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Abstract. Nash equilibrium is based on the idea that a strategy prafittable
if no player can benefit from a unilateral deviation. We obedhat some lo-
cally rational deviations in a strategic form game may noptuitable anymore
if one takes into account the possibility of further devdas by the other play-
ers. As a solution, we propose the concept of farsightecegeatibrium, which
takes into account only deviations that do not lead to a deeref the player’'s
outcome even if some other deviations follow. While Nashldyia are taken to
include plays that are certainly rational, our pre-equilitn is supposed to rule
out plays that areertainly irrational. We prove that positional strategies are suf-
ficient to define the concept, study its computational comifleand show that
pre-equilibria correspond to subgame-perfect Nash duizlin a meta-game ob-
tained by using the original payoff matrix as arena and tivéatiens as moves.

1 Introduction

The optimal strategy for an agent depends on his predictidheoother agents’ be-
havior. For example, in security analysis, some predistiohthe users’ (or even the
intruders’) behavior can be useful when designing a pddi@olution. However, if the
users (resp. intruders) do not behave in the predicted Wesysolution might give rise
to new vulnerabilities. To obtain a ‘more secure’ solutiemcept, we therefore weaken
the assumptions made by agents when playing Nash equitibend introduce a new
solution concept based on these weaker assumptions.

Nash equilibrium (NE) defines a play to be stable when, if taggrs knew what
the others are going to do, they would not deviate from theiaes unilaterally. Con-
versely, if some player can beneficially deviate from stpaterofile s, then the profile
is assumed to describe irrational play. In this paper, watpmit that some of these
deviations may not be profitable anymore if one takes int@aetthe possibility of
further deviations from the opponents. As a solution, weppse the concept dér-
sighted pre-equilibrium (FPBEyhich takes into account only those deviations of player
1 that do not lead to decreaseis outcome, even if some other deviations follow. In
consequence, we argue that the notion of irrational playpbeameaningfully relaxed.

Rational vs. Irrational Play We call the new concemtre-equilibriumbecause we do
not imply that all FPEs are necessarily stable. Our poiratisar that all strategy profiles
outside FPEs are certainlyistable: a rational player should deviate even if he consider
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it possible that other players react to his change of styategrmally, FPE is strictly

weaker than NE, with the following intuition: Nash equiidcorrespond to play which
is certainly rational, strategy profiles that @t pre-equilibria are certainly irrational,
and the profiles in between can be rational or not, dependirigecircumstances.

Farsighted Reasoning about Strategie3he term “farsighted” refers to the type of
reasoning about strategic choice that players are supposedduct according to FPE.
Unlike Nash equilibrium, which assumes “myopic” reason(iogly the immediate con-
sequences of a deviation are taken into account), fargigtre-equilibrium looks at
further consequences of assuming a particular choice.typésof strategic reasoning
has been already studied for coalitional games iinl[2,3,A¢r& have been also some
attempts at farsighted stability in noncooperative garB@,[but, as we argue in Sec-
tion[3, they were based on intuitions from coalitional gaimeoty, incompatible with
the setting of noncooperative games.

Assumptions about Opponents’ PlayOur assumptions about the way in which players
react to another player’s deviation are minimal: we onlyass that the reactions are
locally rational. Our view of local rationality is standdia noncooperative games, i.e.,
it concerns aimdividualchange of play that increases the payoff of the deviatinggula

In particular, we do not take into account scenarios whemaditon of players makes

a sequence of changes that leads to a beneficial state, Bsthleraugh nodes where the
payoff of some members of the coalition decreases. As wetssach a scenario can
be rational only when the coalition can commit to executhmtequence, which is not
possible in noncooperative games.

Farsighted Play vs. Repeated GameAn interpretation of Nash equilibrium is that a
player forms an expectation about the other players’ bendased on his past experi-
ence of playing the gamg2l[1]. Then he chooses his best resptrategy to maximize
his immediate gain in the next instance of the game, assuthatghis move will not
influence future plays of the game. In other words, it is aslithat the other players
do not best respond to a deviation from the expectation whemame is repeated. In
contrast, in repeated games [7], it is assumed that onceyarplacides to deviate, the
deviation will be observed by the opponents, and they walado it accordingly. Then,
the player would observe and adapt to their change of behawid so on.

In farsighted pre-equilibria, neither of these assumstiare made, as we are look-
ing for aweaknotion of rationality. This means that a farsighted dewiatnust suc-
ceed against agents that best respond farsightedly (as stahdard setting of repeated
games), agents that best respond myopically, and agaiesthbat satisfy only minimal
rationality constraints (deviations must be profitable).

Structure of the PaperWe begin by defining the concept of farsighted pre-equilitori
formally and discussing some examples in Sedtion 2. We figate how the concept
behaves on the benchmark case ofsthelayer Prisoner’'s Dilemma, provide an alter-
native characterization of FPE, and propose a polynomgarahm for verifying pre-
equilibria. In Sectiohl4, we show that FPEs can be seen assubgerfect solutions of
specific extensive form games (“deviation games”). Finallg compare our proposal
to existing work (Sectiofl5), and conclude in Secfibn 6.



2 Farsighted Pre-Equilibria

We begin by presenting the central notions of our proposal.

2.1 Deviation Strategies and Farsighted Stability

LetG = (N, X4, ..., X,,outy,...,out,) be a strategic game withh = {1,...,n}
being a set of players,; a set of strategies of playérandout; : > — R the payoff
function for player whereX = X; x - - - x X, is the set of strategy profiles. We use the
following notation:s; is playeri's part of strategy profile, s_; is the part ofV \ {i},

ands - s’ denotes playei’s deviation from strategy profile to s’ (with the obvious
constraintthat’” , = s_;). Sometimes, we writéout,(s), .. ., out,(s)) instead ofs.

Definition 1. Deviations -+ ' is locally rationaliff out;(s") > out;(s). Function
F, : ¥* — XY is adeviation strategy for playeriff for every finite sequence of profiles
s',...,s* we have that® % Fi(s',...,s*) is locally rational or Fy(s!, ..., s*) =
s®. A sequence of locally rational deviatiors — ... — s* is F;-compatibleiff
s % st implies F(s™) = s™ T for everyl < n < k.

Locally rational deviations turt into a graph in which the transition relation cor-
responds to Nash dominanceGh Deviation strategies specify how a player can (ratio-
nally) react to rational deviations done by other players.

Definition 2 (Farsighted pre-equilibrium). Strategy profiles is afarsighted pre-equi-
librium (FPE) if and only if there is no playet with a deviation strategy; such that:
1) out;(F;(s)) > out;(s), and 2) for every finiteF;-compatible sequence of locally
rational deviationsF;(s) = s* — ... — s* we haveout;(F;(s,...,s*)) > out;(s).

This means that a strategy profids potentiallyunstable if there is a deviation
strategy of some playérsuch that the first deviation is strictly advantageous, awvad-h
ever the other players react to his deviations soifagn always recover to a profile
where he is not worse off than he was originallyin

Example 1.Consider the Prisoner’s Dilemma game:

C|(7,7) (0,8)
D|(8,0) (1,1)

The farsighted pre-equilibria are printed in bold font. Toeally rational deviations
are (7,7) 5 (8,0), (0,8) 5 (1,1), (7,7) 2 (0,8) and(8,0) = (1,1). This im-
plies that(1, 1) is an FPE because there is no playevith a deviation strategy;
such thatout,;(F;(1,1)) > out;(1,1). On the other handg,0) is not an FPE be-
causeFy(...,(8,0)) = (1,1) is a valid deviation strategy. By symmetrf), 8) is
neither an FPE. Finally we show that= (7,7) is an FPE. All deviation strategies
F, for player 1 without,(F1(7,7)) > outi(7,7) specify F1(7,7) = (8,0). Still,
player 1 cannot recover from thg -compatible sequence of locally rational deviations
(7,7) RN (8,0) 2 (1,1) which makes his payoff drop down to 1. The same holds for
deviation strategies of player 2 by symmetry. Theref¢re?) is an FPE.



Theorem 1. Every Nash equilibrium is an FPE.

Proof. Assumes is an NE. Then there exists no deviatiors s’ to a strategy profile
s’ such thatout;(s") > out;(s). Therefore, there exists no playewith a deviation
strategyF; such thabut;(F;(s)) > out,(s), sos is an FPE.

Corollary 1. FPE is strictly weaker than Nash equilibrium.

2.2 n-Person Prisoner’s Dilemma

As we saw in ExamplE]1, the Prisoner’s Dilemma has two fatsidjipre-equilibria:
the NE profile where everybody defects, and the “intuitivefusion where everybody
cooperates. This extends to theplayer Prisoner’s Dilemma as definedlin [5].

Definition 3 (n-Player Prisoner’'s Dilemma).Let N = {1,2,...,n} be the set of
players. Each player has two strategigS: (cooperate) andD (defect). The payoff
function of player: is defined asut;(s1,...,n) = fi(si, h) whereh is the num-
ber of players other tham who playC in s, and f; is a function with the following
properties:

1. fi(D,h) > f;(C,h)forall h=10,1,...,n—1;
2. fi(C,n—1)> fi(D,0);
3. fi(C,h) and f;(D, h) are increasing inh.

The first requirement says that defecting is always bettn ttooperating, assuming
the other players do not change their strategy. The secouireenent specifies that the
situation where everyone cooperates is better than thegisitlwhere everyone defects.
The third requirement says that the payoff increases foaggplwhen a larger number
of the other players cooperate.

Theorem 2. If G is a n-Player Prisoner’s Dilemma, the strategy profilgs, . . ., C)
and(D,...,D) are FPEsInG.

We leave out the proof because of lack of space.

Example 2.We look at an instance of the 3-player Prisoner’s Dilemmay@i 1 selects
rows, player 2 columns and player 3 matrices.

cl ¢ D Dl C D
C|(3,4,4) (1,5,2) C|(1,2,5) (0,3,3)
D|(5,2,2) (4,3,0) D|(4,0,3) (2,1,1)

The unique Nash equilibrium {9, D, D), the strategy profile where everyone defects,
so this strategy profile is also an FPE. Furthermore, alscstitategy profile where
everyone cooperates, i.¢¢, C, C), is an FPE. Finally(D, C, C) is an FPE, showing
that also other FPEs can exist.



We can interpret these results as follows. A population eleery player defects
might be stable: being the first to cooperate is not necégsalvantageous, as the other
players might not follow. A population where all players pecate might also be stable
if the players consider long-term consequences of damagm@pponents’ payoffs:
if one player starts defecting, the other players mighofellFinally, a strategy profile
might also be stable if there are only a couple of defectirené&g)in the population, and
the cooperating players all receive payoffs above somemaitithreshold of fairness”
(which is usually the player’s payoff in the Nash equilimyD, ..., D)). Hence the
asymmetry:(D, C, C) is farsighted stable, buiC, C, D) and (C, D, C) are not, be-
cause they provide playérwith an “unfair” payoff, and playet is better off heading
for the NE. Another motivation fofD, C, C) to be stable, is that player 1 does not want
to cooperate in the hope that players 2 and 3 do not changestregegy (as is assumed
by NE), while players 2 and 3 do not want to defect out of fearfédlow-ups of the
other players (as is assumed in repeated games).

3 Characterizing and Computing Farsighted Pre-Equilibria

In general, deviation strategies determine the next styqieofile based on the full his-
tory of all preceding deviations. In this section, we shoat fhsuffices for the definition

of FPE to consider onlgositionaldeviation strategies, i.e. strategies that determine the
next deviation only based on the current strategy profildgpendently of what previ-
ously happened.

Definition 4. A positional deviation strategfor player i is a strategyF; such that
Fy(s',...,s") = Fi(t',...,t*) whenevers® = t*. We will sometimes writd; (s*)
instead ofF;(s', ..., s¥) for such strategies. positional FPEs an FPE restricted to
positional deviation strategies.

Theorem 3. A strategy profiles € X is an FPE iff it is a positional FPE.

Proof. It suffices to prove that there is no playiewith a deviation strategy such that
conditions 1) and 2) from Definition] 2 hold iff there is no péay with a positional
deviation strategy such that these conditions hold. Evesitional deviation strat-
egy is a deviation strategy, so the ‘only if’ direction isvial. We prove the ‘if’ di-
rection by contraposition. Assume there exists a playaith a deviation strategy
such that conditions 1) and 2) from Definitibh 2 holdinNow we define a posi-
tional deviation strategy”’ as follows. For alls’ € X for which there exist finite
F;-compatible sequences of locally rational deviatidhg) = s' — ... — sF = &/,

let Fi(s) = t' — ... — t* = s’ be a shortesF;-compatible sequence of locally ra-
tional deviations. Then we sét’'(s*) = (s, st,...,s*). For all others’ € X, we
setF!(s") = s'. The functionF” is clearly positional and a deviation strategy. Because
F/(s) is defined based on the shortest sequence whigktlige only sequence of length
1), Fi(s) = F/(s), and since we assumed that condition 1) holdgoit also holds for
F!. Finally we need to check that condition 2) holds. Assuiies) = s! — ... — s*

is a finite F/-compatible sequence of locally rational deviations. Thgrdefinition

of F/, there exists also a finit&;-compatible sequence of locally rational deviations



Fi(s) =t — ... = th=1 = s with Fi(¢!,... tF71 s*) = F/(s*). By assumption,
out;(Fi(t', ... t*=1 s%)) > out;(s), so alsc)out (F!(s*)) > outl(s)

The following theorem provides an alternative charactdian of farsighted play.

Theorem 4. L is the set of FPEs iff foralk € L, all i € N and all positional deviation
strategiesF; with F;(s) # s, there exists a finité;-compatible sequence of locally

rational deviationss - s! — ... — s* such thabut; (Fi(s', .. ., s*)) < out;(s).

Proof. By Definition[2, a strategy profile is an FPE iff there is no playerwith a
deviation strategy?; such that: 1put;(F;(s)) > out;(s), and 2) for every finiteF;-
compatible sequence of locally rational deviatidngs) = st — ... — s* we have
out;(F;(s',...,s")) > out;(s). BecauseF; is a deviation strategy, condition 1) is
equivalent toF;(s) # s by Definition[1. By using this equivalence and moving the
negation inwards, we find that a strategy pradile an FPE iff for every playerand all
deviation strategies; such thatf;(s) # s, there exists a finité;-compatible sequence
of locally rational deviations = s' — ... — s* such thatout;(F;(s!,...,s")) <
out;(s). By TheoreniB, the theorem follows.

Now we will present a procedure that checks if the strategyilprs is a farsighted
pre-equilibriumin gamé&:. Procedurelev(G, i, s) returnsyesif player: has a success-
ful deviation strategy fromns in G, andno otherwise:

forall j € N docompute<;e X x X st.t <; t'iff 3¢ ENT out;(t) < out;(t');
let<_; := |J.,; <; and let<* be the transmve closure e{_z,
letGood := {t | out (t) > out;(s)}; /profiles at least as good as
repeat
Good' := Good;
forall ¢t € Good do _
if 3" >*t. (¢’ ¢ Good ANVt 5 t". 1" ¢ Good) then removet from Good';
until Good' = Good;
5. if 3t € Good. s <; t then returnyeselsereturnno.

PoOdE

The following is straightforward.
Theorem 5. Strategy profiles is an FPE inG iff dev(G,i,s) = noforalli € N.

Note that the procedure implements a standard greatestirfbfipo a monotonic trans-
former of state sets. As a consequence, we get the following.

Theorem 6. Checking ifs is a farsighted pre-equilibrium id: can be done in polyno-
mial time with respect to the number of players and strategfilps inG.

4 Deviations as a Game

Deviations can be seen as moves in a “meta-game” caéshtion gamehat uses
the original payoff matrix as arena. Transitions in the arére., players’ moves in
the meta-game) are given by domination relations of thee@spe players. In such a



setting deviation strategiesan be seen as strategies in the deviation game. A successful
deviation strategy for playeris one that getsa higher payoff immediately (like in the
case of NE) but also guarantees thiatpayoff will not drop below the original level
after possible counteractions of the opponents. A nodedarotiginal game is an FPE
exactly when no player has a winning strategy in the deviagame.

4.1 Deviation Games

A deviation gameD is constructed from a strategic gadend a strategy profilein G,

and consists of two phases. In the first phase, each playeittan start deviating from

s or pass the turn to the next player. If no player deviateglajfers get the “neutral”
payoff 0 in D. If a playeri deviates, the game proceeds to the second phase in which
tries to ensure that his deviation is successful, while tiéoplayers try to prevent it.
This phase is strictly competitive:ifsucceeds, he gets the payofficdnd all the other
players get-1; if ¢ fails, he gets-1 and the other players géteach..

Formally, given a strategic ganté and a strategy profile, the deviation game is
an extensive form gam&(G, s) = (N, H, P,out}, ..., out]), whereN is the set of
players as irGG, H is the set of histories in the deviation ganf®is a function assigning
a player to every non-terminal history, and for evegy N, out} is a function assigning
the payoff for playet to every terminal history. A history i/ is a sequence of nodes
of the form (i, ¢, j), with the intended meaning thate N U {—} is the player whose
deviation strategy is currently tested (wher€‘means that no deviation has been made
yet),t € X' is the current strategy profile under consideration, agdN U { L} is the
player currently going to play (i.eR(...,(i,t,j)) = j), whereL indicates that the
game has terminated. The initial statés s, 1). For every playey, we defineout’; as
follows:

—outi(...,(=,t, 1)) =0;

—if out;(t) > outi(s), thenout’(...,(i,t,1)) = 1 whenj = 4, otherwise
out’ (..., (i,t, 1)) = =1,

—if out;(t) < outi(s), thenout)(...,(i,t, L)) = —1 whenj = i, otherwise
out’ (..., (i,t, 1)) = 1.

Now we recursively define the set of histori#s wherei is defined asnin(N\{i}).

1 (—,s1)eH.

2. Ifh=...,(—,s,1) € Handi + 1 € N thenh,(—,s,i+ 1) € H.

3. Ifh=...,(—,s,i) € Handi = max(N), thenh, (—,s, L) € H.

4. Ifh=...,(—si) € H,s % ¢ is a locally rational deviation and € N\{i}
thenh, (i, s',4) € H.

5 Ifh=...,(i,s,i) € Hands' - s” is a locally rational deviation, then
h,(i,s",i) € H.

6. Ifh=...,(i,8,i) € H,thenh, (i,s', L) € H.

7. 1fh =...,(,¢,i) € H, i € N\{i} and eithers’ % ¢ is a locally rational
deviation ors’ = s”, thenh, (,s”,4') € H whenever bott, (,s”,') ¢ H and
i = iimpliesh, (—,s",i') ¢ H.
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Fig. 1: Deviation game for strategy profil€, 7) in Prisoner’s Dilemma (Examplé 1)

Statemeni]1 specifies the initial history. StatemEhii$ 2y4hsat if nobody has de-
viated so far, playeir can embark on a deviation strategy or refrain from deviaging
pass the token further. If no player deviates, the game éhplgyer ¢ initiates devia-
tions, the strategy profile changes, and the token goes fashepponent. Statement 5
says that the latter also applies during execution of théatien strategy. Furthermore,
indicates that playercan stop the game if it is his turn (note that this can only lee th
case if the opponents do not want to deviate anymore). Fif¥aditates that an opponent
player can make a locally rational deviation or do nothinigi§ his turn, and pass the
turn to another playei (as long as the player has not had the turn in the new strategy
profile before, to guarantee finite trees).

Now we can see anpponent strategpgainst player as a set of strategies for
playersN\{i} such that every deviation is locally rational, and in evérgtegy profile,
not more than one player deviates. Formally, an opponesiegly against playeris

a functionF_; : N\{i} x ¥* — X such that for every playef € N\{i}, s &
F_;(4,(...,s)) is a locally rational deviation of_;(j,(...,s)) = s and such that
F_;(4,(...,s)) # s forsomej impliesF_;(j',(...,s)) = sforall j/ # j.

Example 3.Figure[1 depicts the deviation garfi§G, s) whereG is the Prisoner’s
Dilemma ands is (7, 7). The moves selected by the minimax algorithm are printed as
thick lines. The minimax algorithm selects outcoffe0), so no player has a strategy
yielding more than 0, which indicates that 7) is an FPE.

4.2 Correspondence to FPE

Now we will prove that a strategy profile in the original gars@an FPE exactly when no
player has a strategy that guarantees the paydffiothe deviation game. We say that
a sequence of strategy profil€s . . ., s is (F;,F_;)-compatibléf for all ¥’ < k either
F_i(4,(s",...,s")) = s¥'*1 for somej € N\{i} or both Fy(s',...,s") = s'+1
andF_;(j, (s',...,s")) = s¥ forall j € N\{i}. Furthermore, a sequence of strategy
profiless!, ..., s* is loop-freeif s™ +# s for1<n<n <k.



Let G be a strategic form game be a strategy profile ande N be a player. Now
we say that a deviation stratedy is successful against an opponent stratégy, if
1) out;(F;(s)) > out;(s), and 2) for every loop-freéF;, F'_;)-compatible sequence
of strategy profiles;(s) = s',...,s*, it holds thatout;(F;(s',...,s")) > out;(s).
The following lemma shows that it is indeed sufficient to I@ikoop-free(F;, F_;)-
compatible sequences.

Lemma 1. Strategy profiles is an FPE in game?> iff there does not exist a player
with a deviation strategy; that is successful against all opponent stratedies.

Proof. First we prove the ‘only if’ direction by contraposition. #isme there exists a
playeri with a deviation strategy; that is successful against all opponent strategies
F_;, i.e., Yout;(F;(s)) > out;(s), and 2) for every loop-fre€F;, F_;)-compatible
sequencé’;(s) = s!,. .., s¥ it holds thatout; (F;(s',. .., s*)) > out;(s).

Let Fi(s) = s' — ... — s* be a loop-freeF;-compatible sequence of locally
rational deviations. We define opponent stratégy; such thatf_;(j, s*) = sk*!
whenevers® £ s5+1 for j € N\{i}. Thens',...,s* is (F};, F_;)-compatible, so
we haveout;(F;(s!,. .., s*)) > out;(s) by assumption. Therefore, for every loop-free
F;-compatible sequence of locally rational deviatidfgs) = s* — ... — s*, it holds
thatout;(F;(s',...,s%)) > out;(s) ().

Now let F;(s) = s! — ... — s* be a finite F;-compatible sequence of lo-
cally rational deviations. Then we can construct a loog-Bequence!, . .., t* with
t; = s1 andty = sg. Now out;(F;(t',... t*)) = out;(F;(s*)) becauseF; is po-
sitional, andout;(F;(t',...,T*)) > out;(s) by (x). Therefore, for every finite;-
compatible sequence of locally rational deviatidngs) = s' — ... — s*, it holds
that out;(F;(s',...,s*)) > out;(s). This shows that there exists a playewith a
deviation strategy; such that 1put;(F;(s)) > out;(s), and 2) for every finiteF;-
compatible sequence of locally rational deviatidngs) = s! — ... — s*, it holds
thatout;(F;(s',...,s*)) > out;(s), i.e.,s is not an FPE.

The ‘if’ direction follows from the fact that every loop-feesequence of strategy
profiles is finite, and the fact that when a sequence of siygbedfiles is ¢;,F_;)-
compatible, it is also ai;-compatible sequence of deviations.

We proceed by defining a bijectighbetween strategy’; in G and strategyp; in
T(G, s) as follows.
If Fi(s)=s then®;(—,s,i)
If Fi(s)=s then®;(—,s,i)
(—,s
(@

(—,s,i+ 1) wherei+1 € N;
(—,s,1) wherei = max(N);
(i,8,1) wheres #£ s';

If F;(s) =s" thend, ,1)

If F;(s") =s' then®;(i,s',i) = (4, s J_) wheres #£ s';

If F;(s') = s" then®;(i,s',1) = (3,5",1) wheres # 5" # s”.

We call a set of strategie’_; for pIayersN\{ i} non-initially-deviatingwhenever
®,(—,s,i') = (—,s,i") wherei # i’. Then aropponent strateg®_; in the deviation
game is a set of non-initially-deviating strateg#esfor playersj € N\{i} such thatin
every strategy profile, not more than one playeiig{:} deviates and the other players
always give the turn to the deviating player, i®;(i,s’,j) = (i,s",7’) with s’ # s”
for somey, ' € N\{i} implies®,;(i, s', j"") = (i, ¢, j) forall j” # j. Now we define



a bijectiony between an opponent stratefly; in 7' and an opponent strate@y ; in
T(G,s). Lety(F_;) = &_;, whered_; is defined as follows:

—If F_,(¢,s") # ¢ for somei € N\{i}, then®; (i,s',7) = (i,s",i") and
B (iys',i") = (i,8,i") for i’ # 4.
—If F_;(i,s") = ¢ forall / € N\{i}, thend; (i,s",i") = (i,5",1).

It can easily be checked thatand are indeed bijections.

Let out;(®;, P_;) be the outcome of the game for playewhen playeri plays
strategy®; and playersN\{i} play strategy®_;. When out;(®;,#_;) = wu; and
out;(9;,P_;) = u_; forj € N\{i}, we sometimes writeut; _;(P;, P_;) = (u;, u_;).

Lemma 2. If i € N is a player with a deviation strateglj; and F_; is an opponent
strategy, therF; is successful againgt_; in gameG and strategy profile if and only
if outs —i(¢(F3), ¥(F-)) = (1,-1)in T(G, s).

Proof. By construction ofy andg, we have rus = s! el T kinGiff
(=, 8,1),...,(—,8,),(,8,0),..., (08" 1), (i, F;(s"),1), (@, Fi(s*),1), (i, F;(s*), L)
isaruninT'(G, s). Therefore arun ends it in G with out; (F;(s*, . .., s*)) > out;(s)
iff a run ends in(i, F;(s*), L) in T(G, s) with out;(F;(s*)) > out;(s). Therefore F;
is successful againgt_; if and only if out; (¢(F;), v (F_;)) = 1.

Theorem 7. Strategy profiles € X' is an FPE in gamé if and only if all subgame-
perfect Nash equilibria iT(G, s) yield (0, ..., 0).

Proof. To prove the ‘only if’ direction, assume strategy profilés an FPE in game
G. By Lemmall, there does not exist a playewith a deviation strategy; that
is successful against all opponent stratedies. Becausef and g are bijections, by
Lemmal2 there does not exist a playewith a strategy®; such that for every op-
ponent strategyp_; it holds thatout, _;(®;,$_;) = (1,—1). This means that for
every playeri with a strategy®;, there exists an opponent strategy, such that
out; —i(P;,P_;) # (1,—-1) (x). Now we prove that every subgame-perfect Nash equi-
librium (SPNE)(®y, ..., ®,) in the subgame starting &t, s, 7) yields (0,...,0) by
backwards induction oh € (1,...,n, L). The base case, wheie= L, follows from
the definition ofout. Now assume that the claim holds fo# 1 (wheren + 1 = 1).
To show thatb;(—, s,4) = (i,s,i+ 1), we assume thak;(—, s, i) = (i, s, 1) for some
s’ and derive a contradiction. L€t_; be an opponent strategy. Nawit; _;(P;, P_;)

is either(1, —1) or (—1,1). If out; _;(®;,P_;) = (1,—1), by (), there exists an op-
ponent strateg$’_; such thabut, _;(®;, P ;) # (1,—1) and thusout; _;(P;, 9" ;) =
(—1,1). Now out_;(®;, 9" ;) > out_;(P;,P_;), which contradicts the assumption
that (@;,2_;) is an NE. Ifout; _;(®;,P_;) = (—1,1), let §; be a strategy such
that @.(—,s,n) = (—,s,n + 1) and P, is a SPNE strategy in the subgame start-
ing at(—, s,n + 1). Thenout, (¥}, " ;) > 0 for all opponent strategied’ ; by i.h..
This implies thatout,;(®},P_;) > out;(P;, P_;), contradicting the assumption that
(®;,P_;) is an NE. This implies that the assumptién—, s, i) = (i, s', 1) is false, so
D;(—,s,4) = (i,8,49+ 1) or &;(—,s,4) = (i,s,L). By i.h., all SPNE in the subgame
starting a —, s,i+1) yield (0, .. ., 0). Therefore, all SPNE iff (G, s) yield (0, . .., 0).



We prove the ‘if’ direction by contraposition. Assume st@f profiles € X' is not
an FPE in gamé&. By Lemmd1, there exists a playewith a strategyF; that is suc-
cessful against all opponent strategies. Because andq are bijections, by Lemnid 2
there exists a playarwith a strategy®; such that for every opponent strategjy; it
holds thabout; _;(®;, P_;) = (1,—-1) (). Now let (&}, &’_;) be a strategy profile such
thatout;(®;, ¥’ ;) = 0. Then there exists a strategy such thatout;(®;,?" ;) = 1
by (1), soout;(®;, 9" ,) > out;(P;,P"_;), and thereforéd,, &' ) is not an SPNE. An
extensive game always has an SPNE &bd &’ ;) is the only strategy profile yield-
ing (0, ...,0), so there exist SPNEs not yieldiri@, . . . , 0), which implies that not all
SPNEs yieldO,...,0).

Note that Theorernl 7 provides an alternative way of checkirggguilibria:s is
an FPE inG iff the minimaxing algorithm[[1] onl’(G, s) returns0 for every player.
However, the deviation game fa¥ can be exponentially larger thas itself, so the
algorithm proposed in Sectigh 3 is more efficient.

5 Comparing Farsighted Solution Concepts

There has been a number of solution concepts with similandeyto FPE. In this sec-
tion, we discuss how they compare to our new proposal.

5.1 Related Work

The discussion on myopic versus farsighted play dates bat¢kevon Neumann-
Morgenstern stable s€¥NM) in coalitional games([2], and Harsanyisdirect dom-
inanceof coalition structures, leading to tistrictly stable se(SSS) [3]. More recent
proposals are theoncooperative farsighted stable $BIFSS) [6] and thdargest con-
sistent se{LCS) [4]. Other similar solution concepts includé [815 Blso Halpern and
Rong’scooperative equilibriunfl0] can be seen as a farsighted solution concept.

Definitions In order to define the concepts, we introduce three diffedemiinance
relations between strategy profild3irect dominanceof = over y means that player

i can increase his own payoff by deviating from strategy prafito strategy profile

y. Indirect dominanceof x overy says that a coalition of players can deviate from
strategy profiler to strategy profiley, possibly via a number of intermediate strategy
profiles, such that every coalition member’s final payoffester than his payoff before
his move. Finallyjndirect dominance in Harsanyi's seng&eindirect dominance with
the additional requirement that each individual deviat®locally rational. Formally:

— We say thaty directI_y dominates through playet (z <; y) if there is a locally

rational deviation: - y. We also writer < y if = <; y for somei € N.
— We say thaty indirectly dominates: (z < y) if there exists a sequence of (not

necessarily locally rational) deviations= z° 2 z!... 2% 2P = y such that
out; (x"71) < out; (y) forallr =1,2,... p.
— We say thatr indirectly dominateg in Harsanyi's senser(<y y) if there exists

a sequence of locally rational deviations= 20 2% z!... 22 2P = y such that
out; (z"71) < out;, (y)forallr =1,2,... p.



It can easily be seen that< y impliesz <y y, andz <y y impliesz < y.

Example 4.In the Prisoner’s Dilemma (Examiile 1), we have7) <; (8,0), (0,8) <3
(1,1), (7,7) <2 (0,8) and(8,0) <2 (1,1) In addition,(7,7) indirectly dominates
(1,1) in Harsanyi's sense, i.g(1,1) <y (7,7).

With these definitions, we can introduce four main farsigtgelution concepts.

— A subsetK of X' is avon Neumann-Morgenstern stable $&NM) if it satisfies
the following two conditions: (a) for alt, y € K, neitherxz < y nory < x; (b) for
all z € X\ K, there exists € K such thate < y [2]. In fact, a VNM corresponds
to stable extensions in the argumentation thédry<’), where<’ is the converse
of <, in Dung’s argumentation framework [11].

— If we replace in VNM the direct dominance relatienby the indirect dominance
relation<, we obtain thenoncooperative farsighted stable ¢Bi-SS) [6].

— Furthermore, a subsgétof X is astrictly stable se{SSS) if it is a VNM such that
forall z,y € S, neitherr <y y, nory <u x [3].

— Finally, a subset of 3’ is consistent in Chwe’s sense if € L iff for all deviations

r = ythere existy € L suchthat{ = z ory < z] andout;(z) > out;(z)). Now
thelargest consistent s€L.CS) is the union of all the consistent sets¥iH4].

Another solution concept that has been recently proposeerfect cooperative
equilibrium(PCE) [10]. Like FPE, PCE aims at explaining situations veleoperation
is observed in practice. A player’s payoff in a PCE is at lesshigh as in any Nash
equilibrium. However, a PCE does not always exist. Everygaas a Pareto optimal
maximum PCE (M-PCE), as defined below. We only give the défimitor 2-player
games; the definition fag-player games can be found [n [10].

Given a gamé-, a strategy; for playeri in GG is a best response to a strategy for
the playersinV\{i} if U;(s;, s—i)) = supy e 5, Ui(s;, s—i). LetBRi(s—;) be the set of
bestresponses to ;. Given a 2-player game, |8U; denote the best payoff that player
i can obtain if the other playgrbest responds, thatBU; = sup,,c s, s, eres,) Ui($)-

A strategy profile is a PCE if for € {1, 2} we havelU,(s) > BU,. A strategy profile is
ana-PCE ifU;(s) > a + BU; for all i € N. The strategy profile is an M-PCE ifs is
ana-PCE and for alb’ > «, there is nax'-PCE.

Example 5.In the Prisoner’s Dilemma (Example 1), there is one VNMI( 1), (7,7)})
and one NFSS{(7,7)}). There is no SSS, and the LCS{id, 1), (7,7)}.

Regarding PCE, we havBR,(C) = {D}, BR,(D) = {D}, BR2(C) = {D},
andBRy(D) = {D}. This implies thatBU; = D andBU, = D. Thus, the set of PCE
outcomes iq(7,7),(1,1)}, and(7,7) is the unique M-PCE (witlx = 6).

5.2 FPE vs. Other Farsighted Concepts

The main idea of all introduced farsighted solution consépxcept PCE) is very simi-
lar. One can test whether a given strategy profile is stabtghbgking whether a player
or group of players can deviate from the strategy profile incifable way, given a

possible follow-up from the other players. However, there @lso many differences
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Fig. 2: Example games (FPEs are printed in bold)

between the concepts. In this section, we will compare FRE ether farsighted solu-
tion concepts in various aspects.

Scope of Farsightedneshk farsighted reasoning about strategies, players conide
ther consequences of their deviations, as opposed to fiegsarmyopic solution con-
cepts like Nash equilibrium. Consider for example the gamfeig.[2a. Strategy profile

(1,1) is not an NE becausg, 1) EN (3,1) is locally rational. However, this deviation
is not necessarilglobally rational, as it might trigger player 2 to follow up with the
deviation(3, 1) 2, (0,2). Unlike Nash equilibrium, which only considers (0,2) sigbl
the set{(1,1), (0,2)} is considered stable in all presented farsighted solutiortepts
(VNM, NFSS, SSS, LCS and FPE).

The degree of farsightedness is different across the ctsiCEpe least farsighted
concept is VNM. Here, players only look at whether they catover from asingle
deviation of the opponents, as the game in Eig. 2b illusiratbe deviatiorfl, 1,1) L
(3,1,1) is locally rational but might intuitively be wrong becaussvétions(3,1, 1) 2
(3,1,2) 2 (0,2, 2) can spoil its effect. However, since VNM does not take seqegn
of deviations into account, it does not consigderl, 1) stable {(0,2,2),(3,1,1)} be-
ing the only stable set). The concepts NFSS, LCS and FPE haver farsighted”
view, and consider sequences of follow-up deviations. Imsegquence, they all deem
the profile(1, 1, 1) stable.

Furthermore, the solution concepts evaluate follow-ufferintly. In VNM and
NFSS, a follow-up deviation from the opponents is alwayssabered undesirable, even
if it gives a higher payoff for the first deviating player. IrCIS and FPE, beneficial
follow-ups only strengthen the success of the original afgmn. Consider the game in
Fig.[2d. After(1,1) RN (3,1), the follow-up(3,1) 2 (2,2) still leaves playet with a
payoff higher that his initial one. Thus, both LCS and FPEég, 1) unstable, which
matches intuition, while VNM and NFSS considér 1) stable.

Type of Solution ConceptThe concepts also yield objects of different types. LCS
and FPE both return a set of strategy profiles, thus ascritsitignality toindividual
profiles On the other hand, VNM, NFSS and SSS return a set of sets filggreach,
hence ascribing rationality ®etsof strategy profiles. In the latter case a rational set of
profiles can be understood as a set of collective decisiomfiton the grand coalition

of players can consistently stick. Clearly, this makes sémgoalitional games, but is



less suitable for noncooperative games where the playens’'a over collective choice
is limited.

Deviation StrategyVNM, SSS and FPE are built on a pessimistic view of the follapv-
to the first deviation, as they make no assumptions aboutlies players’ rationality. In
particular, it is not assumed that opponents will help taease the initiator’'s outcome,
even if it is also to their advantage. In consequence, thelsgian concepts assume
that the deviations of the initiator must always be locadljianal. In contrast, NFSS
assumes that a player can make deviations which are notyloatibnal if he hopes
that other players will further increase his outcome. Thegin Fig[2a illustrates this.
The set{(1,1),(0,2)} is a VNM, SSS, LCS and collects all FPEs. On the other hand,
{(0,2)} is the only NFSS. PCE and M-PCE may also require players t@tein a
locally irrational way because they do not take into accdbhatdomination relation
explicitly. For example(0, 2) in Fig.[2d is neither PCE nor M-PCE, although it is a
Nash equilibrium and hence no player has a locally ratioaaiadion in it. All the other
solution concepts considered here deén2) stable.

Expected Behavior of OpponentsDifferent solution concepts imply different oppo-
nent models. We have already mentioned that the initiatodesfiations can either
be optimistic or pessimistic about the follow-up by the oppiats. Another distinc-
tion is whether the deviator expects the opponents to bagfdesl as well, or whether

they might be regular best-response players. Consideraimegn Fig[2H. Intuitively,

a farsighted playet would not deviate(2, 4) L (3,1), because the follow-up de-

viation (3,1) 2 (0,2) can damage his payoff. Therefore player 2 can safely play
(1,3) 2 (2,4) if he is sure that player 1 is farsighted. However, if playeplays
best response, the deviatith 3) 2 (2,4) might harm player 2, because player 1 will

deviate(2, 4) RN (3,1) afterwards. Therefore, if player 2 has no information atibat
kind of behavior of player 1, it might be better to stick toaségy profile(1, 3). FPE
is the only solution concept that captures this intuitiorcbpsidering1, 3), (2,4) and
(0, 2) to be (potentially) stable; the other formalisms (VNM, SEESS, LCS) all result
in the stable sef(1,4), (0,2)}.

Summary The main difference between our farsighted pre-equiliorand the other
solution concepts discussed in this section lies in thepgetsse. It can be argued that
the type of rationality defined in_[2[3/4.5,6] is predomitiarcoalitional. This is be-
cause those proposals ascribe stabilitydtsof strategy profiles, which does not have a
natural interpretation in the noncooperative setting. édeer, some of the concepts are
based on coalitional rather than individual deviations.tfmother hand, the concept
of cooperative equilibriunm [10] inot based on reasoning about possible deviations. In
this sense, FPE is the first truly noncooperative solutigrcept for farsighted play that
we are aware of.

6 Conclusions

We have proposed a new solution concept that wefaedlghted pre-equilibriumThe
idea is to “broaden” Nash equilibrium in a way that does nstdiminate solutions



that look intuitively appealing but are ruled out by NE. Thiiash equilibrium may be
interpreted as a specification of play which is certainlyoradl, and strategy profiles
that arenot farsighted pre-equilibria can be considered certaimitional. The area in
between is the gray zone where solutions are either ratmmiabt, depending on the
detailed circumstances.

Our main motivation is predictive: we argue that a solutionaept that makes too
strong assumptions open up ways of possible vulnerabiflitye other agents do not
behave in the predicted way. Nash equilibrium seems tooictg in many games
(Prisoner’s Dilemma being a prime example). We show that 88&s select non-NE
strategy profiles that seem sensible, like the “all coopéisttategy profile in the stan-
dard as well as the generalized version of Prisoner’s Dilanvioreover, we observe
that FPE favors solutions with balanced distributions ofgfts, i.e., ones in which no
player has significantly higher incentive to deviate thandthers.

A natural way of interpreting deviations in strategy prdcfilg to view the deviations
as moves in a “deviation game” played on the metalevel. Wevshat farsighted pre-
equilibria in the original game correspond to subgamegutilash equilibria in the
meta-game. This is a strong indication that the conceptilkgtropose is well rooted
in game-theoretic tradition of reasoning about stratebgaiae.

Farsighted play has been investigated in multiple settisggsting from von Neu-
mann and Morgenstern almost 70 years ago. Our proposalasi(tcowledge) the first
truly noncooperative solution concept for farsighted playarticular, it is obtained by
reasoning aboundividual (meta-)strategies afdividuallyrational players, rather than
by reconstruction of the notion gtable sefrom coalitional game theory.
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