined in [2,3,4,5,6] is predominantly coalitional. This is be-
cause those proposals ascribe stability tosetsof strategy profiles, which does not have a
natural interpretation in the noncooperative setting. Moreover, some of the concepts are
based on coalitional rather than individual deviations. Onthe other hand, the concept
of cooperative equilibrium [10] isnot based on reasoning about possible deviations. In
this sense, FPE is the first truly noncooperative solution concept for farsighted play that
we are aware of.

6 Conclusions

We have proposed a new solution concept that we callfarsighted pre-equilibrium. The
idea is to “broaden” Nash equilibrium in a way that does not discriminate solutions



that look intuitively appealing but are ruled out by NE. Then, Nash equilibrium may be
interpreted as a specification of play which is certainly rational, and strategy profiles
that arenot farsighted pre-equilibria can be considered certainlyirrational. The area in
between is the gray zone where solutions are either rationalor not, depending on the
detailed circumstances.

Our main motivation is predictive: we argue that a solution concept that makes too
strong assumptions open up ways of possible vulnerability if the other agents do not
behave in the predicted way. Nash equilibrium seems too restrictive in many games
(Prisoner’s Dilemma being a prime example). We show that FPEdoes select non-NE
strategy profiles that seem sensible, like the “all cooperate” strategy profile in the stan-
dard as well as the generalized version of Prisoner’s Dilemma. Moreover, we observe
that FPE favors solutions with balanced distributions of payoffs, i.e., ones in which no
player has significantly higher incentive to deviate than the others.

A natural way of interpreting deviations in strategy profiles is to view the deviations
as moves in a “deviation game” played on the metalevel. We show that farsighted pre-
equilibria in the original game correspond to subgame-perfect Nash equilibria in the
meta-game. This is a strong indication that the concept thatwe propose is well rooted
in game-theoretic tradition of reasoning about strategic choice.

Farsighted play has been investigated in multiple settings, starting from von Neu-
mann and Morgenstern almost 70 years ago. Our proposal is (toour knowledge) the first
truly noncooperative solution concept for farsighted play. In particular, it is obtained by
reasoning aboutindividual(meta-)strategies ofindividuallyrational players, rather than
by reconstruction of the notion ofstable setfrom coalitional game theory.
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