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ABSTRACT. We propose a non-standard interpretation of Alternating-time Temporal Logic with
imperfect information, for which no commonly accepted semantics has been proposed yet.
Rather than changing the semantic structures, we generalize the usual interpretation of for-
mulae in single states to sets of states. We also propose a new epistemic operator for “practi-
cal” or “constructive” knowledge, and we show that the new logic (which we call Constructive
Strategic Logic) is strictly more expressive than most existing solutions, while it retains the same
model checking complexity. Finally, we study properties of constructive knowledge and other
operators in this non-standard semantics.
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1. Introduction

Modal logics of strategic ability [ALU 97, ALU 02, PAU 00, PAU 02] form one of
the fields where logic and game theory can successfully meet. The logics have clear
possible worlds semantics, are axiomatizable, and have some interesting computa-
tional properties. Moreover, they are underpinned by a clear and intuitively appealing
conceptual machinery for modeling and reasoning about systems that involve multiple
autonomous agents. The basic notions, used here, originate from temporal logic (i.e.,
the logic of time and computation) [PRI 67, EME 90, FIS 06], and classical game the-
ory [NEU 44, NAS 50, OSB 94] which emerged in an attempt to give precise meaning
to common-sense notions like choices, strategies, or rationality – and to provide for-
mal models of interaction between autonomous entities. Modal logics that embody
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basic game theory notions – and at the same time build upon branching-time temporal
logics, well known and studied in the context of computational systems – seem a good
starting point for investigating multi-agent systems.

Alternating-time Temporal Logic (ATL), proposed in [ALU 97] and further devel-
oped in [ALU 98, ALU 02], is probably the most important logic of strategic ability
that has emerged in recent years. The key elements of ATL are so called coopera-
tion modalities 〈〈A〉〉, one for each possible set of agents A. Informally, the mean-
ing of 〈〈A〉〉ϕ is that the group A has a joint strategy to ensure that, no matter what
the other agents do, ϕ will become true. However, ATL considers only agents that
possess perfect information about the current state of the world, and such agents sel-
dom exist in reality. On the other hand, imperfect information and knowledge are
addressed in epistemic logic in a natural way [HAL 95]. A combination of ATL and
epistemic logic, called Alternating-time Temporal Epistemic Logic (ATEL), was intro-
duced in [HOE 02, HOE 03] to enable reasoning about agents acting under imperfect
information. Still, it has been pointed out in several places [JAM 03, JAM 04, JON 03,
ÅGO 04] that the meaning of ATEL formulae can be counterintuitive. Most impor-
tantly, an agent’s ability to achieve property ϕ should imply that the agent has enough
control and knowledge to identify and execute a strategy that enforces ϕ.

EXAMPLE 1. — Let us consider a variant of the example from [SCH 04]. There is a
banker b (who knows the code that opens the safe), and a robber r who does not know
the code. The banker can also change the code, and he does so from time to time. If a
person is in the vault, and types the code correctly, the safe opens. If incorrect code is
typed, the vault door closes, jailing the person inside.

Intuitively, there is no feasible plan for r to quickly open the safe whenever he
wants to (unless he threatens or corrupts the banker to reveal the code). Reason:
whatever the current code is, the vault looks the same to r, and a sensible plan should
specify the same choices in indistinguishable situations (otherwise the plan cannot be
executed). On the other hand, there is a behavior specification (formally: a function
from states to actions) that allows r to rob the bank, and it reads as follows: “if you
are outside then enter the vault; if you are inside and the code is 00000 then type
00000; if the code is 00001 then type 00001 etc.”. Clearly, not every specification
like this makes up a strategy that can be executed by the player. Those that do are
sometimes called uniform strategies, and are required to prescribe the same choices
in indistinguishable states.1 Unfortunately, ATEL accepts all functions from states to
actions as a strategies, which does not blend well with the assumption that agents’
knowledge is limited.

It should be noted that it is not always enough to restrict strategies to uniform ones.
Consider a situation when b has set the code to 23087 and gone for lunch (so he will
not change it again for a while), and r is now standing in front of the safe. Obviously,

1. This very much in agreement with game-theoretical treatment of games with imperfect
information. A strategy in such games is a function from information sets (i.e., sets of indistin-
guishable states) to actions.
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there is a uniform strategy for r that leads to opening the safe, namely: “type 23087,
regardless of anything”. The robber even knows that such a successful strategy exists.
On the other hand, he does not know which strategy it is (because he does not know
what the current state is), and thus he does not have the ability to open the safe for
sure. 2

Reasoning about the collective abilities of teams requires even more sophisticated
concepts.

EXAMPLE 2. — Suppose that, instead of a single robber r, a gang of robbers r1, ..., rn

is operating. If they can discuss their plans before acting, they can share their individ-
ual information about the current state of affairs in order to determine the best strategy
(which seems to somehow be related to the notion of distributed knowledge from epis-
temic logic). If they have to coordinate on the fly, without communicating, then it is
desirable that they all can separately identify the same winning strategy, and they all
know that the others can identify this strategy, and they all know that they all know
etc. (which looks very much like common knowledge). Thus, there seems to be no
single notion of collective knowledge that suffices for all possible scenarios involving
collective strategic ability. 2

EXAMPLE 3. — Let us also consider an industrial company that wants to start pro-
duction, and looks for a good strategy when and how it should do it. Such a strategy
is feasible if it can be carried out by the company (i.e., by its management and em-
ployees). However, it does not have to be prepared by members of the company
themselves. In many cases, a consulting firm is hired to work out the best plan. Then,
it is enough that members of the consulting firm can work out a good strategy which
can be executed by the management and employees of the industrial company. 2

A number of logics were proposed to capture these, and similar, properties [JAM 03,
JAM 04, SCH 04, JON 03, OTT 04, HER 06], yet none of them seems the ultimate
definitive solution. Most of the solutions agree that only uniform strategies should be
taken into account (cf. Example 1). However, in order to identify a successful strat-
egy, the agents must consider not only the possible courses of action starting from the
current (actual) state of the system, but also from states that the agents cannot dis-
tinguish from the current one. There are many variants here, especially when group
epistemics is concerned, as Examples 2 and 3 demonstrate. The agents may have
common, mutual, or distributed knowledge2 about a strategy being successful, or they
may be hinted the right strategy by a distinguished member (the “boss”), a subgroup
(“headquarters committee”) or even another group of agents (“consulting company”)
etc. In other words, there are many subtle cases in which the (subjectively possible)
initial situations should be represented with different sets of states. Some existing so-
lutions treat only some of the cases (albeit often in an elegant way), while the others
offer a very general treatment of the problem at the expense of an overblown logical
language (which is by no means elegant). Our aim is to come up with a logic of ability
under imperfect information, which is both general and elegant. By “general”, we

2. See Section 2.2 for precise definitions.
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mean that it allows to characterize as many meaningful levels of strategic ability as
possible (and at least as many as ATOL [JAM 04]). In particular, it should enable the
distinction between various readings of knowing a strategy “de re” and “de dicto” for
individual as well as collective players. By “elegant”, we mean that it allows us to
express various levels of ability by composition of epistemic operators with strategic
operators, instead of assigning a specialized modality to every conceivable combina-
tion.

To achieve this, we build our proposal around new epistemic operators for what
we call “practical” or “constructive” knowledge. The idea has been inspired by the
tradition of constructivism which argues that one must find (or “construct”) a mathe-
matical object to prove that it exists [TRO 91]. In the same spirit, agents A construc-
tively know that 〈〈B〉〉ϕ if they can present a strategy for B that guarantees achieving
ϕ. The logic which we propose in this paper has a fairly non-standard semantic inter-
pretation. We use the same semantic structures that were used before for ATEL, ATOL,
ATLir etc.; however, in our semantics formulae are interpreted over sets of states rather
than single states. This reflects the intuition that the “constructive” ability to enforce
ϕ means that the agents in question have a single strategy that brings about ϕ for all
subjectively possible initial situations – and not merely that a successful strategy ex-
ists for each initial situation (because those could be different strategies for different
situations). To do it in a flexible and general way, the type of satisfaction relation in
our proposal forces one to specify the set of initial states explicitly. In consequence,
we write M, Q |= 〈〈A〉〉ϕ to express the fact that A must have a strategy which is
successful for all states in a set of states Q.

Semantically, the constructive knowledge operators yield sets of states for which
a single evidence (i.e., a successful strategy) should be presented (instead of checking
if the required property holds in each of the states separately, like standard epistemic
operators do). For example, M, q |= Ka〈〈a〉〉ϕ holds iff 〈〈a〉〉ϕ is satisfied by M, Q,
where Q is the set of states which agent a cannot distinguish from q. We point out
that the new operators capture the notion of knowing “de re”, while the standard epis-
temic operators refer to knowing “de dicto”. We call the resulting logic Constructive
Strategic Logic (CSL) to emphasize that, in order to prove M, Q |= ϕ true, one must
produce “constructive” evidence for all possible cases in Q, rather than “circumstan-
tial” evidence that deals with every case q ∈ Q separately.

We begin with a short presentation of Alternating-time Temporal Logic and the
attempts that have been made to extend ATL to scenarios with imperfect information
(Section 2). In Section 3 we present the main contribution of this paper: a new, non-
standard semantics for the logic of strategic ability, imperfect information and knowl-
edge. We show that it is strictly more expressive than the existing solutions, with
the possible exception of ETSL (Section 4), while it retains the same model checking
complexity (Section 5). Then, in Section 6, we study the properties of constructive
knowledge itself. It turns out that, when “standard” knowledge is assumed to be S5,
constructive knowledge is KD45. Moreover, a simple syntactical restriction is suffi-
cient to guarantee validity of axiom T for constructive knowledge. In Section 7 we
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show that standard knowledge is definable from constructive knowledge. We also
observe that, when we allow a formula to be interpreted in a set of states, several
definitions of negation (corresponding to different ways of quantifying over the set)
are possible. We introduce and discuss such alternative negations and related opera-
tors. Finally, in Section 8 we investigate the relative expressiveness of some of these
operators in detail, and we define a normal form for formulae of our language.

Some preliminary results of this research have been reported in [JAM 05b, JAM 06c].

2. What Agents Can Achieve

Alternating-time Temporal Logic ATL [ALU 97, ALU 98, ALU 02] was intro-
duced by Alur, Henzinger and Kupferman in order to capture properties of open com-
putational systems (such as computer networks), where different components can act
autonomously. Computations in such systems are effected by the components’ com-
bined actions. Alternatively, ATL can be seen as a logic for systems involving multiple
agents, that allows one to reason about what agents can achieve in game-like scenar-
ios. As ATL does not include imperfect information in its scope, it can be seen as
a logic for reasoning about agents who always have complete knowledge about the
current state of affairs.

2.1. ATL: Ability in Perfect Information Games

ATL can be understood as a generalization of the branching time temporal logic
CTL [CLA 81, EME 90], in which path quantifiers are replaced with so called cooper-
ation modalities. The formula 〈〈A〉〉ϕ, where A is a coalition of agents, expresses that
A have a collective strategy to enforce ϕ. ATL formulae include temporal operators:
“ g” (“in the next state”), 2 (“always from now on”) and U (“until”). Operator 3

(“now or sometime in the future”) can be defined as 3ϕ ≡ >U ϕ. Similarly to CTL,
every occurrence of a temporal operator is immediately preceded by exactly one co-
operation modality.3 The broader language of ATL∗, in which no such restriction is
imposed, is not discussed in this paper.

Formally, the recursive definition of ATL formulae is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 gϕ | 〈〈A〉〉2ϕ | 〈〈A〉〉ϕU ϕ

where A is a set of agents. Example ATL properties are: 〈〈jamesbond〉〉3win (James
Bond has an infallible plan to eventually win), and 〈〈jamesbond, bondsgirl〉〉funU shot-at
(Bond and his current girlfriend have a collective way of having fun until someone
shoots at them).

3. The logic to which such a syntactic restriction applies is sometimes called “vanilla” ATL
(resp. “vanilla” CTL etc.).
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A number of semantics have been defined for ATL, most of them equivalent [GOR 01,
GOR 04]. In this paper, we use a variant of concurrent game structures (CGSs) as
models. A CGS is a tuple M = 〈Agt, St, Π, π, Act, d, o〉 which includes a nonempty
finite set of all agents Agt = {1, ..., k}, a nonempty set of states St, a set of atomic
propositions Π, a valuation of propositions π : St → P(Π), and a set of (atomic)
actions Act. Function d : Agt × St → (P(Act) \ ∅) defines nonempty sets of ac-
tions available to agents at each state, and o is a (deterministic) transition function
that assigns the outcome state q′ = o(q, α1, . . . , αk) to state q and a tuple of actions
〈α1, . . . , αk〉, αi ∈ d(i, q), that can be executed by Agt in q. A strategy sa of agent a
is a conditional plan that specifies what a is going to do for every possible situation:
sa : St → Act such that sa(q) ∈ d(a, q). A collective strategy SA for a group of
agents A is a tuple of strategies, one per agent from A.

REMARK 4. — This is a deviation from the original semantics of ATL [ALU 97,
ALU 98, ALU 02], where strategies assign agents’ choices to sequences of states,
which suggests that agents can by definition recall the whole history of each game.
Both types of strategies yield equivalent semantics for “vanilla” ATL, but the choice
of one or the other notion of strategy does affect the semantics of the full ATL* and
most ATL variants for games with imperfect information [SCH 04]. The main reason
why we use “memoryless” strategies here is that model checking strategic abilities of
agents with perfect recall and imperfect information is believed to be undecidable (cf.
Section 2.10). 2

A path Λ in model M is an infinite sequence of states that can be effected by subse-
quent transitions, and refers to a possible course of action (or a possible computation)
that may occur in the system; by Λ[i], we denote the ith position on path Λ. Function
out(q, SA) returns the set of all paths that may result from agents A executing strategy
SA from state q onward:

out(q, SA) = {λ = q0q1q2... | q0 = q and for every i = 1, 2, ... there exists a tuple
of agents’ decisions 〈α1, ..., αk〉 such that αa = SA(a)(qi−1) for each a ∈ A,
and αa ∈ d(a, qi−1) for each a /∈ A, and o(qi−1, α1, ..., αk) = qi}.

Informally speaking, M, q |= 〈〈A〉〉ϕ iff there is a collective strategy SA such that
ϕ holds for every Λ ∈ out(q, SA). Formally, the semantics of ATL formulae can be
given via the following clauses:

M, q |= p iff p ∈ π(q) (for p ∈ Π);

M, q |= ¬ϕ iff M, q 6|= ϕ;

M, q |= ϕ ∧ ψ iff M, q |= ϕ and M, q |= ψ;

M, q |= 〈〈A〉〉 gϕ iff there is a collective strategy SA such that, for every Λ ∈
out(q, SA), we have M, Λ[1] |= ϕ;
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Figure 1. The banker and the robber: (A) concurrent game structure M1 for the per-
fect information case; (B) concurrent epistemic game structure M2 for the imperfect
information case.

M, q |= 〈〈A〉〉2ϕ iff there exists SA such that, for every Λ ∈ out(q, SA), we have
M, Λ[i] for every i ≥ 0;

M, q |= 〈〈A〉〉ϕU ψ iff there exists SA such that for every Λ ∈ out(q, SA) there is
an i ≥ 0, for which M, Λ[i] |= ψ, and M, Λ[j] |= ϕ for every 0 ≤ j < i.

EXAMPLE 5. — Consider a simple formalization of the scenario from Example 1,
presented in Figure 1A. First, the banker sets the code to either 0 or 1, and walks
away. Then, the robber tries to open the safe by typing a number. If the number
is correct, the safe opens; otherwise the robber is jailed in the vault. Nodes in the
graph represent global states of the system. Transitions are labeled by combinations
of actions from b, r, and nop stands for “no operation” or “do nothing” (formally, nop
is just another action).

ATL addresses agents with perfect information, so the following naturally holds:
M1, q0 |= 〈〈r〉〉3open. The right strategy for the robber is to wait first to see which
code is set, and then to type the appropriate number: sr(q0) = nop, sr(q1) = type0,
and sr(q2) = type1. 2

REMARK 6. — Concurrent game structures model actions as abstract atomic enti-
ties, with no underlying structure. This is not necessarily satisfying for everyone’s
purposes. One may, e.g., want to define actions as state transformations that can occur
in the system, like in models of dynamic logic [HAR 00]; STIT models assign ac-
tions/choices with even more complicated conceptual structure [BEL 88]. We choose,
after [ALU 02, SCH 04, JAM 04, ÅGO 06], to avoid the discussion on the nature of
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actions, and make the simplifying assumption that actions are identified by unique
names. Note that this approach follows closely the tradition of game theory, and the
definition of an extensive game form in particular [OSB 94]. 2

One of the most appreciated features of ATL is its model checking complexity
– linear in the number of transitions in the model and the length of the formula. The
model checking problem is, given a formula ϕ and a model M with a state q, to decide
whether M, q |= ϕ or not.

PROPOSITION 7 ([ALU 02]). — The ATL model checking problem is PTIME-complete,
and can be done in time O(ml), where m is the number of transitions in the model
and l is the length of the formula.

Note that the complexity is measured, as usual, as a function of the size of the
input. Thus, while infinite concurrent game structures make perfect sense in general,
they cannot be subjects of model checking unless represented in a finite way.

REMARK 8. — The result in Proposition 7 does not seem so unambiguously opti-
mistic after a closer inspection, i.e., when we measure the size of models in the num-
ber of states, actions and agents [JAM 05a, LAR 06, JAM 07], or when we represent
systems with so called concurrent programs [HOE 06]. This remark is only meant as
a note of warning; such a detailed complexity analysis for the logics of ability under
imperfect information (that are the main topic here) is beyond the scope of this paper.

2

2.2. ATL with Epistemic Logic

ATL is unrealistic in a sense: real-life agents seldom possess complete information
about the current state of the world. On the other hand, imperfect information and
knowledge are handled in epistemic logic in a natural way. A combination of ATL
and epistemic logic, called Alternating-time Temporal Epistemic Logic (ATEL), was
introduced by van der Hoek and Wooldridge in [HOE 02, HOE 03] to enable reasoning
about agents acting under imperfect information.

ATEL enriches the picture with an epistemic component, adding to ATL operators
for representing agents’ knowledge: Kaϕ reads as “agent a knows that ϕ”. Additional
operators EAϕ, CAϕ, and DAϕ, where A is a set of agents, refer to mutual knowl-
edge (“everybody knows”), common knowledge, and distributed knowledge among
the agents from A. Thus, EAϕ means that every agent in A knows that ϕ holds, while
CAϕ means not only that the agents from A know that ϕ, but they also know that they
know it, and that they know that they know that they know it, etc. The distributed
knowledge modality DAϕ expresses that if the agents could share their individual
information they would be able to recognize that ϕ.

Models for ATEL extend concurrent game structures with epistemic accessibility
relations ∼1, ...,∼k⊆ Q × Q (one per agent) for modeling agents’ uncertainty.4 We

4. The relations are assumed to be equivalences.
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will call such models concurrent epistemic game structures (CEGS) in the rest of the
paper. Agent a’s epistemic relation is meant to encode a’s inability to distinguish
between the (global) system states: q ∼a q′ means that, while the system is in state q,
agent a cannot determine whether it is in q or q′. Then, the semantics of Ka is defined
as:

M, q |= Kaϕ iff M, q′ |= ϕ for every q′ such that q ∼a q′.

EXAMPLE 9. — Consider model M2 from Figure 1B, with the epistemic link be-
tween states q1 and q2 (we omit the reflexive indistinguishability links from q0 to q0,
q1 to q1 etc. to make the figure easier to read). This time, the scenario is more real-
istic: the robber does not know the correct code. Thus, one cannot expect him to be
able to open the safe. Still, in ATEL, we have that M2, q0 |= 〈〈r〉〉3open; the same
(non-uniform) strategy as in Example 5 can be used to demonstrate this. Moreover,
we have even that M2, q0 |= Kr〈〈r〉〉3open: using knowledge operators does not help,
because cooperation modalities are still underpinned by a notion of strategy that does
not agree with imperfect information of agents. This is a fundamental problem with
ATEL, which we discuss briefly in Section 2.3. 2

Relations ∼E
A, ∼C

A and ∼D
A , used to model group epistemics, are derived from the

individual relations of agents from A. First, ∼E
A is the union of relations ∼a, a ∈ A.

Next, ∼C
A is defined as the transitive closure of ∼E

A. Finally, ∼D
A is the intersection of

all the ∼a, a ∈ A. The semantics of group knowledge can be defined as below (for
K = C, E, D):

M, q |= KAϕ iff M, q′ |= ϕ for every q′ such that q ∼KA q′.

Note that Ka ≡ C{a} ≡ E{a} ≡ D{a}, so individual knowledge operators Ka are
actually redundant.

In order to explore the subtleties of collective play, we extend the model from Fig-
ure 1B slightly: the pattern is the same, but more complex properties can be demon-
strated.

EXAMPLE 10 (GAMBLING ROBOTS). — Two robots (a and b) play a simple card
game. The deck consists of Ace, King and Queen (A,K,Q). Normally, it is assumed
that A is the best card, K the second best, and Q the worst; so, A beats K and Q, K
beats Q, and Q beats no card. At the beginning of the game, the “environment” agent
deals a random card to both robots (actions dealAK , dealAQ, . . . , dealQK), so that
each player can see his own card, but he does not know the card of the other player.
Then robot a can choose to exchange his card for the one remaining in the deck (action
exch), or he can keep the current one (keep). At the same time, robot b can change the
priorities of the cards to a Rochambeau-like game (that is, A still beats K and K beats
Q, but Q becomes better than A), or he can do nothing (nop), i.e. leave the priorities
unchanged. If a has a better card than b after that, then a win is scored, otherwise the
game ends in a “losing” state.
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q0

qw ql
win

qAK qAQ qKQ qKA qQA qQKa a ab b

b
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keep,chgkeep,chgkeep,nop

nop,nop

nop,nop

nop,nop

nop,nop

nop,nop

keep,nop

keep,nop

keep,nop

exch,chg exch,chg

exch,chg

exch,chg

exch,chg

exch,nop exch,nop

exch,nop

keep,nop
exch,chg
exch,nop

exch,nop

keep,chg
keep,nop
exch,nop

nop,nop

nop,nop

nop,nop

Figure 2. Gambling Robots game. Nodes represent global states of the system; arrows
denote transitions, labeled with combinations of actions from all the agents. Dashed
lines indicate states that are indistinguishable for respective agents. Actions of the
environment agent are omitted from the picture to make it easier to read. As epistemic
relations are by definition reflexive, we omit reflexive epistemic links too.

A CEGS for the game is shown in Figure 2; we will refer to the model as M3

throughout the rest of the paper. State q0 represents the situation before, and states
qAK , . . . , qQK after the cards have been dealt (each qc1c2 stands for the situation when
a has got card c1, and b has got card c2). Actions of the environment are omitted from
the figure for the sake of readability. Similarly to the previous example, M3, q0 |=
〈〈a, b〉〉3win (and even M3, q0 |= C{a,b}〈〈a, b〉〉3win), but there is no uniform strategy
to achieve this: in order to win, a must exchange his card in state qQK , so he must
exchange his card in qQA too (if we require uniformity), and playing exch in qQA

leads to the losing state. So, again, we have 〈〈a, b〉〉3win, although intuitively {a, b}
have no feasible way of ensuring a win. 2

2.3. Problems with ATEL

It has been pointed out in several places that the meaning of ATEL formulae can be
counterintuitive [JAM 03, JAM 04, JON 03]. Most importantly, one would expect that
an agent’s ability to achieve property ϕ should imply that the agent has enough control
and knowledge to identify and execute a strategy that enforces ϕ (cf. also [SCH 04]).
ATEL adds to ATL the vocabulary of epistemic logic; still, in ATEL the strategic and
epistemic layers are combined as if they were independent. They should be – if we do
not ask whether the agents in question are able to identify and execute their strategies.
They should not if we want to interpret strategies as executable plans, about which the
agents know that they guarantee achieving the goal.



Constructive Knowledge 11

First of all, executable plans should not specify different actions in indistinguish-
able states. Most (if not all) current approaches to strategic ability under imperfect
information [JAM 04, SCH 04, JON 03, OTT 04, HER 06], agree with the postulate
from [JAM 03] that only uniform strategies should be considered in the semantics of
〈〈A〉〉. Formally, strategy sa is uniform iff q ∼a q′ implies that sa(q) = sa(q′); a col-
lective strategy SA is uniform iff it consists of only uniform individual strategies. In
other words, agents make choices with respect to their local (epistemic) states rather
than global states of the system. Agents are assumed to know their available actions
(i.e., the choices open to them), so they must have the same choices in indistinguish-
able states. That is, from now on we consider only models in which q ∼a q′ implies
d(a, q) = d(a, q′).

Second, it was suggested in [JAM 04] that, when reasoning about what an agent
can enforce, it seems more appropriate to require the agent to know his winning strat-
egy rather than to know only that such a strategy exists. This problem is closely related
to the distinction between knowledge de re and knowledge de dicto, well known in
the philosophy of language [QUI 56], as well as research on the interaction between
knowledge and action [MOO 85, MOR 91, WOO 00]. One can naturally distinguish
at least four different levels of strategic ability (cf. [JAM 04]):

1) Agent a has a strategy “de re” to enforce ϕ, i.e., he has an executable winning
strategy and knows the strategy (he “knows how to play”);

2) Agent a has a strategy “de dicto” to enforce ϕ (i.e., he knows only that some
executable winning strategy is available);

3) Agent a has an executable strategy to enforce ϕ (but not necessarily even knows
about it);

4) Agent a may happen to behave in such a way that ϕ is enforced. However, the
behavior can have no executable specification (i.e., there might be no uniform strategy
that describes it).

Obviously, (1) ⇒ (2) ⇒ (3) ⇒ (4), but not the other way around. We do think
that all of these concepts can be useful for reasoning about strategic ability under
imperfect information. However, we believe that (1) is particularly important and
natural. Unfortunately, ATEL enables to express only ability of type (4), as Example 9
showed. Several variations on “ATL with imperfect information” have been proposed
as alternatives, yet none of them seems the ultimate definitive solution. We summarize
the most important proposals in the following sections.

2.4. First Try: ATEL with Uniform Strategies

The first attempt to cope with these problems was presented in [JAM 03], where
it was proposed that only uniform strategies should be used in the semantics of co-
operation modalities. “Uniform ATEL” (U-ATEL) captures ability of type (2) and (3):
〈〈a〉〉ϕ says that a has a uniform strategy to achieve ϕ, and Ka〈〈a〉〉ϕ denotes having a
strategy “de dicto”. However, knowing how to play still cannot be expressed.
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EXAMPLE 11. — Consider model M2 from Figure 1B, and assume that q1 is the
current state. The robber does have a uniform strategy to open the safe in one step
(play type0 at q1 and q2, and nop elsewhere), and indeed M2, q1 |= 〈〈r〉〉 gopen. He
also knows that such a strategy is available, and we have M2, q1 |= Kr〈〈r〉〉 gopen
(in every state q such that q1 ∼r q, M, q |= 〈〈r〉〉 gopen). Still, the robber does
not know how to play in q1 to achieve open, and this property has no U-ATEL coun-
terpart. Note also that M2, q0 |= ¬〈〈r〉〉3open ∧ 〈〈∅〉〉 g〈〈r〉〉3open, and M2, q0 |=
¬Kr〈〈r〉〉3open ∧ Kr〈〈∅〉〉 gKr〈〈r〉〉3open (the robber has no strategy to open the
safe in q0, but he can simply wait a moment, and he will magically get one), which
suggests that one should be careful when talking about abilities of type (2) and (3).

Likewise, for the gambling robots we have M3, q0 |= ¬〈〈a〉〉3win, and even M3, q0 |=
¬〈〈a, b〉〉3win (see Section 2.2). On the other hand, M3, qAK |= 〈〈a〉〉3win∧Ka〈〈a〉〉3win.

2

2.5. Aggregating Initial States: “Feasible ATEL”

“Feasible ATEL” [JON 03], which we will sometimes call F-ATEL, is an update of
ATEL, in which the “perfect information” cooperation modalities are kept, but the lan-
guage is extended with new modalities: 〈〈A〉〉f , 〈〈A〉〉fE , 〈〈A〉〉fC , 〈〈A〉〉fKa

and 〈〈A〉〉fMa
,

that represent agents’ ability to find a suitable uniform strategy, with the semantics
summarized below:

M, q |= 〈〈A〉〉f gϕ iff there is a uniform collective strategy SA such that, for every
Λ ∈ out(q, SA), we have M, Λ[1] |= ϕ.
For 〈〈A〉〉f2ϕ and 〈〈A〉〉fϕU ψ: analogously;

M, q |= 〈〈A〉〉fE gϕ iff there is a uniform collective strategy SA such that, for every
q′ such that q ∼E

A q′, and for every Λ ∈ out(q′, SA), we have M, Λ[1] |= ϕ.
For 〈〈A〉〉fE2ϕ and 〈〈A〉〉fEϕU ψ: analogously;

M, q |= 〈〈A〉〉fC gϕ iff there is a uniform collective strategy SA such that, for every
q′ such that q ∼C

A q′, and for every Λ ∈ out(q′, SA), we have M, Λ[1] |= ϕ.
For 〈〈A〉〉fC2ϕ and 〈〈A〉〉fCϕU ψ: analogously;

M, q |= 〈〈A〉〉fKa

gϕ iff there is a uniform collective strategy SA such that, for
every q′ such that q ∼a q′, and every Λ ∈ out(q′, SA), we have M, Λ[1] |= ϕ.
For 〈〈A〉〉fKa

2ϕ and 〈〈A〉〉fKa
ϕU ψ: analogously;

M, q |= 〈〈A〉〉fMa

gϕ iff there is a uniform collective strategy SA and state q′ with
q ∼a q′, such that, for every Λ ∈ out(q′, SA), we have M, Λ[1] |= ϕ.
For 〈〈A〉〉fMa

2ϕ and 〈〈A〉〉fMa
ϕU ψ: analogously;

The idea of cooperation modalities with subscripts that indicate the epistemic “mode”,
in which coalition A can identify their winning strategy, was further developed in the
logic of ATOL, which we present in Section 2.6.
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We note that “Uniform ATEL” can be seen as a subset of “Feasible ATEL”, as the
meaning of 〈〈A〉〉ϕ proposed in [JAM 03] is, for agents playing memoryless strategies,
equivalent to 〈〈A〉〉fϕ from [JON 03].

2.6. Going for Expressive Power: ATOL

Alternating-time Temporal Observational Logic (ATOL), proposed in [JAM 04],
follows the same perspective, but it offers a richer language of strategic operators
to express subtle differences between various kinds of collective abilities of teams.
In this paper, we use the notation proposed in [JAM 05c]. The informal meaning of
〈〈A〉〉K(Γ)ϕ is: “group A has a (memoryless uniform) strategy to enforce ϕ, and agents
Γ can identify the strategy as successful for A in the epistemic senseK”. For instance,
M, q |= 〈〈A〉〉D(Γ)ϕ iff there is SA such that, for every q′ with q ∼D

Γ q′, and every
Λ ∈ out(q′, SA), we have that ϕ is true for Λ.

Formally, letK = E,C, D. The semantics of the enhanced cooperation modalities
can be defined as follows:

M, q |= 〈〈A〉〉K(Γ)
gϕ iff there is a collective memoryless uniform strategy SA

such that, for every q′ with q ∼KΓ q′, and every Λ ∈ out(q′, SA), we have that
M, λ[1] |= ϕ.
For 〈〈A〉〉K(Γ)2ϕ and 〈〈A〉〉K(Γ)ϕU ψ: analogously.

EXAMPLE 12. — Coming back to our gambling robots, it is easy to see that M3, q0 |=
¬〈〈a〉〉K(a)3win, because, for every a’s (uniform) strategy, if it guarantees a win in e.g.
state qAK then it fails in qAQ (and similarly for other pairs of indistinguishable states).
Let us also observe that M3, q0 |= ¬〈〈a, b〉〉E({a,b})3win: in order to win, a must ex-
change his card in state qQK , so he must exchange his card in qQA too (by uniformity),
and playing exch in qQA leads to the losing state. On the other hand, M3, qAQ |=
〈〈a, b〉〉E({a,b}) gwin (a winning strategy: sa(qAK) = sa(qAQ) = sa(qKQ) = keep,
sb(qAQ) = sb(qKQ) = sb(qAK) = nop; qAK , qAQ, qQK are the states that must be
considered by a and b in qAQ). Still, M3, qAK |= ¬〈〈a, b〉〉E({a,b}) gwin.

ATOL allows us to express other ways of identifying a winning strategy too: we
have that M3, qAK |= 〈〈a, b〉〉D({a,b}) gwin∧〈〈a, b〉〉K(a)

gwin (the robots can identify
the strategy if they share their views of the world; also, a can be the “boss” who points
out the strategy), and M3, qAQ |= ¬〈〈a, b〉〉C({a,b}) gwin (despite both a, b knowing
the winning strategy, they do not have common knowledge about it). 2

ATOL is quite expressive. However, it does not allow for combination of strategic
ability and arbitrary epistemic modes – the operators 〈〈A〉〉K(Γ) are fixed by taking
K ∈ {C, E, D}. For example, 〈〈A〉〉EAEA

ϕ is not a well formed ATOL formula –
although it is easy to give an interpretation of such a formula in a similar manner to the
other ATOL operators. Furthermore, the trebly parameterized cooperation modalities
are rather baroque.
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2.7. Elegance and Simplicity: ATLir

Schobbens [SCH 04] approached the problem of combining strategies with un-
certainty on a more abstract level. He suggested that it makes sense to talk about
agents with perfect as well as imperfect information on one hand, and perfect vs.
imperfect recall on the other – and that these two fundamental semantic choices are
orthogonal. This gives rise to four different logics of strategic ability: ATLIR (for
perfect Information and perfect Recall, i.e. the original ATL), ATLiR (for imperfect
information and perfect Recall), etc. As we focus on imperfect information and mem-
oryless strategies in this paper, the logic of ATLir is most interesting for us.

Informally, 〈〈A〉〉irϕ holds in M, q iff there is a uniform collective strategy SA such
that, for every agent a ∈ A, state q′ with q ∼a q′, and path Λ ∈ out(q′, SA), we have
that ϕ is true for Λ. In other words, there is a strategy such that everybody in A knows
that executing this strategy will bring about ϕ. Formally:

M, q |= 〈〈A〉〉ir gϕ iff there is a uniform collective strategy SA such that, for every
a ∈ A, q′ such that q ∼E

A q′, and path Λ ∈ out(SA, q′), we have M,λ[1] |= ϕ.
For 〈〈A〉〉ir2ϕ and 〈〈A〉〉irϕU ψ: analogously.

EXAMPLE 13. — For our gambling robots, we get e.g. that: M3, q0 |= ¬〈〈a〉〉ir3win,
M3, q0 |= ¬〈〈a, b〉〉ir3win, M3, qAQ |= 〈〈a, b〉〉ir gwin, and M3, qAK |= ¬〈〈a, b〉〉ir gwin.

2

Note that 〈〈A〉〉irΦ is equivalent to the “Feasible ATEL” formula 〈〈A〉〉fEΦ, and the
ATOL formula 〈〈A〉〉E(A)Φ. Moreover, it is not possible to express in ATLir that A have
common knowledge about the successful strategy, or that they are able to identify it
if they share their information etc. On the other hand, ATLir stands out among the
existing proposals for its simplicity and conceptual clarity, and can be treated as the
“core”, minimal ATL-based language for ability under imperfect information.

The following proposition sums up some of the results presented in [SCH 04,
JAM 06b, JAM 04]:

PROPOSITION 14. — Model checking “Feasible ATEL”, ATLir and ATOL is ∆P
2 -

complete in the number of transitions (and epistemic links) in the model, and the
length of the formula.

In Section 3, we will propose Constructive Strategic Logic (CSL) which strictly
subsumes ATOL, while sharing (in our opinion) the elegance of ATLir, and model
checking complexity of all of the approaches discussed above. The main idea behind
CSL is that we would like to express various levels of ability with combinations of
some kind of epistemic operators with some kind of cooperation modalities. Before
we present our proposal, we want to mention two logics that, to a limited extent, have
achieved a similar trait. The logics are briefly presented in Sections 2.8 and 2.9.
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2.8. Abilities of Rational Players: ETSL

Epistemic Temporal Strategic Logic [OTT 04] digs deeper in the repository of
game theory, and focuses on the concept of undominated strategies. Its variant of the
cooperation modalities has a different flavor than the ones from ATL, ATEL, ATOL etc.
In a way, 〈〈A〉〉ϕ in ETSL can be summarized as: “if A play rationally to achieve ϕ
(meaning: they never play a dominated strategy), they will achieve ϕ”.

ETSL is underpinned by several interesting concepts. Unfortunately, its original
semantics from [OTT 04] comes with a plethora of auxiliary functions and definitions
(and a couple of omissions), which make it rather hard to read. Moreover, the se-
mantics is defined only for finite turn-based acyclic game models, and the satisfaction
relation refers not only to models and states (respectively paths), but also to a fixed
strategy SAgt (assumed to represent the current strategies of all agents). It has been
shown in [JAM 06a], that the semantics can be extended to concurrent epistemic game
structures, and given in a more compact way. Moreover, for “vanilla” ETSL formulae,5

it can be given via standard semantic clauses for state formulae.

Let M be a CEGS. First, we define the notion of domination as fol-
lows. Let Φ ≡ gψ, 2ψ, or ψ1 U ψ2, where ψ,ψ1, ψ2 are “vanilla” ETSL
formulae. Moreover, let |Φ| denote the set of paths for which Φ holds; for-
mally, | gψ| = {Λ | M, Λ[1] |= ψ}, |2ψ| = {Λ | ∀iM, Λ[i] |= ψ}, and |ψ1 U ψ2| =
{Λ | ∃i(M, Λ[i] |= ψ2 ∧ ∀0≤j<iM, Λ[j] |= ψ1}. Then, strategy SA dominates strat-
egy TA wrt. M, q, and Φ iff both of the following conditions hold:

1) for every q′ with q ∼E
A q′: if out(q′, TA) ⊆ |Φ| then also out(q′, SA) ⊆ |Φ|;

2) there is q′ such that q ∼E
A q′, and out(q′, SA) ⊆ |Φ|, and out(q′, TA) 6⊆ |Φ|.

Strategy SA is undominated wrt. M, q, Φ iff there is no strategy that dominates SA

wrt M, q,Φ.

Now the semantics of 〈〈A〉〉 in ETSL can be expressed entirely in terms of models
and their states:

M, q |= 〈〈A〉〉 gϕ iff for every strategy SA, undominated wrt M, q, gϕ, and every
Λ ∈ out(q, SA), we have that M, Λ[1] |= ϕ.
For 〈〈A〉〉2ϕ and 〈〈A〉〉ϕU ψ: analogously.

The relationship between ETSL and Constructive Strategic Logic is briefly dis-
cussed in Section 4.4. We conjecture that neither of them subsumes the other, but
there are several interesting associations. The most interesting feature of ETSL is per-
haps the fact that, by combining standard epistemic operators and its non-standard
cooperation modalities, we can capture “knowing how to play” for individual agents
(although this does not extend to collective agents), see [JAM 06a] or Section 4.4 for
more details.

5. I.e., formulae in which every temporal operator is preceded by exactly one cooperation
modality.



16 Journal of Applied Non-Classical Logics. Volume ?? – No. ?/????

2.9. Explicit Actions: ATEL-A

In AT(E)L, it is not possible to refer directly to particular actions in the logical lan-
guage. For example, it is not possible to express the fact that “if agent i chooses action
α, then formula ϕ will necessarily be true in the next moment”. ATEL-A [ÅGO 06]
allows such expressions by introducing names of actions, in addition to names of
agents, inside cooperation modalities. For instance, the above expression can be writ-
ten as 〈〈αi〉〉 gϕ. This makes it possible to capture the levels of ability, discussed in
Section 2.3, in the limited case of properties that can be achieved in one step:

(4), (3) 〈〈i〉〉 gϕ: agent i may behave in such a way that ϕ is enforced next. Note that
there is no difference between (4) and (3) when we only talk about the next state
– then uniformity does not play any role;

(2) Ki〈〈i〉〉 gϕ: agent i has a strategy “de dicto” to enforce ϕ next;

(1)
∨

α∈Act Ki〈〈αi〉〉 gϕ: agent i has a strategy “de re” to enforce ϕ next.

Because of explicit actions, ATEL-A is not directly comparable to the logics con-
sidered in this paper, and we will not discuss ATEL-A further.

2.10. Other Possibilities

In the original formulation of ATL, agents were assumed to have perfect recall of
the game, in the sense that they could base their decisions on sequences of states rather
than on single states. Variants of ATL for perfect recall and imperfect information
have also been considered, cf. ATLiR [SCH 04] and ATEL-R* [JAM 04]. However,
as agents seldom have unlimited memory, and logics of strategic ability with imper-
fect information and perfect recall are believed to have undecidable model check-
ing [ALU 02, SCH 04], we do not investigate this variant of ability here.

Yet another, very recent, proposal [HER 06] approaches the problem of strategic
abilities under imperfect information within the framework of STIT (the logic of seeing
to it that). STIT shares many similarities with ATL, but it comes from a different
tradition, and its technical formulation is markedly different from that of ATL. Thus, in
order to analyze STIT-based proposals in our new framework, one must first establish
the precise relationship between both frameworks, i.e., compare models, semantics,
expressive power, pragmatics (e.g., verification issues) etc. Several important results
in this respect have already been reported [WöL 04, BRO 06], but there is still much
to be done.

3. Constructive Strategic Logic: A New Semantics for Ability and Knowledge

ATOL covers more cases than ATLir and “Feasible ATEL”, and it is not commit-
ted to any notion of rationality (unlike ETSL). One major drawback of ATOL is that
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it vastly increases the number of modal operators necessary to express properties of
agents. For team A, a whole family of cooperation modalities 〈〈A〉〉K(Γ) is used (in-
stead of a single modality 〈〈A〉〉 in ATL) to specify who should identify the right strat-
egy for A, in what way etc. It would be much more elegant to modify the semantics
of “simple” cooperation modalities 〈〈A〉〉 and/or epistemic operators, so that they can
be composed into sufficiently expressive formulae. The problem with strategic abil-
ity under uncertainty is that, when analyzing consequences of their strategies, agents
must consider also the outcome paths starting from states other than the current state
– namely, from all states that look the same as the current state. Thus, a property of
a strategy being successful with respect to goal ϕ is not local to the current state; the
same strategy must be successful in all “opening” states being considered. In order
to capture this feature of strategic ability under imperfect information, we change the
type of the satisfaction relation |=, and define what it means for a formula ϕ to be
satisfied in a set of states Q ⊆ St of model M . To our best knowledge, nobody has
used this kind of semantics yet.

Moreover, we extend the language of ATEL with unary “constructive knowledge”
operators Ka, one for each agent a, that yield the set of states, indistinguishable from
the current state from a’s perspective. Constructive common, mutual, and distributed
knowledge are formalized via operators CA,EA, and DA.

3.1. Language and Semantics

The language of Constructive Strategic Logic (CSL) includes atomic propositions,
Boolean connectives, strategic formulae, standard epistemic operators, and construc-
tive knowledge operators for groups of agents (individual knowledge can be defined
as a special case of collective knowledge – see below):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 gϕ | 〈〈A〉〉2ϕ | 〈〈A〉〉ϕU ϕ | CAϕ | EAϕ | DAϕ |
CAϕ | EAϕ | DAϕ.

where A is a set of agents.

REMARK 15. — As we will show in Section 7.2, standard knowledge can be defined
as a special kind of constructive knowledge, and therefore the standard knowledge op-
erators do not have to be included in the language. However, rather than immediately
deriving CA, EA, DA from CA,EA,DA, we choose to give the semantic clauses for
all of them, and only later prove the relationship formally. 2

Models are concurrent epistemic game structures again; that is, we interpret the
formulae of CSL over exactly the same class of models which was used for ATEL,
ATLir, ATOL etc. To recapitulate, a CEGS can be defined as a tuple

M = 〈Agt, St, Π, π, Act, d, o,∼1, ...,∼k〉,

where:
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– Agt = {1, ..., k} is a finite nonempty set of all agents,
– St is a nonempty set of states,
– Π is a set of atomic propositions,
– π : St → P(Π) is a valuation of propositions,
– Act is a nonempty set of (atomic) actions;
– function d : Agt×St → P(Act) defines actions available to an agent in a state;

d(a, q) 6= ∅ for all a ∈ Agt, q ∈ St,
– o is a (deterministic) transition function that assigns an outcome state to each

combination of a state and a vector of actions (one action per agent). That is,
o(q, α1, . . . , αk) ∈ St for every q ∈ St and 〈α1, . . . , αk〉 ∈ d(1, q)× · · · × d(k, q);

– ∼1, ...,∼k⊆ St × St are epistemic accessibility relations, one per agent. It is
assumed that each ∼a is an equivalence relation, and that q ∼a q′ implies d(a, q) =
d(a, q′).

Again, a (memoryless) strategy sa of agent a is a conditional plan represented
by function sa : St → Act such that sa(q) ∈ d(a, q) for every q. A collective
strategy SA is a tuple of strategies, one per agent from A. Strategy sa is uniform
iff q ∼a q′ implies sa(q) = sa(q′); a collective strategy is uniform iff it consists
of only uniform individual strategies. A path Λ is an infinite sequence of states that
can be effected by subsequent transitions; by Λ[i], we denote the ith position on path
Λ. Function out(q, SA) returns the set of all paths that may result from agents A
executing strategy SA from state q onward (see Section 2.1 for the precise definition).
Collective epistemic relations are defined as: ∼D

A=
⋂

a∈A ∼a, ∼E
A=

⋃
a∈A ∼a; ∼C

A

is defined as the transitive closure of ∼E
A.

Now we define the notion of a formula ϕ being satisfied by a (non-empty) set
of states Q in a model M , written M, Q |= ϕ. We will also write M, q |= ϕ as a
shorthand for M, {q} |= ϕ. Note that it is the latter notion of satisfaction (in single
states) that we will ultimately be interested in – but that notion is defined in terms of
the (more general) satisfaction in sets of states. Let img(q,R) be the image of state q
with respect to binary relationR, i.e., the set of all states q′ such that qRq′. Moreover,
we use out(Q,SA) as a shorthand for

⋃
q∈Q out(q, SA), and img(Q,R) as a short-

hand for
⋃

q∈Q img(q,R). The new semantics is given through the following clauses.
In the semantics of cooperation modalities, only memoryless uniform strategies are
considered.

M, Q |= p iff p ∈ π(q) for every q ∈ Q;

M, Q |= ¬ϕ iff M, Q 6|= ϕ;

M, Q |= ϕ ∧ ψ iff M, Q |= ϕ and M, Q |= ψ;

M, Q |= 〈〈A〉〉 gϕ iff there exists SA such that, for every Λ ∈ out(Q,SA), we
have that M, {Λ[1]} |= ϕ;
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M, Q |= 〈〈A〉〉2ϕ iff there exists SA such that, for every Λ ∈ out(Q,SA) and
i ≥ 0, we have M, {Λ[i]} |= ϕ;

M, Q |= 〈〈A〉〉ϕU ψ iff there exists SA such that, for every Λ ∈ out(Q,SA), there
is an i ≥ 0 for which M, {Λ[i]} |= ψ and M, {Λ[j]} |= ϕ for every 0 ≤ j < i.

M, Q |= KAϕ iff M, q |= ϕ for every q ∈ img(Q,∼KA) (where K = C,E, D).

M, Q |= K̂Aϕ iff M, img(Q,∼KA) |= ϕ (where K̂ = C,E,D and K = C, E, D,
respectively).

The satisfaction relation |= gives us both the traditional notion of satisfaction in
a state, and the more general notion of satisfaction in a set of states. As mentioned
above, we are usually interested in the former, but in order to interpret, e.g., an ex-
pression such as CA〈〈A〉〉 gp in a single state, we must interpret the subexpression
〈〈A〉〉 gp in a set of states.

Formally, the language includes only operators for representing knowledge of
teams. However, individual knowledge operators can be defined in the usual man-
ner as:

Kaϕ ≡ C{a}ϕ, and

Kaϕ ≡ C{a}ϕ.

As a brief example, take the formula ϕ = Ka〈〈a〉〉 gψ where a is an agent.
We have that M, q |= ϕ iff there is a strategy Sa for a such that for every Λ ∈
out(img(q,∼a), Sa), M, Λ[1] |= ψ; in other words iff there is an (executable) strat-
egy for a which is successfull (achieves ψ in the next state) in all the states that a
considers to be possible. Or, in the terminology of Section 2.3, a knows a winning
strategy – a has a strategy de re (for achieving ψ). We will discuss how the logic cap-
tures many subtly different properties of ability under imperfect information in more
detail in Section 4, after we have clarified a few additional fundamental issues.

We employ the usual definition of the “sometime” operator:

3ϕ ≡ >U ϕ

We will also use derived propositional connectives. However, the exact meaning of
these in the non-standard semantics must be carefully studied, and we will do that in
Section 3.2. The CSL concept of validity is discussed in Section 3.3.

A note on notation: as above, we will henceforth use KA to denote an arbitrary
standard knowledge operator for agents A (i.e., CA, EA or DA), and we use K̂A to
denote the constructive knowledge operator corresponding to KA, i.e., ĈA = CA,
ÊA = EA and D̂A = DA. We use K,K′,K1,K2 etc. to denote arbitrary standard
knowledge operators for arbitrary sets of agents, and, again, K̂, K̂′, K̂1, K̂2 etc. to
denote the corresponding constructive modalities.
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3.2. Additional Operators

In addition to the derived operators introduced in Section 3.1, we use a slightly
unusual definition of the Boolean “false” and “true” constants:

⊥ ≡ 〈〈∅〉〉(p ∧ ¬p)U (p ∧ ¬p), where p is an arbitrary primitive proposition,

> ≡ 〈〈∅〉〉(¬⊥)U (¬⊥)

and the usual definition of Boolean connectives6:

ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2),

ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2, and

ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ2).

The above Boolean operators have the following semantic characterizations:

PROPOSITION 16. —

1) M,Q 6|= ⊥ for all Q ⊆ St, Q 6= ∅.

2) M,Q |= > for all Q ⊆ St, Q 6= ∅.

3) M,Q |= ϕ1 ∨ ϕ2 iff M, Q |= ϕ1 or M, Q |= ϕ2.

4) M,Q |= ϕ1 → ϕ2 iff M,Q |= ϕ1 implies M,Q |= ϕ2.

5) M,Q |= ϕ1 ↔ ϕ2 iff we have that M, Q |= ϕ1 iff M,Q |= ϕ2.

Proof.

1) Suppose that M, Q |= ⊥ for some Q 6= ∅. Then M, Q |= 〈〈∅〉〉(p ∧ ¬p)U (p ∧
¬p), so for all paths Λ starting from the states in Q we have M, Λ[0] |= p ∧ ¬p. That
is, for all q ∈ Q: M, q |= p ∧ ¬p. As Q is nonempty, there is at least one such q. But
that means that p ∈ π(q) and p /∈ π(q), which cannot be the case.

2) Analogous.
3) M,Q |= ϕ1 ∨ ϕ2 iff M,Q |= ¬(¬ϕ1 ∧ ¬ϕ2) iff M, Q 6|= ¬ϕ1 ∧ ¬ϕ2 iff

M, Q 6|= ¬ϕ1 or M,Q 6|= ¬ϕ2 iff M, Q |= ϕ1 or M,Q |= ϕ2.
4), 5) Straightforward from the above.

¥

To conclude the analysis of standard connectives in this (rather non-standard) set-
ting, we observe that the ¬ operator behaves like classical negation: it obeys the law

6. The reason why we use the above definitions of > and ⊥ instead of the more common
ones: ⊥ ≡ p ∧ ¬p, > ≡ ¬⊥ is that in the restricted language CSL−, discussed in Sec-
tion 6.3, certain formulae are disallowed, namely the ones in which negation (or a sequence of
conjunctions, followed by negation) follows a constructive knowledge operator. Defining the
Boolean constants the way we do, we make sure that no unraveling of > or ⊥ will ever lead to
such a formula.
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of double negation, the law of excluded middle, and the consistency requirement in
every possible context:

PROPOSITION 17. — We have the following for every M and Q ⊆ St:

1) M,Q |= ¬¬ϕ ↔ ϕ,

2) M,Q |= ϕ ∨ ¬ϕ,

3) M,Q |= ¬(ϕ ∧ ¬ϕ).

Proof. Straightforward from Proposition 16 and the semantic definition of ¬. ¥

It should be noted that there are other possibilities for defining negation, disjunc-
tion and implication, corresponding to the different ways of quantifying over the set
Q. We discuss the issue in more detail in Section 7.

3.3. Validity

We say that a formula is weakly valid (or simply valid) if it is satisfied individually
by each state in every model, i.e., if M, q |= ϕ for all models M and states q in M . It
is strongly valid if it is satisfied by all non-empty sets in all models; i.e., if for each M
and every non-empty set of states Q it is the case that M, Q |= ϕ. We are ultimately
interested in the former (see Remark 19 below). The importance of strong validity, on
the other hand, lies in the fact that strong validity of ϕ ↔ ψ makes ϕ and ψ completely
interchangeable (cf. Proposition 20.2). It is not difficult to see that the same is not true
for weak validity.

PROPOSITION 18. —

1) Strong validity implies validity.

2) Validity does not imply strong validity.

Proof. (1) Straightforward. (2) We here take the liberty to refer forward to some
simple results we haven’t proven yet, because it is instructive to point out the distinc-
tion between weak and strong validity at this point. By Propositions 16.5 and 44, we
have that for any M and set of states Q, M,Q |= 〈〈∅〉〉ϕU ϕ ↔ ϕ iff (∀q∈QM, q |= ϕ
iff M, Q |= ϕ). It follows immediately that 〈〈∅〉〉ϕU ϕ ↔ ϕ is (weakly) valid, for any
ϕ. It follows from Lemma 38.1 that there is a M and a set of states Q and a formula ϕ
such that M,Q 6|= ϕ but ∀q∈QM, q |= ϕ; thus 〈〈∅〉〉ϕU ϕ ↔ ϕ is not strongly valid. ¥

REMARK 19. — The term the logic is sometimes understood as the set of all valid
formulae in the logic. In this sense, we define the logic of CSL as the set of all weakly
valid formulae of CSL. In a similar way, we say that a formula ϕ is CSL-satisfiable if it
is weakly satisfiable in CSL, i.e., there is a model M and a state q such that M, q |= ϕ.

2

Propositions 16.4 and 16.5 from Section 3.2 have two important consequences.
First, the rule of Modus Ponens is correct with respect to this semantics. Second, if
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ϕ1 ↔ ϕ2 is strongly valid, then formulae ϕ1 and ϕ1 are completely interchangeable
under strong (and hence also weak) validity.

PROPOSITION 20. —

1) If ϕ1 → ϕ2 is strongly (resp. weakly) valid, and ϕ1 is strongly (resp. weakly)
valid, then ϕ2 is strongly (resp. weakly) valid.

2) If ϕ1 ↔ ϕ2 is strongly valid, and ψ′ is obtained from ψ through replacing an
occurrence of ϕ1 by ϕ2, then M, Q |= ψ iff M,Q |= ψ′.

Proof. Straightforward. ¥

4. Expressing Agents’ Strategic Abilities

In the language of Constructive Strategic Logic, strategic properties of coalitions
can be expressed in a flexible and elegant way. To support this claim, we first show that
the philosophical discourse on various levels of knowledge and ability, mentioned in
Section 2.3, has its formal counterpart in CSL formulae. Then, we present a translation
of ATLir, ATOL and “Feasible ATEL” to CSL, and thus prove that the latter embeds the
former ones. We also discuss the relationship between ETSL and CSL. To avoid
confusion, we will use the satisfaction sign with subscripts (|=

ATOL
, |=

CSL
, |=

ETSL
etc.),

indicating which semantics is currently referred to.

4.1. Capturing Levels of Strategic Power

The reason why we need to interpret formulae over sets of states is that we need
non-standard epistemic operators: M, q |= Ka〈〈a〉〉ϕ expresses the fact that a has a
single strategy that enforces ϕ from all states indiscernible from q, instead of stating
that ϕ can be achieved from every such state separately. Note that the latter property
is very much in the spirit of standard epistemic logic, and indeed can be captured with
the standard knowledge operator (via Ka〈〈a〉〉ϕ). Speaking in more abstract terms:

1) Ka〈〈a〉〉ϕ refers to agent a having a strategy “de re” to enforce ϕ (i.e. having a
successful strategy and knowing the strategy);

2) Ka〈〈a〉〉ϕ refers to agent a having a strategy “de dicto” to enforce ϕ (i.e. know-
ing only that some successful strategy is available);

3) 〈〈a〉〉ϕ expresses that agent a has a strategy to enforce ϕ from the current state
(but not necessarily even knows about it).

Above, each of the three formulae are informally interpreted in an assumed (single)
state q of a model M , i.e., we discuss the meaning of, e.g., M, q |= Ka〈〈a〉〉ϕ. The
meaning of this formula in this single state is again defined by interpreting a sub-
formula in a certain set of states. By strategies here, we only mean executable (i.e.,
uniform) strategies. Capturing different ability levels of coalitions is analogous, with
various “epistemic modes” of collective recognizing the right strategy.
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Figure 3. Simple market example: model M4

EXAMPLE 21. — Robot a has no winning strategy in the starting state of the game:
M3, q0 |= ¬〈〈a〉〉3win, which implies that it has neither a strategy “de re” nor “de
dicto”: M3, q0 |= ¬Ka〈〈a〉〉3win ∧ ¬Ka〈〈a〉〉3win. On the other hand, he has a
successful strategy in qAK (just play keep) and it knows it has one (because an-
other action, exch, is bound to win in qAQ); still, the knowledge is not construc-
tive, since a does not know which strategy is the right one in the current situation:
M3, qAK |= 〈〈a〉〉 gwin ∧Ka〈〈a〉〉 gwin ∧ ¬Ka〈〈a〉〉 gwin.

Other properties of the gambling robots, that we discussed in Examples 13 and 12,
can be easily expressed in the new logic by combining constructive knowledge with
cooperation modalities: M3, q0 |= ¬E{a,b}〈〈a, b〉〉3win, M3, qAK |= D{a,b}〈〈a, b〉〉 gwin∧
Ka〈〈a, b〉〉 gwin∧¬E{a,b}〈〈a, b〉〉 gwin, M3, qAQ |= E{a,b}〈〈a, b〉〉 gwin∧¬C{a,b}〈〈a, b〉〉 gwin
etc. In fact, it turns out that the new logic is expressive enough to embed most ap-
proaches we have discussed. We present an appropriate translation in the next section.

2

EXAMPLE 22. — Consider a market model, depicted in Figure 3, which formalizes
in a very simple way the scenario from Example 3. The economy is assumed to run in
simple cycles: after the moment of bad economy (bad-market), there is always a good
time for small and medium enterprises (s&m), after which the market tightens and an
oligopoly emerges. At the end, the market gets stale, and we have stagnation and bad
economy again.

The company c is the only agent whose actions are represented in the model. The
company can wait (action wait) or decide to start production: either on its own (own-
production), or as a subcontractor of a major company (subproduction). Both deci-
sions can lead to either loss or success, depending on the current market conditions.
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However, the company management cannot recognize the market conditions: bad mar-
ket, time for small and medium enterprises, and oligopoly market look the same to
them, as the epistemic links for c indicate.

The company can call the services of two marketing experts. Expert 1 is a special-
ist on oligopoly, and can recognize oligopoly conditions (although she cannot distin-
guish between bad economy and s&m market). Expert 2 can recognize bad economy,
but he cannot distinguish between other types of market. The experts’ actions have
no influence on the actual transitions of the model, and are omitted from the graph
in Figure 3. It is easy to see that the company cannot identify a successful strat-
egy on its own: for instance, for the small and medium enterprises period, we have
that M4, q1 |= ¬Kc〈〈c〉〉3success. It is not even enough to call the help of a single
expert: M4, q1 |= ¬K1〈〈c〉〉3success ∧ ¬K2〈〈c〉〉3success, or to ask the experts to
independently work out a common strategy: M4, q1 |= ¬E{1,2}〈〈c〉〉3success. Still,
the experts can propose the right strategy if they join forces and cooperate to find the
solution: M4, q1 |= D{1,2}〈〈c〉〉3success.

Note that this is not true any more for bad market, i.e., M4, q0 |= ¬D{1,2}〈〈c〉〉3success,
because c is a memoryless agent, and it has no uniform strategy to enforce success
from q0 at all. However, the experts can suggest a more complex scheme that involves
consulting them once again in the future: M4, q0 |= D{1,2}〈〈c〉〉 gD{1,2}〈〈c〉〉3success.

2

For strategic abilities, standard knowledge corresponds to knowing “de dicto”,
while constructive knowledge captures “knowing how to play”. We observe that both
kinds of epistemic operators can be combined in a meaningful way. For example,
KaKb〈〈b〉〉3win says that agent a knows that player b knows how to win. Note that this
is substantially different from KaKb〈〈b〉〉3win, which says that agent a can identify a
strategy which b knows to be winning. Also, when interleaving epistemic operators
with strategic operators, we can, e.g., describe an ability to acquire, distribute or main-
tain ability. For instance, Ka〈〈a〉〉2Kb〈〈b〉〉3win means that a knows how to maintain
b’s (constructive) ability to win, while Ka〈〈a〉〉2Kb〈〈b〉〉3win says only that a knows
that this is in principle possible, and Ka〈〈a〉〉2Kb〈〈b〉〉3win says that a knows how to
keep b aware that a winning strategy exists.

4.2. Expressivity of CSL

Let L be the logic of ATLir, ATOL or F-ATEL, and let ϕ,ψ be formulae of L. Also,
let K = C,E, D and K̂ = C,E,D, respectively. Then, let the translation function tr
be defined as follows:
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tr(p) = p tr(¬ϕ) = ¬tr(ϕ)
tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ) tr( gϕ) = gtr(ϕ)

tr(2ϕ) = 2tr(ϕ) tr(ϕU ψ) = tr(ϕ)U tr(ψ)
tr(〈〈A〉〉irϕ) = EA〈〈A〉〉tr(ϕ) tr(〈〈A〉〉K(Γ)ϕ) = K̂Γ〈〈A〉〉tr(ϕ)

tr(〈〈A〉〉fϕ) = 〈〈A〉〉tr(ϕ) tr(〈〈A〉〉fKϕ) = K̂A〈〈A〉〉tr(ϕ)
tr(〈〈A〉〉fKb

ϕ) = Kb〈〈A〉〉tr(ϕ) tr(〈〈A〉〉fMb
ϕ) = ¬Kb¬〈〈A〉〉tr(ϕ)

tr(KAϕ) = KAtr(ϕ)

The following result justifies the translation.

THEOREM 23. — M, q |=L ϕ iff M, q |=
CSL

tr(ϕ).
Proof in the Appendix.

COROLLARY 24. — The translation yields a reduction of ATLir, ATOL and “Feasible
ATEL” model checking problems to CSL model checking. The time needed for the
reduction, and the resulting formula, are linear in the length of the original formula.
We summarize the model checking complexity results for CSL in Section 5.

PROPOSITION 25. — Constructive Strategic Logic is strictly more expressive than
ATLir, ATOL etc.

Proof. It is sufficient to prove that there is a CSL formula ϕ that has no ATOL equiva-
lent (i.e., there is no ATOL formula which holds in exactly the same models and states
as ϕ). Consider the formula ϕ ≡ EAEA〈〈A〉〉ψ. For most models (M3 from Figure 2
being an example) we have ∼D

A ( ∼E
A ( ∼E

A ◦ ∼E
A ( ∼C

A, so ϕ is equivalent to
neither 〈〈A〉〉D(A)ψ, 〈〈A〉〉E(A)ψ, nor 〈〈A〉〉C(A)ψ. This is of course possible, because
EA (similarly to EA) is not a KD45 modality (see Theorem 40 in Section 6.4). ¥

Note that the semantics of CSL is based on exactly the same class of models as
ATEL, ATOL, ATLir etc. (i.e., on CEGSs). Thus, the above translation can also be used
for reduction of validity (resp. satisfiability) problems for ATLir, ATOL and “Feasible
ATEL” to weak validity (resp. satisfiability) of CSL. By Theorem 23, we have the
following.

COROLLARY 26. — ATLir, ATOL and “Feasible ATEL” can be embedded in CSL.

4.3. Constructive Strategic Logic vs. ATEL

As we already pointed out in Section 2.3, ATEL only enables expressing ability of
type (4): the ATEL formula 〈〈A〉〉ϕ says that agents A may happen to behave in such a
way that ϕ is enforced (but there might be no executable strategy to enforce it). Thus,
ATEL is about a kind of ability different from the “constructive” one we study in this
paper. Formally, ATEL differs from CSL in two main ways. First, it does not require
uniform strategies. Second, it does not have the constructive knowledge operators.

First, consider non-uniformity. Note that uniform strategies is not a new idea of
CSL (see Section 2), and that the differences between the ATEL operators and the
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uniform variants used by CSL are also shared by all the previously studied logics using
uniform strategies. We nevertheless comment briefly on the difference here. First, the
“nexttime” fragment of ATEL can be embedded in CSL, as the following proposition
shows. It should be remembered that the CEGSs used in ATEL are slightly more general
than the ones used in CSL (and the other approaches we have discussed): they do not
require that the same actions are available in indistinguishable states. Below we refer
to such CEGSs as uniform CEGSs.

PROPOSITION 27. — Let ϕ be an ATEL formula that does not include operators
2, U and M be a uniform CEGS. Then, M, q |=

ATEL
ϕ iff M, q |=

CSL
ϕ.

Proof. It is sufficient to note that M, q |=
ATEL

〈〈A〉〉 gϕ iff M, q |=
CSL
〈〈A〉〉 gϕ. Thus,

we have that the “nexttime” formulae have the same semantics in both logics when
interpreted at single states, and ATEL formulae include no “constructive” operators for
aggregating sets of states. ¥

REMARK 28. — It is well known that cooperation modalities for strategies of perfect
information (e.g., the ones in ATL and ATEL) have the following fixpoint characteriza-
tions:

〈〈A〉〉2ϕ ↔ ϕ ∧ 〈〈A〉〉 g〈〈A〉〉2ϕ, (1)

〈〈A〉〉ϕU ψ ↔ ψ ∨ ϕ ∧ 〈〈A〉〉 g〈〈A〉〉ϕU ψ. (2)

For uniform information strategies, the above formulae are not valid any more (see
below). Still, it would be possible to embed the whole ATEL in CSL if we included
fixpoint operators in the latter. In that case, the following translation could be used to
translate ATL/ATEL modalities to equivalent CSL counterparts:

tr(〈〈A〉〉2ϕ) = νZ.ϕ ∧ 〈〈A〉〉 gZ,

tr(〈〈A〉〉ϕU ψ) = µZ.ψ ∨ ϕ ∧ 〈〈A〉〉 gZ.

2

We note that due to the uniformity of CSL strategies, the set of ATEL validities
is not contained in CSL validities. A counter-example is the formula 〈〈r〉〉2¬jail ↔
¬jail ∧ 〈〈r〉〉 g〈〈r〉〉2¬jail. It is valid in ATEL (it is an instance of the valid scheme that
gives a characterization of “always” in terms of “next” in ATL and ATEL). Still, the
formula is false in model M2 and state q0 from Example 9: the left hand side of the
biconditional is false, but the right hand side is true in M2, q0.

More importantly, we can show that CSL is more powerful than ATEL when we
want to characterize sets of situations in actual systems. First, given a finite model,
every ATEL formula has a CSL counterpart (i.e., a CSL formula which holds in exactly
the same states). Second, CSL allows for finer-grained specifications than ATEL (in
the sense that there are CSL formulae for which there are no ATEL formulae with the
same extension). The result is formalized in Propositions 29 and 30.
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Figure 4. A model with one agent. From each of the states q1, q2, q3, q4, the same
outcomes can be achieved in one step, albeit through different actions.

PROPOSITION 29. — Given a uniform CEGS, every ATEL formula has a CSL coun-
terpart with the same extension (i.e., one which is satisfied in exactly the same states
of the model).

Proof (sketch). For finite models: let M be a model with |M | states, and ϕ be an ATEL
formula. All subformulae 〈〈A〉〉2ψ can be equivalently rewritten as (ψ∧〈〈A〉〉 g)|M |ψ,
where |M | is the number of states in M . This follows by the property (1) above, and
the fact that, after |M | steps, the system is bound to come back to one of the previ-
ously visited states, for which a successful action has already been found. Similarly,
subformulae 〈〈A〉〉ψ1 U ψ2 can be equivalently rewritten as (ψ2 ∨ψ1∧〈〈A〉〉 g)|M |ψ2.
This way, we get an ATEL formula ϕ′ without 2, U which holds in exactly the same
states as ϕ. By Proposition 27, ϕ′ has the same extension in ATEL and CSL. ¥

PROPOSITION 30. — Given a uniform CEGS, there can be CSL formulae that have
no ATEL counterpart with the same extension (i.e., one which is satisfied in exactly the
same states of the model).

Proof. Consider model M5 from Figure 4. The formulaKa〈〈a〉〉 gwin holds in q3 and
q4, but not in q1 nor q2. There is no ATEL formula which is true exactly in q3, q4: it is
easy to see that an ATEL formula is true in q1 iff it is true in q2 iff it is true in q3 iff it
is true in q4. ¥

4.4. Constructive Strategic Logic vs. ETSL

CSL and ETSL are underpinned by different notions of ability. ETSL can be treated
as a logic that describes the outcome of rational play under imperfect information,7

7. We emphasize that this is a specific notion of rationality (i.e., agents are assumed to play
only undominated strategies). Game theory proposes several other rationality criteria as well,
based e.g. on Nash equilibrium, dominant strategies, or Pareto efficiency. In fact, it is easy to
imagine ETSL-like logics based on these notions instead.
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in the same way as CSL can be seen as a logic that captures agents’ strategic abili-
ties (regardless of whether the agents play rationally or not). Thus, the focus of CSL
and ETSL is different, and we suspect that neither logic formally subsumes the other.
However, several interesting associations have been already proposed in [JAM 06a].

Let us consider only models with finite state spaces,8 and formulae Φ ≡ gψ, 2ψ,
or ψ1 U ψ2 where ψ, ψ1, ψ2 are “vanilla” ETSL formulae.

PROPOSITION 31 ([JAM 06A]). — An agent has a strategy “de re” to enforce Φ if,
and only if, he knows that his rational play will bring about Φ. Formally:

M, q |=
ETSL

Ka〈〈a〉〉Φ iff M, q |=
CSL
Ka〈〈a〉〉Φ.

PROPOSITION 32 ([JAM 06A]). — If a coalition has common knowledge about
how to play, then it has common knowledge that rational play will be successful:

if M, q |=
CSL
CA〈〈A〉〉Φ then M, q |=

ETSL
CA〈〈A〉〉Φ.

The same holds for neither mutual nor distributed knowledge.

PROPOSITION 33 ([JAM 06A]). — If A have distributed knowledge that rational
play will bring about Φ, then they have distributed knowledge how to play to bring
about Φ. Formally:

if M, q |=
ETSL

DA〈〈A〉〉Φ then M, q |=
CSL
DA〈〈A〉〉Φ.

The same holds for neither mutual nor common knowledge.

A more definitive study of this issue is beyond the scope of this paper.

5. Verification of Strategic Abilities Through Model Checking

The model checking problem asks whether a given formula ϕ holds in a given
model M and state q. We define the general model checking problem as the problem
that asks whether formula ϕ holds in model M and set of states Q. Let mctl(ϕ, M)
be a CTL model checker that returns the set of all states which satisfy ϕ in M . Below,
we sketch an algorithm mcheck(ϕ,M, Q) that returns true if M, Q |=

CSL
ϕ and false

otherwise, running in time ∆P
2 , i.e., in deterministic polynomial time with adaptive

queries to an NP oracle.

Case ϕ ≡ p: return(true) if p ∈ π(q) for all q ∈ Q, else return(false);

Case ϕ ≡ ¬ψ: return(true) if mcheck(ψ, M, Q) = false, else return(false);

Case ϕ ≡ ψ1 ∧ ψ2: return(true) if mcheck(ψ1,M, Q) = true and mcheck(ψ2,M,Q) =
true, else return(false);

8. More generally, we can consider models M such that there exists at least one undominated
strategy wrt M, q, Φ.
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Case ϕ ≡ KAψ: Compute Q′ := img(Q,∼KA), and then return(true) if mcheck(ψ,M, q) =
true for all q ∈ Q′, else return(false);

Case ϕ ≡ K̂Aψ: return(mcheck(ψ, M, img(Q,∼KA)));

Case ϕ ≡ 〈〈A〉〉 gψ: Run mcheck(ψ,M, q) for every q ∈ St, and label the states in
which the answer was true with an additional proposition yes (not used else-
where). Then, guess the strategy of A, and “trim” model M by removing all the
transitions inconsistent with the strategy (yielding a sparser model M ′). Finally,
return(true) if Q ⊆ mctl(A gyes,M ′), else return(false).

Note: subformula ψ is checked in the original model M , and not in M ′!

Case ϕ ≡ 〈〈A〉〉2ψ: Run mcheck(ψ, M, q) for every q ∈ St, and label the states in
which the answer was true with an additional proposition yes (not used else-
where). Then, guess the strategy of A, and “trim” model M by removing all the
transitions inconsistent with the strategy (yielding a sparser model M ′). Finally,
return(true) if Q ⊆ mctl(A2yes,M ′), else return(false). Again, note that ψ is
checked in the original model M .

Case ϕ ≡ 〈〈A〉〉ψ1 U ψ2: analogous.

As model checking CTL can be done in deterministic polynomial time [CLA 86],
we get the following.

PROPOSITION 34. — General model checking for Constructive Strategic Logic is
in ∆P

2 when the input size is measured with the number of transitions (and epistemic
links) in the model, and the length of the formula.

For the lower bound, we observe that CSL subsumes ATLir, and model checking
ATLir is ∆P

2 -complete [SCH 04, JAM 06b]. Thus, we pay no price in terms of com-
plexity for using the more expressive language of CSL:

THEOREM 35. — General model checking for Constructive Strategic Logic is ∆P
2 -

complete in the number of transitions (and epistemic links) in the model, and the
length of the formula.

6. Constructive Knowledge

Philosophically, constructive knowledge draws inspiration from mathematical con-
structivism: in order to “constructively know” that ϕ, agents A must be able to find (or
“construct”) a mathematical object that supports ϕ. This is relevant when ϕ ≡ 〈〈B〉〉ψ
– in that case, the mathematical object in question is a strategy for B which guarantees
achieving ψ. The semantic role of constructive knowledge operators is to produce sets
of states that will appear on the left hand side of the satisfaction relation. In a way,
these modalities “aggregate” states into sets, and sets into bigger sets. On the other
hand, most of the other operators “split” (or “destroy”) sets in the sense that, for eval-
uating M,Q |= ϕ, they require evaluation of subformulae of ϕ in single states rather
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than sets of states. Standard epistemic operators (CA, EA, DA) are the most straight-
forward examples (e.g., evaluating CAψ in M, Q “splits” into evaluating ψ in each
state from img(Q,∼C

A) separately). Cooperation modalities (combined with temporal
operators) are “splitting” in a similar way. Besides the “aggregating” and “splitting”
operators, there are also “neutral” ones that do not change the set of reference: namely,
conjunction (∧) and negation (¬). In what follows, we study important properties of
these operators in CSL.

6.1. Properties of Constructive Knowledge

In the following proposition we list some properties of constructive knowledge
(keep in mind that strong validity implies validity).

PROPOSITION 36. — The following are strongly valid for any K̂ ∈ {C,D,E}:

1) K̂A(ϕ1 ∨ ϕ2) ↔ (K̂Aϕ1 ∨ K̂Aϕ2)
2) K̂A¬ϕ ↔ ¬K̂Aϕ

3) K̂A(ϕ1 ∧ ϕ2) ↔ (K̂Aϕ1 ∧ K̂Aϕ2)
4) K̂A(ϕ1 → ϕ2) ↔ (K̂Aϕ1 → K̂Aϕ2)

Proof.

1) M,Q |= K̂A(ϕ1∨ϕ2) iff M, img(Q,∼K̂A) |= ϕ1∨ϕ2 iff M, img(Q,∼K̂A) |= ϕ1

or M, img(Q,∼K̂A) |= ϕ2 iff M, Q |= K̂Aϕ1 or M, Q |= K̂Aϕ2 iff M, Q |= K̂Aϕ1 ∨
K̂Aϕ2.

2) M,Q |= K̂A¬ϕ iff M, img(Q,∼K̂A) |= ¬ϕ iff M, img(Q,∼K̂A) 6|= ϕ iff
M, Q 6|= K̂Aϕ iff M, Q |= ¬K̂Aϕ.

3) M,Q |= K̂A(ϕ1∧ϕ2) iff M, img(Q,∼K̂A) |= ϕ1∧ϕ2 iff M, img(Q,∼K̂A) |= ϕ1

and M, img(Q,∼K̂A) |= ϕ2 iff M, Q |= K̂Aϕ1 and M, Q |= K̂Aϕ2 iff M,Q |=
K̂Aϕ1 ∧ K̂Aϕ2.

4) M,Q |= K̂A(¬ϕ1∨ϕ2) iff M, Q |= (K̂A¬ϕ1)∨K̂Aϕ2 iff M, Q |= (¬K̂Aϕ1)∨
K̂Aϕ2 iff M,Q |= K̂Aϕ1 → K̂Aϕ2.

¥

6.2. Is Ka an Epistemic Operator?

We believe that operators CA, EA, DA andKa do capture a special kind of knowl-
edge of agents. An interesting question is: do this notion of knowledge have the prop-
erties usually associated with knowledge? In particular, do postulates K,D,T,4,5
of epistemic logic hold for constructive knowledge? In general, the answer is no;
particularly, the truth axiom does not hold.
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a
p ¬p

q q′(α1, β) (α1, β)

(α2, β)

(α2, β)

Figure 5. Model M6 with two agents a, b, and two states q, q′ such that q ∼a q′

THEOREM 37. — Below, we list the constructive knowledge versions of some of the
S5 properties for individual agents. “Yes” means that the schema is strongly valid;
“No” means that it is not even weakly valid (incidentally, none of the properties turns
out to be weakly but not strongly valid).

K Ka(ϕ → ψ) → (Kaϕ → Kaψ) Yes
D ¬Ka⊥ Yes
T Kaϕ → ϕ No
4 Kaϕ → KaKaϕ Yes
4+ Kaϕ ↔ KaKaϕ Yes
5 ¬Kaϕ → Ka¬Kaϕ Yes
5+ ¬Kaϕ ↔ Ka¬Kaϕ Yes
B ϕ → Ka¬Ka¬ϕ No

Before proving Theorem 37, we take a closer look at the relationship between
satisfaction by a set of states (M,Q |= ϕ), and satisfaction in each of the states
(∀q∈QM, q |= ϕ). The following Lemma shows that the former does not necessar-
ily imply the latter, and that the latter does not necessarily imply the former.

LEMMA 38. —

1) There is a model M , state q, agent a and formula ϕ such that M, img(q,∼a) 6|=
ϕ and for every q ∈ img(q,∼a), M, q |= ϕ.

2) There are M, q, a, ϕ such that M, img(q,∼a) |= ϕ and M, q 6|= ϕ.

Proof. Consider model M6 from Figure 5.

1) Let ϕ = 〈〈a〉〉 gp. Now M6, q |= ϕ (a can choose action α1), and M6, q
′ |= ϕ (a

can choose action α2). However, M6, img(q,∼a) 6|= ϕ, because no uniform strategy
for a leads to q (in one step) from both q, q′.

2) Let ϕ = ¬p. Now p 6∈ π(q)∩π(q′), so M6, {q, q′} 6|= p, and M6, img(q,∼a) |=
ϕ. But p ∈ π(q), so M6, q |= p, and M6, q 6|= ϕ.
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¥

Proof of Theorem 37.

K: Immediate by Proposition 36.

D: Suppose that M, Q |= Ka⊥ for any Q 6= ∅. Then M, img(Q,∼a)) |= ⊥.
By reflexivity of ∼a, set img(Q,∼a) is nonempty, which contradicts Propo-
sition 16.1.

T: Let M, q, a, ϕ be as in Lemma 38.2. M, q |= Kaϕ, but M, q 6|= ϕ, so T is not
weakly (and hence not strongly) valid.

4+/4: M,Q |= KaKaϕ iff M, img(Q,∼a) |= Kaϕ iff M, img(img(Q,∼a),∼a) |=
ϕ iff M, img(Q,∼a) |= ϕ (since img(img(Q,∼a),∼a) = img(Q,∼a)) iff
M, Q |= Kaϕ.

5+/5: M,Q |= ¬Kaϕ iff M,Q 6|= Kaϕ iff, by 4+, M,Q 6|= KaKaϕ iff, by Propo-
sition 36, M, Q |= Ka¬Kaϕ.

B: Let M, q, a, ϕ be as in Lemma 38.1. M, img(q,∼a) 6|= ϕ, so M, q |= Ka¬ϕ.
By 4+, M, q |= KaKa¬ϕ, so M, q 6|= ¬KaKa¬ϕ, and by Proposition 36
M, q 6|= Ka¬Ka¬ϕ. But M, q |= ϕ. Thus, B is not weakly (nor strongly) valid.

¥

6.3. In Quest for the Truth Axiom

We have just showed that, out of the S5 properties, axioms K,D,4,5 (but not
T!) hold. However, it also turns out that if we slightly restrict the language, then the
corresponding T axiom becomes strongly valid. Let CSL− be the subset of CSL in
which, between every occurrence of constructive knowledge (CA,EA,DA) and nega-
tion, there is always at least one operator other than conjunction.9 Formally, CSL− for-
mulae are defined by the following grammar (where K = C, E,D and K̂ = C,E,D):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 gϕ | 〈〈A〉〉2ϕ | 〈〈A〉〉ϕU ϕ | KAϕ | K̂Aψ,

ψ ::= p | 〈〈A〉〉 gϕ | 〈〈A〉〉2ϕ | 〈〈A〉〉ϕU ϕ | KAϕ | ψ ∧ ψ | K̂Aψ.

THEOREM 39. — Every CSL− instance of T (i.e., Kaψ → ψ) is strongly valid.

Proof in the Appendix.

9. In particular, the requirement is met when operators CA,EA,DA are never immediately
followed by either ¬ or ∧.
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Thus, the T axiom holds for CSL−. Note that, by Proposition 36, the meaning of
negation or conjunction in the immediate scope of a constructive knowledge operator
is the same as if the operator were immediately outside the constructive knowledge op-
erator.10 In consequence, every formula of the full CSL is equivalent to one in CSL−.
Thus, we can restrict our logical language to CSL− without losing expressive power,
and we automatically “get” axiom T. We also observe that, from a more philosoph-
ical perspective, it is hard to pinpoint the intuitive meaning of negation immediately
following constructive knowledge. Note that, e.g., Ka¬〈〈a〉〉ϕ should be read as “a
has constructive knowledge about being unable to achieve ϕ”.11 It seems thus, first,
that the weaker version of the truth axiom in Theorem 39 might be more appropriate
for constructive knowledge, and second, that it might be a good idea to consider the
logical language of constructive knowledge to be limited to CSL−. In this case, con-
structive knowledge has the T property, we do not lose any expressive power, and we
leave out only formulae with philosophically unclear reading.

Is then the constructive knowledge in CSL− S5? First, it must be noted that – even
though CSL and CSL− are expressively equivalent – the extension of the schema T is
different in CSL− (for example, Ka¬p → ¬p is a CSL instance of T, but even though
it is equivalent to the CSL− formula ¬Kap → ¬p, the latter is not a CSL− instance
of T). More importantly, in CSL− the axiom schemata K and 5, at least written as
in Theorem 37, are not valid, but they are not invalid either – they are simply not
formulae at all. It does not seem correct to say that an operator has the S5 properties
when it cannot even express the K principle or negative introspection. Furthermore,
CSL− lacks the S5 principle of uniform substitution.

6.4. Properties of Collective Constructive Knowledge

We briefly consider the properties of collective knowledge operators. Theorem 40
should come as no surprise: note that, analogously to standard knowledge, construc-
tive common and distributed knowledge have the same properties as individual knowl-
edge, while mutual knowledge (“everybody knows”) differs in that it does not satisfy
the introspection axioms 4 and 5.

THEOREM 40. — Below, we list some of the S5 properties for collective constructive
knowledge operators. We don’t state the properties explicitly, but refer to Theorem
37 – axiom K for CA becomes CA(ϕ → ψ) → (CAϕ → CAψ), and so on. “Yes”
means that the schema is strongly valid; “No” means that it is not even weakly valid
(the proof is left for the reader).

10. Which is very much unlike the semantics of negation following a standard knowledge op-
erator!
11. Ka〈〈a〉〉¬ϕ, on the other hand, makes perfect sense: it refers to a’s constructive ability to
prevent ϕ.
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CA EA DA

K Yes Yes Yes
D Yes Yes Yes
T No No No
4 Yes No Yes
4+ Yes No Yes
5 Yes No Yes
5+ Yes No Yes
B No No No

Note that the proof of Theorem 39 required only that the epistemic relation in
question was reflexive. Thus, it can be easily extended to handle collective construc-
tive knowledge.

COROLLARY 41. — Every CSL− instance of schema T for collective constructive
knowledge operators CA,EA,DA is strongly valid.

7. Negation, Localization, and Definability of Knowledge

The semantics of negation presented in Section 3.1 (we call it weak negation from
now on) yields a very strong notion of disjunction, as Proposition 16 states. Such a
strong notion of disjunction makes sense when we talk about agents’ abilities, i.e.,
when used inside a Ka operator. For example: M, q |= Ka(〈〈a〉〉ϕ ∨ 〈〈a〉〉ψ) means in
fact that a in q can either identify a plan to achieve ϕ or to achieve ψ. On the other
hand, for a disjunction of simpler formulae, e.g., primitive propositions p and r, a
weaker notion seems more intuitive: the disjunction p∨ r should hold in M, Q iff, for
any state q ∈ Q, at least one of the disjuncts p and r holds in q (but different disjuncts
may hold in different states of Q). This intuition can be captured with a different
negation operator ∼, which we call “strong” negation. The idea of strong negation
can be summarized as: M, Q |=∼ϕ iff M, q 6|= ϕ for every q ∈ Q. However, we will
define it in terms of another, more primitive operator that we call localization.

As it turns out, the significance of localization goes beyond our discussion on
various kinds of negation. Most importantly, localization can be used to define stan-
dard knowledge operators from constructive knowledge operators. On the other hand,
localization itself proves definable from strategic and temporal operators. In conse-
quence, standard knowledge can be defined in CSL without standard knowledge oper-
ators.

7.1. Local Evaluation of Formulae

In the semantics of CSL, formulae are interpreted in sets of states; in order for ϕ
to hold in M, Q, the formula must be “globally” satisfied in all states from Q at once
(i.e., with single evidence). Another option is to evaluate ϕ locally in particular states
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from Q. To this end, we introduce a modality that specifies explicitly that the formula
must be evaluated for every relevant state separately:

M, Q |= loc ϕ iff M, q |= ϕ for every q ∈ Q.

PROPOSITION 42. — Below, we investigate some typical axioms with respect to the
localization modality. “Yes” means that the scheme is strongly valid, “No” means
that the scheme is not strongly valid. Note that all the schemes below are weakly
valid, because M, q |= loc ϕ ↔ ϕ for every individual state q.

K loc (ϕ → ψ) → (loc ϕ → loc ψ) Yes
D ¬loc ⊥ Yes
T loc ϕ → ϕ No
4 loc ϕ → loc loc ϕ Yes
4+ loc ϕ ↔ loc loc ϕ Yes
5 ¬loc ϕ → loc ¬loc ϕ No
5+ ¬loc ϕ ↔ loc ¬loc ϕ No
B ϕ → loc ¬loc ¬ϕ Yes

Proof in the Appendix.

Thus, localization is weak, but not strong, S5. In particular, S5 properties T and
5 do not necessarily hold in some contexts, for example in the immediate scope of a
constructive knowledge operator.

PROPOSITION 43. — Some other localization properties are the following, all strongly
valid (proof is left for the reader).

loc p ↔ p, p ∈ Π loc (ϕ ∧ ψ) ↔ (loc ϕ ∧ loc ψ)
〈〈A〉〉 gϕ ↔ 〈〈A〉〉 gloc ϕ 〈〈A〉〉2ϕ ↔ 〈〈A〉〉2loc ϕ
〈〈A〉〉ϕU ψ ↔ 〈〈A〉〉loc ϕU ψ ↔ 〈〈A〉〉ϕU loc ψ
loc KAϕ ↔ KAϕ KAϕ ↔ KAloc ϕ, K ∈ {C, E,D}

We will show in the following sections how the loc operator can be used to define
standard knowledge and alternative negation operators. This makes the following
result very important: it says that localization is definable in the CSL language, from
the 〈〈∅〉〉 and U operators.

PROPOSITION 44. — The following formula is strongly valid:

loc ϕ ↔ 〈〈∅〉〉ϕU ϕ

Proof. M, Q |= 〈〈∅〉〉ϕU ϕ iff ∀λ∈out(Q,∅) there is an i ≥ 0 such that M, λ[i] |= ϕ
and for any j such that 0 ≤ j < i, M,λ[j] |= ϕ. Since for each q ∈ Q there
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is a λ ∈ out(Q, ∅) with λ[0] = q, this implies that ∀q∈QM, q |= ϕ which is the
same as M,Q |= loc ϕ. To see that the other direction holds as well, assume that
M, Q |= loc ϕ and let λ ∈ out(Q, ∅). We must provide a witness for i; take i = 0.
Now, M, λ[i] |= ϕ and there is no j such that 0 ≤ j < i, so M,Q |= 〈〈∅〉〉ϕU ϕ. ¥

7.2. Defining Standard Knowledge from Constructive Knowledge

Standard knowledge operators are definable from constructive knowledge and lo-
calization:

PROPOSITION 45. — KAϕ ↔ K̂Aloc ϕ is strongly valid for any K ∈ {C, E,D},
Ĉ = C, Ê = E, D̂ = D.

Proof. M, Q |= K̂Aloc ϕ iff M, img(Q,∼KA) |= loc ϕ iff ∀q∈img(Q,∼KA)M, q |= ϕ iff
M, Q |= KAϕ. ¥

In particular, knowledge of a formula is the same as constructive knowledge of
the localization of the formula, i.e. Kaϕ ↔ Kaloc ϕ. An important corollary of
Propositions 45 and 44 is the following.

THEOREM 46. — The following is strongly valid:

KAϕ ↔ K̂A〈〈∅〉〉ϕU ϕ.

Theorem 46 shows that standard knowledge can be seen as a special case of con-
structive knowledge. It follows that the standard knowledge operators are strictly
speaking redundant in the CSL language.

7.3. Non-standard Definitions of Negation

Negation, as defined in Section 3.1, is “weak” in the sense that it is sufficient for
the negation of, e.g., an atomic formula p to hold in a set of states Q that p is false in
at least one state from Q. Several other interpretations of negation in a set of states
are possible, corresponding to different ways of quantifying over the set. We define
strong negation as:

∼ϕ ≡ loc ¬ϕ

Note that, by Proposition 44, strong negation is definable from weak negation: ∼ ϕ
can be equivalently defined as 〈〈∅〉〉(¬ϕ)U (¬ϕ).

PROPOSITION 47. — M, Q |=∼ϕ iff, for every q ∈ Q, we have that M, q 6|= ϕ.

Proof. M,Q |=∼ϕ iff M, Q |= loc ¬ϕ iff for every q ∈ Q we have that M, q 6|= ϕ.
¥
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Strong negation does not behave as classical negation: it does not obey the law
of double negation, the law of excluded middle, or the consistency requirement under
strong validity. Nevertheless, it preserves these laws under weak validity.

PROPOSITION 48. —

1) ∼∼ϕ → ϕ is weakly valid, but not strongly valid.

2) ϕ →∼∼ϕ is weakly valid, but not strongly valid.

3) ϕ∨ ∼ϕ is weakly valid, but not strongly valid.

4) ¬(ϕ∧ ∼ϕ) is weakly valid, but not strongly valid.

Proof.

1), 2) Weak validity is immediate. M, Q |=∼∼ϕ iff M,Q |= loc ¬ ∼ϕ iff M,Q |=
loc ¬loc ¬ϕ iff for every q ∈ Q we have that M, q |= ϕ. Counter-examples for
the two implications are found in the two parts of Lemma 38, respectively, by taking
Q = img(q,∼a).

3) Weak validity is immediate. As a counter-example to strong validity, take M
and ϕ from Lemma 38.1, and let Q = img(q,∼a). M, Q 6|= ϕ, and it is not the case
that M, q′ 6|= ϕ for every q′ ∈ Q.

4) Weak validity: immediate. Strong validity: take M = M6 from Lemma 38,
and let Q = {q, q′}, ϕ ≡ ¬〈〈a〉〉 gp.

¥

REMARK 49. — Alternatively, strong negation can be taken as a primary notion:
localization is definable from strong negation, and standard knowledge is thus defin-
able from constructive knowledge and strong negation. Formally, the following are
strongly valid:

1) loc ϕ ↔∼∼ϕ

2) KAϕ ↔ K̂A ∼∼ϕ.

2

7.3.1. Boolean Operators Based on Strong Negation

Recall that connectives like ∨ and → are defined in terms of weak negation (¬).
Similar connectives can be defined for strong negation:

– ϕ1 ‖ ϕ2 ≡∼(∼ϕ1∧ ∼ϕ2),
– ϕ1 Ã ϕ2 ≡∼ϕ1 ‖ ϕ2, and
– ϕ1 ! ϕ2 ≡ (ϕ1 Ã ϕ2) ∧ ϕ2 Ã ϕ1.

These versions of disjunction, material implication, and material biconditional
have the following semantic characterizations:

PROPOSITION 50. —
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1) M,Q |= ϕ1 ‖ ϕ2 iff, for every q ∈ Q, we have M, q |= ϕ1 or M, q |= ϕ2;

2) M,Q |= ϕ1 Ã ϕ2 iff, for every q ∈ Q, we have that M, q |= ϕ1 implies
M, q |= ϕ2;

3) M,Q |= ϕ1 ! ϕ2 iff, for every q ∈ Q, we have that M, q |= ϕ1 iff M, q |= ϕ2.

Proof.

1) M,Q |=∼ (∼ϕ1∧ ∼ϕ2) iff ∀q∈QM, q 6|=∼ϕ1∧ ∼ϕ2 iff ∀q∈QM, q 6|=∼ϕ1

or M, q 6|=∼ϕ2 iff ∀q∈QM, q |= ϕ1 or M, q |= ϕ2.
2) M,Q |= ϕ1 Ã ϕ2 iff M, Q |=∼ ϕ1 ‖ ϕ2 iff ∀q∈Q(M, q |=∼ ϕ1 or M, q |=

ϕ2) iff ∀q∈Q(M, q 6|= ϕ1 or M, q |= ϕ2) iff ∀q∈QM, q |= ϕ1 → ϕ2.
3) Straightforward.

¥

We can also define the strong negation-based versions of Boolean constants “true”
and “false”, but they coincide with the ones already proposed in Section 3.2.

PROPOSITION 51. — Let −−−o ≡ p∧ ∼p, and −−o ≡∼−−−o . Then:

1) M,Q 6|= −−−o for all Q ⊆ St, Q 6= ∅.

2) M,Q |= −−o for all Q ⊆ St, Q 6= ∅.

Proof. Straightforward. ¥

7.3.2. Some Connections Between the Weak and the Strong

It is immediate from Proposition 50 that, just as strong negation is the localization
of weak negation, the operators ‖, Ã and ! defined by strong negation, are the
localizations of their counterparts ∨, →, ↔ defined by weak negation:

PROPOSITION 52. — The following are strongly valid:

(ϕ1 ‖ ϕ2) ↔ loc (ϕ1 ∨ ϕ2)
(ϕ1 Ã ϕ2) ↔ loc (ϕ1 → ϕ2)
(ϕ1 ! ϕ2) ↔ loc (ϕ1 ↔ ϕ2)

Moreover, for validity (not strong validity), the two negations, the two disjunctions
and the two implications coincide:

PROPOSITION 53. — The following formulae are valid (but not strongly valid):

1) ¬ϕ ↔∼ϕ

2) (ϕ1 ∨ ϕ2) ↔ (ϕ1 ‖ ϕ2)
3) (ϕ1 → ϕ2) ↔ (ϕ1 Ã ϕ2)

Proof. Immediate from Proposition 52, since M, q |= ψ iff M, q |= loc ψ, for any
(single) state q. ¥
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The following proposition shows that the notions of strong and weak validity can
be seen as dual with respect to the strong and weak versions of the connectives.

PROPOSITION 54. —

1) ∼ϕ is strongly valid iff ¬ϕ is weakly valid.

2) ϕ1 ‖ ϕ2 is strongly valid iff ϕ1 ∨ ϕ2 is weakly valid.

3) ϕ1 Ã ϕ2 is strongly valid iff ϕ1 → ϕ2 is weakly valid.

4) ϕ1 ! ϕ2 is strongly valid iff ϕ1 ↔ ϕ2 is weakly valid.

The laws of negation were stated in Proposition 48 using connectives ∨, etc., de-
fined from weak negation. We can now show, however, that the laws of negation do
in fact hold for strong negation if we state these laws using the operators defined from
strong negation.

PROPOSITION 55. —

1) ∼∼ϕ ! ϕ is strongly valid.

2) ϕ ‖∼ϕ is strongly valid.

3) ∼(ϕ∧ ∼ϕ) is strongly valid.

Proof. Immediate from Propositions 48 and 54. ¥

7.3.3. Properties of Constructive Knowledge with “Strong” Negation

In Section 6.2, we discussed the S5 properties of constructive knowledge. These
properties can also be stated using strong negation, and derived connectives, instead
of weak negation.

THEOREM 56. — Below, we list constructive knowledge versions of some S5 prop-
erties using strong negation. “Yes” means that the schema is strongly valid; “No”
means that it is not even weakly valid (again, none of the properties turn out to be
weakly but not strongly valid).

K̃ Ka(ϕ Ã ψ) Ã (Kaϕ Ã Kaψ) No
D̃ ∼Ka−−−o Yes
T̃ Kaϕ Ã ϕ No
4̃ Kaϕ Ã KaKaϕ Yes
4̃+ Kaϕ ! KaKaϕ Yes
5̃ ∼Kaϕ Ã Ka∼Kaϕ Yes
5̃+ ∼Kaϕ ! Ka∼Kaϕ Yes
B̃ ϕ Ã Ka∼Ka∼ϕ Yes

Proof in the Appendix.

Finally, we point out that if we restrict the language to CSL−, as discussed in
Section 6.3, we get the truth axiom T̃, i.e., the following variant of Theorem 39.
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THEOREM 57. — Every CSL− instance of schema T̃ (Kaϕ Ã ϕ) is strongly valid.

Proof. Note that ∀q∈QM, q |= Kaϕ → ϕ (by T), which implies that M, Q |=
Kaϕ Ã ϕ (by Proposition 50). ¥

7.3.4. Other Negations

We have considered two operators for negation so far. Yet another alternative is:
∠ϕ ≡ ¬loc ϕ. The meaning of ∠ is characterized with the following proposition.

PROPOSITION 58. — M, Q |= ∠ϕ iff there exists q ∈ Q such that M, q 6|= ϕ.

Proof. M, Q |= ∠ϕ iff M, Q |= ¬loc ϕ iff M, Q 6|= loc ϕ iff there is a q ∈ Q such
that M, q 6|= ϕ. ¥

8. Normal Forms and Expressiveness

In this section, we investigate expressiveness further, with particular focus on the
relationship between localization, weak negation and strong negation. In order to
study expressiveness, we will study variants of the language defined in Section 3.1
with other (primary) operators. We have discussed the interpretation of the following
operators in sets of states:

¬ ∧ 〈〈A〉〉T CA EA DA CA EA DA loc ∼

where T is an ATL temporal connective and A is a set of agents. We use the expres-
sion L(¬,∧, 〈〈A〉〉T,KA, K̂A, loc , ∼) to denote the language with all the mentioned
operators, L(¬,∧, 〈〈A〉〉T,KA, K̂A, loc ) to denote the language with all operators
except strong negation, and so on. The CSL language introduced in Section 3.1 is
L = L(¬,∧, 〈〈A〉〉T,KA, K̂A). For simplicity, we sometimes use L∗ for the most
extensive language L(¬,∧, 〈〈A〉〉T,KA, K̂A, loc , ∼).

We say that two formulae ϕ and ψ are equivalent, if ϕ ↔ ψ is valid, and that they
are strongly equivalent if ϕ ↔ ψ is strongly valid. We say that a language L2 is at
least as expressive as a language L1, if for every ϕ1 ∈ L1 there exist an equivalent
ϕ2 ∈ L2. We say that L2 and L1 are expressively equivalent, if L2 is at least as
expressive as L1 and L1 is at least as expressive as L2.

We will make use of the following definition:

Atoms = Θ ∪ {〈〈A〉〉Tγ : γ ∈ L∗} ∪ {∼γ : γ ∈ L∗}.

We begin with defining a normal form of our formulae.
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8.1. Constructive Normal Form

A formula, possibly containing strong negation, is in constructive normal form if
every subformula starting with a K̂A operator is of the form K̂1 · · · K̂kψ where ψ is
either a primitive proposition, starts with a cooperation modality, or starts with strong
negation. We now show that every L∗ formula is equivalent to one of constructive
normal form, and also to a formula of constructive normal form without strong nega-
tion.

DEFINITION 59 (CONSTRUCTIVE NORMAL FORM (CSNF)). — The set of L∗ for-
mulae of constructive normal form (CSNF) is defined inductively as follows.

– p is of CSNF when p ∈ Θ,

– K̂γ is of CSNF iff γ is of CSNF and either γ ∈ Atoms or γ = K̂′χ,

– 〈〈G〉〉Tγ is of CSNF iff γ is of CSNF,

– ¬γ is of CSNF iff γ is of CSNF,

– γ1 ∧ γ2 is of CSNF iff both γ1 and γ2 are of CSNF,

– ∼γ is of CSNF iff γ is of CSNF.

THEOREM 60. — Every formula in L∗ is strongly equivalent to a formula in con-
structive normal form.

Proof in the Appendix.

Thus, any formula of the most general kind we have considered is equivalent to a
formula of CSNF. Note that a CSNF formula might contain strong negation. However,
we can also get rid of strong negation, as the following result states.

COROLLARY 61. — Every formula in L∗ is strongly equivalent to a formula in con-
structive normal form without strong negation.

Proof in the Appendix.

8.2. Expressiveness of Strong Negation

We have shown in Section 7 that standard knowledge, localization and strong nega-
tion can be defined with use of weak negation (together with conjunction, constructive
knowledge and ATL operators). Thus, L(¬,∧, 〈〈A〉〉T, K̂) is already as expressive as
the full L∗. Now we will investigate the other direction: does weak negation add
expressiveness if we already have strong negation? We show in the following theo-
rem that, in the language L extended with strong negation, every formula is actually
equivalent to one without weak negation.

THEOREM 62. — Every formula in L(¬,∧, 〈〈A〉〉T, K̂, ∼) is equivalent to a formula
of L(∧, 〈〈A〉〉T, K̂, ∼).

Proof in the Appendix.
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Thus, in particular, the following four languages are expressively equivalent:

L(¬,∧, 〈〈A〉〉T, K̂) L(∧, 〈〈A〉〉T, K̂, ∼) L L∗

In consequence, bothL(¬,∧, 〈〈A〉〉T, K̂) andL(∧, 〈〈A〉〉T, K̂, ∼) are expressively com-
plete with respect to the other operators we have considered. An important difference
betweenL(¬,∧, 〈〈A〉〉T, K̂) andL(∧, 〈〈A〉〉T, K̂, ∼) is that strong negation is definable
from weak negation and ATL operators by a simple schema (〈〈∅〉〉¬ϕU ¬ϕ), while this
is not the case when we reverse the roles of the negations.

9. Conclusions

In this paper, we propose a non-standard semantics for the modal logic of strate-
gic ability under imperfect information, in which formulae are interpreted over sets of
states rather than in single states.12 Moreover, we introduce new epistemic operators
for “constructive” knowledge. It turns out that, in this new semantics, simple cooper-
ation modalities 〈〈A〉〉 can be combined with “constructive” epistemic operators into
sufficiently expressive formulae. Indeed, the new logic is strictly more expressive than
most existing ATL versions for imperfect information, while it retains the same model
checking complexity as the least costly of them. The philosophical dimension of con-
structive knowledge is also natural: the constructive knowledge operators capture the
notion of knowing “de re”, while the standard epistemic operators refer to knowing
“de dicto”. Moreover, it turns out that standard (traditional) knowledge is a special
case of constructive knowledge. Also, the language of CSL is expressive enough to
enable expressing several other interesting operators in a simple way.

Most of the usual S5 properties (with the notable exception of the truth axiom T)
hold for constructive knowledge. Furthermore, if we slightly restrict the syntax of
CSL, we do not lose expressive power and the schema T becomes a validity.

CSL has novel, meaningful epistemic operators that can be used to capture im-
portant properties of the interaction between knowledge, action and ability. In future
work, we plan to investigate further the expressivity of CSL, and its relationship with
logics like ETSL, ATLiR, ATEL-R*, ATEL-A, and “Uniform STIT”. A good case study
(together with a more detailed analysis of verification complexity) is essential to de-
termine the applicability of the logic. Also, the (relative) expressive power of various
operators in our semantics seems to be worth further study.

We thank anonymous reviewers of JANCL and AAMAS-06 for their helpful re-
marks. Thomas Ågotnes’ work has been supported by the Research Council of Nor-
way under grant 166525/V30. Wojtek Jamroga would also like to thank Jan Broersen,
John-Jules Meyer and Wiebe van der Hoek.

12. We emphasize again that we do not propose new models: concurrent epistemic game struc-
tures have already been used for several years in ATEL-like logics. What we propose is a new
interpretation of formulae.



Constructive Knowledge 43

10. References

[ÅGO 04] ÅGOTNES T., “A note on Syntactic Characterization of Incomplete Information in
ATEL”, Procedings of the Workshop on Knowledge and Games, Liverpool, 2004, p. 34–42.

[ÅGO 06] ÅGOTNES T., “Action and Knowledge in Alternating-time Temporal Logic”, Syn-
these, vol. 149, num. 2, 2006, p. 377–409, Section on Knowledge, Rationality and Action.

[ALU 97] ALUR R., HENZINGER T. A., KUPFERMAN O., “Alternating-Time Temporal
Logic”, Proceedings of the 38th Annual Symposium on Foundations of Computer Science
(FOCS), IEEE Computer Society Press, 1997, p. 100–109.

[ALU 98] ALUR R., HENZINGER T. A., KUPFERMAN O., “Alternating-Time Temporal
Logic”, Lecture Notes in Computer Science, vol. 1536, 1998, p. 23–60.

[ALU 02] ALUR R., HENZINGER T. A., KUPFERMAN O., “Alternating-Time Temporal
Logic”, Journal of the ACM, vol. 49, 2002, p. 672–713.

[BEL 88] BELNAP N., PERLOFF M., “Seeing to It That: a Canonical Form for Agentives”,
Theoria, vol. 54, 1988, p. 175–199.

[BRO 06] BROERSEN J., HERZIG A., TROQUARD N., “Embedding Alternating-time Tempo-
ral Logic in Strategic STIT Logic of Agency”, Journal of Logic and Computation, vol. 16,
num. 5, 2006, p. 559–578.

[CLA 81] CLARKE E., EMERSON E., “Design and Synthesis of Synchronization Skeletons
Using Branching Time Temporal Logic”, Proceedings of Logics of Programs Workshop,
vol. 131 of Lecture Notes in Computer Science, 1981, p. 52–71.

[CLA 86] CLARKE E., EMERSON E., SISTLA A., “Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications”, ACM Transactions on Pro-
gramming Languages and Systems, vol. 8, num. 2, 1986, p. 244–263.

[EME 90] EMERSON E. A., “Temporal and Modal Logic”, VAN LEEUWEN J., Ed., Handbook
of Theoretical Computer Science, vol. B, p. 995–1072, Elsevier Science Publishers, 1990.

[FIS 06] FISHER M., Temporal Logics, Kluwer, 2006.

[GOR 01] GORANKO V., “Coalition Games and Alternating Temporal Logics”, VAN BEN-
THEM J., Ed., Proceedings of TARK VIII, Morgan Kaufmann, 2001, p. 259–272.

[GOR 04] GORANKO V., JAMROGA W., “Comparing Semantics of Logics for Multi-agent
Systems”, Synthese, vol. 139, num. 2, 2004, p. 241–280.

[HAL 95] HALPERN J., “Reasoning about Knowledge: a Survey”, Handbook of Logic in
Artificial Intelligence and Logic Programming. Vol. 4: Epistemic and Temporal Reasoning,
p. 1–34, Oxford University Press, Oxford, 1995.

[HAR 00] HAREL D., KOZEN D., TIURYN J., Dynamic Logic, MIT Press, 2000.

[HER 06] HERZIG A., TROQUARD N., “Knowing How to Play: Uniform Choices in Logics
of Agency”, Proceedings of AAMAS’06, 2006, p. 209–216.

[HOE 02] VAN DER HOEK W., WOOLDRIDGE M., “Tractable Multiagent Planning for Epis-
temic Goals”, CASTELFRANCHI C., JOHNSON W., Eds., Proceedings of the First Inter-
national Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-02),
ACM Press, New York, 2002, p. 1167–1174.



44 Journal of Applied Non-Classical Logics. Volume ?? – No. ?/????

[HOE 03] VAN DER HOEK W., WOOLDRIDGE M., “Cooperation, Knowledge and Time:
Alternating-time Temporal Epistemic Logic and its Applications”, Studia Logica, vol. 75,
num. 1, 2003, p. 125–157.

[HOE 06] VAN DER HOEK W., LOMUSCIO A., WOOLDRIDGE M., “On the Complexity of
Practical ATL Model Checking”, STONE P., WEISS G., Eds., Proceedings of AAMAS’06,
2006, p. 201–208.

[JAM 03] JAMROGA W., “Some Remarks on Alternating Temporal Epistemic Logic”,
DUNIN-KEPLICZ B., VERBRUGGE R., Eds., Proceedings of Formal Approaches to Multi-
Agent Systems (FAMAS 2003), 2003, p. 133–140.

[JAM 04] JAMROGA W., VAN DER HOEK W., “Agents that Know how to Play”, Fundamenta
Informaticae, vol. 63, num. 2–3, 2004, p. 185–219, IOS Press : Amsterdam.

[JAM 05a] JAMROGA W., DIX J., “Do Agents Make Model Checking Explode (Computation-
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Appendix: Some Proofs

Theorem 23

Proof of Theorem 23 (structural induction wrt the structure of ϕ).

– M, q |=
CSL

tr(p) iff M, q |=
CSL

p iff p ∈ π(q) iff M, q |=L p.
– M, q |=

CSL
tr(¬ϕ) iff M, q 6|=

CSL
tr(ϕ) iff (by induction) M, q 6|=L ϕ iff

M, q |=L ¬ϕ.
– M, q |=

CSL
tr(ϕ∧ ψ) iff M, q |=

CSL
tr(ϕ) and M, q |=

CSL
tr(ψ) iff (by induction)

M, q |=L ϕ and M, q |=L ψ iff M, q |=L ϕ ∧ ψ.
– M, q |=

CSL
tr(〈〈A〉〉K(Γ)

gϕ) iff M, q |=
CSL
K̂Γ〈〈A〉〉 gtr(ϕ) iff

M, img(q,∼KΓ ) |=
CSL
〈〈A〉〉 gtr(ϕ) iff ∃SA∀Λ∈out(img(q,∼KΓ ),SA)M, Λ[1] |=

CSL
tr(ϕ)

iff (by induction) ∃SA∀Λ∈out(img(q,∼KΓ ),SA)M, Λ[1] |=
ATOL

ϕ iff M, q |=
ATOL

〈〈A〉〉K(Γ)
gϕ.

– For 〈〈A〉〉K(Γ)2ϕ and 〈〈A〉〉K(Γ)(ϕU ψ): analogously. The same for 〈〈A〉〉irϕ,
〈〈A〉〉fKϕ, and 〈〈A〉〉fKb

ϕ.

– M, q |=
CSL

tr(〈〈A〉〉f gϕ) iff M, q |=
CSL
〈〈A〉〉 gtr(ϕ) iff

∃SA
∀Λ∈out(q,SA)M, Λ[1] |=

CSL
tr(ϕ) iff (by induction) ∃SA

∀Λ∈out(q,SA)

M, Λ[1] |=
F-ATEL

ϕ iff M, q |=
F-ATEL

〈〈A〉〉f gϕ.

– M, q |=
CSL

tr(〈〈A〉〉fMb

gϕ) iff M, q |=
CSL
¬Kb¬〈〈A〉〉 gtr(ϕ) iff

¬∀q′∈img(q,∼b)¬M, q′ |=
CSL
〈〈A〉〉 gtr(ϕ) iff ∃q′∈img(q,∼b)∃SA

∀Λ∈out(q′,SA)M, Λ[1]
|=

CSL
tr(ϕ) iff (by induction) ∃SA

∃q′∈img(q,∼b)∀Λ∈out(q′,SA)M, Λ[1] |=
F-ATEL

ϕ iff
M, q |=

F-ATEL
〈〈A〉〉fMb

gϕ.

– For 〈〈A〉〉fMb
2ϕ and 〈〈A〉〉fMb

(ϕU ψ): analogously.
– M, q |=

CSL
tr(KAϕ) iff M, q |=

CSL
KAtr(ϕ) iff ∀q′∈img(q,∼KA)M, q′ |=

CSL
tr(ϕ)

iff (by induction) ∀q′∈img(q,∼KA)M, q′ |=L ϕ iff M, q |=L KAϕ.

¥

Theorem 39

Proof of Theorem 39 (structural induction on the structure of ϕ). In each case, we will
prove that M, Q |= Kaϕ implies M,Q |= ϕ for an arbitrary Q. By Proposition 16,
we can then conclude that M,Q |= Kaϕ → ϕ.

To simplify the proof, we assume that each ϕ has been transformed so that no con-
structive knowledge operator is followed by conjunction (by Proposition 36.3, each
subformula K̂A(ψ1 ∧ ψ2) can be equivalently transformed to K̂Aϕ1 ∧ K̂Aϕ2, and we
can apply this transformation recursively). Thus, every K̂ in ϕ is now followed either
by some other K̂′, or by 〈〈A〉〉, or by a standard knowledge operator K′′, or by an
atomic proposition p.
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Additionally, given Q, we define Q′ = img(Q,∼a). Note that Q ⊆ Q′ by reflex-
ivity of∼a. Also, out(Q, SA) ⊆ out(Q′, SA) by monotonicity of function out wrt Q,
and img(Q,∼KA) ⊆ img(Q′,∼KA) by reflexivity of all ∼KA.

Case ϕ ≡ p: Let M, Q |= Kap. Then M, Q′ |= p, i.e. ∀q∈Q′M, q |= p. So,
∀q∈QM, q |= p, and M, Q |= p.

Case ϕ ≡ ψ1 ∧ ψ2: Let M,Q |= Ka(ψ1∧ψ2). Then M, Q′ |= ψ1∧ψ2, i.e. M,Q′ |=
ψ1 and M, Q′ |= ψ2. So, M, Q |= Kaψ1 and M, Q |= Kaψ2. By the induction
hypothesis, M, Q |= ψ1 and M, Q |= ψ2, and hence M,Q |= ψ1 ∧ ψ2.

Case ϕ ≡ 〈〈A〉〉 gψ: Let M,Q |= Ka〈〈A〉〉 gψ. Then M, Q′ |= 〈〈A〉〉 gψ, and so
∃SA∀Λ∈out(Q′,SA)M, Λ[1] |= ψ. Thus, ∃SA∀Λ∈out(Q,SA)M, Λ[1] |= ψ, and
M, Q |= 〈〈A〉〉 gψ.

Cases ϕ ≡ 〈〈A〉〉2ψ and ϕ ≡ 〈〈A〉〉ψ1 U ψ2: analogous.

Case ϕ ≡ KAψ: Let M, Q |= KaKAψ. Then M, Q′ |= KAψ, and ∀q∈img(Q′,∼KA)M, q |=
ψ. But then also ∀q∈img(Q,∼KA)M, q |= ψ, and M,Q |= KAψ.

Before we consider the remaining cases, we define a couple of additional symbols.
Let Qi = img(Qi−1,∼Ki

Ai
), Q0 = Q. That is, Qi = img(...(img(Q,∼K1

A1
), ...),∼Ki

Ai
).

Also, let Q′′ = img(Qn,∼a). Note that Qn ⊆ Q′′, and out(Qn, SB) ⊆ out(Q′′, SB)
for any SB .

Case ϕ ≡ K̂n
An

...K̂1
A1

p: (i.e., ϕ is a sequence of n possibly different K̂ operators for
possibly different coalitions). Let M, Q |= KaK̂n

An
...K̂1

A1
p. Then M, Q′′ |= p,

and hence ∀q∈Q′′M, q |= p. Thus, ∀q∈QnM, q |= p, so M, Qn |= p, and
M, Q |= K̂n

An
...K̂1

A1
p.

Case ϕ ≡ K̂n
An

...K̂1
A1
KBψ: analogous.

Case ϕ ≡ K̂n
An

...K̂1
A1
〈〈B〉〉 gψ: Let M, Q |= KaK̂n

An
...K̂1

A1
〈〈B〉〉 gψ. Then M, Q′′ |=

〈〈B〉〉 gψ, and hence ∃SB
∀Λ∈out(Q′′,SB)M, Λ[1] |= ψ. Thus, ∃SB

∀Λ∈out(Qn,SB)M, Λ[1] |=
ψ, so M, Qn |= 〈〈B〉〉 gψ, and M,Q |= K̂n

An
...K̂1

A1
〈〈B〉〉 gψ.

Cases ϕ ≡ K̂n
An

...K̂1
A1
〈〈B〉〉2ψ and ϕ ≡ K̂n

An
...K̂1

A1
〈〈B〉〉ψ1 U ψ2: analogous.

¥

Proposition 42

Proof of Proposition 42.
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K Immediate.

D Suppose that M, Q |= loc ⊥ for some Q 6= ∅. Then, there is some q for which
M, q |= ⊥, but this contradicts Proposition 16.1.

T To see that T is not strongly valid, let ϕ and M be as in Lemma 38.1, and take
Q = img(q,∼a). M, Q |= loc ϕ, but M, Q 6|= ϕ.

4/4+ M, Q |= loc ϕ iff for every q ∈ Q we have that M, q |= ϕ iff for every q ∈ Q
we have that M, q |= loc ϕ iff M, Q |= loc loc ϕ.

5/5+ To see that 5 is not strongly valid, let M be as in Figure 5, ϕ = p and let
Q = {q, q′}. M, Q |= ¬loc ϕ because M, q′ |= ¬ϕ. However, if it were the
case that M,Q |= loc ¬loc ϕ, then M, q |= ¬loc ϕ and thus, M, q |= ¬ϕ,
which is not the case.

B M,Q |= ϕ iff for all q ∈ Q we have that M, q |= ϕ iff for all q ∈ Q we have that
M, q |= ¬loc ¬ϕ iff M,Q |= loc ¬loc ¬ϕ.

¥

Theorem 56

Proof of Theorem 56.

K̃: We construct a counterexample. Let M be a model with states q1, q2 and agent a,
such that q1 ∼a q2, π(q1) = {r} and π(q2) = {p}. Let ϕ = ¬p and ψ = r. p 6∈
π(q1) ∩ π(q2), so M, img(q1,∼a) |= ϕ and M, q1 |= Kaϕ. r 6∈ π(q1) ∩ π(q2),
so M, img(q1,∼a) 6|= ψ and M, q1 6|= Kaψ. Thus, M, q1 6|= Kaϕ → Kaψ and
by Proposition 53: M, q1 6|= Kaϕ Ã Kaψ (*). Since both M, q1 |= ϕ → ψ
and M, q2 |= ϕ → ψ, by Proposition 50, M, img(q1,∼a) |= ϕ Ã ψ and thus
M, q1 |= Ka(ϕ Ã ψ). Together with (*), we get that M, q1 6|= Ka(ϕ Ã ψ) →
(Kaϕ Ã Kaψ) and, by Proposition 53, M, q1 6|= Ka(ϕ Ã ψ) Ã (Kaϕ Ã
Kaψ). Thus, K̃ is not weakly (and hence not strongly) valid.

T̃: Let M, q, a, ϕ be as in Lemma 38.2. M, q |= Kaϕ and M, q 6|= ϕ, so M, q 6|=
Kaϕ Ã ϕ by Proposition 53. Thus, T̃ is not weakly (and hence not strongly)
valid.

4̃+/4̃: M,Q |= Kaϕ ! KaKaϕ iff, by Proposition 50, ∀q∈Q(M, q |= Kaϕ ⇔
M, q |= KaKaϕ) iff, by 4+, ∀q∈Q(M, q |= Kaϕ ⇔ M, q |= Kaϕ).

5̃+/5̃: M,Q |=∼ Kaϕ ! Ka ∼ Kaϕ iff, by Proposition 50, ∀q∈Q(M, q |=∼
Kaϕ ⇔ M, q |= Ka∼Kaϕ) iff ∀q∈Q(M, img(q,∼a) 6|= ϕ ⇔ M, img(q,∼a) |=
∼Kaϕ) iff ∀q∈Q(M, img(q,∼a) 6|= ϕ ⇔ ∀q′∈img(q,∼a)M, img(q′,∼a) 6|= ϕ)
which is true, since img(q′,∼a) = img(q,∼a) for any q′ ∈ img(q,∼a).
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D̃: M, Q |=∼Ka−−−o iff ∀q∈QM, q 6|= Ka−−−o iff ∀q∈QM, img(q,∼a) 6|= −−−o , which is
true by Proposition 51.1.

B̃: M,Q |= ϕ Ã Ka ∼ Ka ∼ ϕ iff ∀q∈Q(M, q |= ϕ ⇒ M, img(q,∼a) |=
∼ Ka ∼ ϕ) iff ∀q∈Q(M, q |= ϕ ⇒ ∀q′∈img(q,∼a)M, q′ 6|= Ka ∼ ϕ) iff
∀q∈Q(M, q |= ϕ ⇒ ∀q′∈img(q,∼a) M, img(q′,∼a) 6|=∼ ϕ) iff ∀q∈Q(M, q |=
ϕ ⇒ ∀q′∈img(q,∼a)∃q′′∈img(q′,∼a)M, q′′ |= ϕ) iff ∀q∈Q(M, q |= ϕ ⇒ ∃q′∈img(q,∼a)M, q′ |=
ϕ). This always holds, by taking q′ = q.

¥

Theorem 60 and Corollary 61 (Constructive Normal Form) and Theorem 62
(Expressiveness of Strong Negation)

In the following we will very often work in the language L(¬,∧, 〈〈A〉〉T, K̂A, ∼
), and we will henceforth use the shorthand notation L̂ to denote this language, for
simplicity.

We use Subf (ϕ) to denote the set of all subformulae of ϕ (including ϕ itself). For
simplicity, we assume that each subformula of a formula is unique, i.e. that there is a
unique member of Subf (ϕ) for each occurrence of a subformula in ϕ13.

We first present intermediate definitions and results leading up to the main result
in Theorem 60. Note that Lemma 65 below gives an alternative (equivalent) definition
of constructive normal form.

DEFINITION 63. — We define the depth dϕ(ψ) of a subformula ψ ∈ Subf (ϕ) of a
formula ϕ ∈ L̂ in the usual way:

– dϕ(ϕ) = 0

– dϕ(K̂γ) = d ⇒ dϕ(γ) = d + 1
– dϕ(〈〈G〉〉Tγ) = d ⇒ dϕ(γ) = d + 1
– dϕ(γ1 ∧ γ2) = d ⇒ dϕ(γ1) = dϕ(γ2) = d + 1
– dϕ(¬γ) = d ⇒ dϕ(γ) = d + 1
– dϕ(∼γ) = d ⇒ dϕ(γ) = d + 1

LEMMA 64. — A formula ψ ∈ L̂ is of CSNF iff every γ ∈ Subf (ψ) is of CSNF.

Proof. The implication to the left is trivial; we prove the one to the right. Assume that
ψ is of CSNF. That each γ ∈ Subf (ψ) is of CSNF follows immediately by induction
on the depth of γ:

13. This can be achieved by, e.g., adorning the subformulae with unique identifiers, or by taking
Subf (ϕ) to be a multiset instead of a set. The only reason for this assumption is to make proofs
simpler.
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– dψ(γ) = 0: γ = ψ is of CSNF
– dψ(γ) = d + 1 (d ≥ 0). We reason by the possible cases:

- dψ(K̂γ) = d: by the induction hypothesis K̂γ is of CSNF, and thus γ is of
CSNF.

- dψ(〈〈G〉〉Tγ) = d: 〈〈G〉〉Tγ is of CSNF; γ is of CSNF.
- dψ(γ∧γ′) = d: γ∧γ′ is of CSNF; γ is of CSNF. Similar when dψ(γ′∧γ) = d.
- dψ(¬γ) = d: ¬γ is of CSNF; γ is of CSNF.
- dψ(∼γ) = d: ∼γ is of CSNF; γ is of CSNF.

¥

LEMMA 65. — A formula ψ ∈ L̂ is of CSNF iff every K̂γ ∈ Subf (ψ) is of the form
K̂K̂0 · · · K̂kα where α ∈ Atoms , for some k ≥ 0.

Proof. For the direction to the right, assume that there is a K̂γ ∈ Subf (ψ) which is not
of the form. There are two possibilities: γ = K̂0 · · · K̂m¬β or γ = K̂0 · · · K̂mβ1 ∧ β2

for some m ≥ 0. In either case, it follows immediately that K̂γ is not of CSNF. By
Lemma 64, ψ is not of CSNF.

For the direction to the left, assume that every K̂γ ∈ Subf (ψ) is of the form. We
show that every χ ∈ Subf (ψ) is of CSNF by structural induction:

– χ = p ∈ Θ: χ is of CSNF.
– χ = K̂γ: by the induction hypothesis, γ is of CSNF. By assumption, γ =

K̂0 · · · K̂kα for some α ∈ Atoms and some k ≥ 0. Thus, χ is of CSNF.
– χ = 〈〈A〉〉Tγ: by the induction hypothesis, γ is of CSNF, and thus χ is of CSNF.
– χ = γ1 ∧ γ2: by the induction hypothesis, γ1 and γ2 is of CSNF, and thus χ is

of CSNF.
– χ =∼γ: by the induction hypothesis, γ is of CSNF and thus χ is of CSNF.
– χ = ¬γ: by the induction hypothesis, γ is of CSNF and thus χ is of CSNF.

¥

Now that we have established some properties of formulae of CSNF, we go on to
define the mapping of a formula to one of CSNF.

DEFINITION 66. — The value f(K̂ψ) of the function f : {K̂ψ : ψ ∈ L̂} → L̂ is
defined by structural induction over ψ:

f(K̂ψ) = K̂ψ when ψ ∈ Atoms

f(K̂K̂′γ) = K̂K̂′γ
f(K̂¬γ) = ¬f(K̂γ)

f(K̂(γ1 ∧ γ2)) = f(K̂γ1) ∧ f(K̂γ2)
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LEMMA 67. — Let β ∈ L̂ be a formula. β is of CSNF iff f(K̂β) is of CSNF for any
arbitrary K̂ ∈ {CA,DA,EA : A ⊆ Σ}.

Proof. Let K̂ ∈ {CA,DA,EA : A ⊆ Σ}. The proof is by structural induction over β:

– β = p ∈ Θ: β is of CSNF iff f(K̂β) = K̂p is of CSNF.
– β = K̂′γ: β is of CSNF iff f(K̂β) = K̂K̂′γ is of CSNF.
– β = 〈〈A〉〉Tγ: β is of CSNF iff f(K̂β) = K̂〈〈A〉〉Tγ is of CSNF.
– β = γ1 ∧ γ2: β is of CSNF iff both γ1 and γ2 are of CSNF iff, by the induction

hypothesis, both f(K̂γ1) and f(K̂γ2) are of CSNF iff f(K̂β) is of CSNF.
– β =∼γ: β is of CSNF iff f(K̂β) = K̂β is of CSNF.
– β = ¬γ: β is of CSNF iff γ is of CSNF iff, by the induction hypothesis, f(K̂γ)

is of CSNF iff ¬f(K̂γ) is of CSNF iff f(K̂¬γ) is of CSNF.

¥

LEMMA 68. — For any ψ ∈ L̂,

K̂ψ ↔ f(K̂ψ)

is strongly valid for any K̂ ∈ {CA,DA,EA : A ⊆ Σ}.

Proof. The proof is by structural induction over ψ. When ψ ∈ Atoms or ψ = K̂′γ,
f(K̂ψ) = K̂ψ, and we are done. When ψ = ¬γ, M,Q |= K̂ψ iff, by Proposition
36, M, Q |= ¬K̂γ iff M, Q 6|= K̂γ iff, by the induction hypothesis, M, Q 6|= f(K̂γ)
iff M, Q |= ¬f(K̂γ) iff M, Q |= f(K̂ψ). When ψ = γ1 ∧ γ2, M, Q |= K̂ψ iff,
by Proposition 36, M, Q |= K̂γ1 and M, Q |= K̂γ2 iff, by the induction hypothesis,
M, Q |= f(K̂γ1) and M, Q |= f(K̂γ2) iff M,Q |= f(K̂ψ). ¥

DEFINITION 69 (ϕi, Xi , αi). — Let ϕ ∈ L̂ be a formula. Define ϕi, i ≥ 0:

– i = 0: ϕ0 = ϕ

– i = j+1 (j ≥ 0): Let Xi = {K̂ψ : K̂ψ ∈ Subf (ϕj), K̂ψ is not of CSNF}. If Xi

is empty, let ϕj+1 = ϕj . Otherwise, select an αi ∈ Xi such that β ∈ Xi implies that
dϕj (β) ≤ dϕj (αi) (several such αi may exist; select one arbitrarily), and let ϕj+1 be
ϕj with the subformula αi replaced by f(αi).

LEMMA 70. — Let ϕ ∈ L̂, and let αi be defined in Def. 69. For each i ≥ 1, f(αi) is
of CSNF.

Proof. Let αi = K̂ψ. We show that for every γ ∈ Subf (ψ), f(K̂γ) is of CSNF by
structural induction over γ:

– γ = p ∈ Θ: f(K̂γ) = K̂p is of CSNF.
– γ = K̂′β: f(K̂γ) = K̂K̂′β is of CSNF iff K̂′β is of CSNF. Assume that K̂′β is

not of CSNF, then γ ∈ Xi. Then dϕi−1(γ) > dϕi−1(αi), but this is a contradiction
since there are no γ ∈ Xi with greater depth than αi. Thus, f(K̂γ) is of CSNF.
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– γ = 〈〈G〉〉Tβ: By the induction hypothesis, f(K̂β) is of CSNF; by Lemma 67 β
is of CSNF; 〈〈G〉〉Tβ is of CSNF; K̂〈〈G〉〉Tβ = f(K̂γ) is of CSNF.

– γ = γ1 ∧ γ2: By the induction hypothesis, f(K̂γ1) and f(K̂γ2) are of CSNF;
f(K̂γ1) ∧ f(K̂γ2) is of CSNF; f(K̂γ) is of CSNF.

– γ = ¬β: By the induction hypothesis, f(K̂β) is of CSNF; ¬f(K̂β) is of CSNF;
f(K̂γ) is of CSNF.

– γ =∼β: By the induction hypothesis, f(K̂β) is of CSNF; by Lemma 67 β is of
CSNF; γ is of CSNF; K̂γ = f(K̂γ) is of CSNF.

¥

LEMMA 71. — Let ϕ ∈ L̂, and let ϕi be defined in Def. 69. There is a p ≥ 1 such
that ϕp = ϕp−1 and Xp = ∅. We write ϕ̂ = ϕp for an arbitrary such p.

Proof. X1 is finite. We show that Xi+1 ⊂ Xi (proper inclusion) whenever ϕi 6=
ϕi−1, for any i ≥ 1. The Lemma follows.

Let ϕi 6= ϕi−1. Assume that there is an α ∈ Xi+1, α 6∈ Xi. α is not of
CSNF, and since α ∈ Subf (ϕi) and α 6∈ Subf (ϕi−1) the only possibility is that
α ∈ Subf (f(αi)). But by Lemma 70, f(αi) is of CSNF, and by Lemma 64 α must
be of CSNF which is a contradiction. Thus, Xi+1 ⊆ Xi. To see that the inclusion is
proper, observe that αi ∈ Xi but αi 6∈ Xi+1. ¥

Proof of Theorem 60. Let ϕ′′ ∈ L∗, and let ϕ′ be the result of replacing every
occurrence of K in ϕ′′ with the combination K̂ ∼∼, for every K. Let ϕ be the result
of replacing every occurrence of loc in ϕ′ with the combination ∼∼. ϕ′′ and ϕ are
strongly equivalent by Remark 49. Observe that ϕ ∈ L̂. Let ϕ̂ = ϕp be defined from
ϕ as in Lemma 71.

First, we argue that ϕ̂ is of CSNF. If not, there is a K̂γ ∈ Subf (ϕ̂) where γ is
not of the form K̂0 · · · K̂kα for α ∈ Atoms (Lemma 65). Then, K̂γ is not of CSNF,
which contradicts the fact that Xp = ∅. Second, we show that ϕ̂ ↔ ϕ is strongly
valid. Let i ≥ 1. By Lemma 68, M, Q |= αi iff M,Q |= f(αi) for any M, Q. It
follows immediately that M, Q |= ϕi iff M, Q |= ϕi+1. Thus, M, Q |= ϕ = ϕ0 iff
M, Q |= ϕ̂ = ϕp. Thus, ϕ̂ is of CSNF, and it is equivalent to ϕ. ¥

Proof of Corollary 61. Let ϕ ∈ L∗. By the theorem, ϕ is strongly equivalent to a
formula ϕ̂ which is of CSNF. Now, we recursively replace all subformulae of ϕ̂ of
the form ∼ ψ with 〈〈∅〉〉(¬ψ)U (¬ψ), yielding (by Proposition 44) a strongly equiv-
alent formula ϕ′ without strong negation. We observe that subformulae of CSNF are
replaced with subformulae of CSNF, so ϕ′ is of CSNF too. ¥

We now go on to present our proof of Theorem 62. Some more notation: when
ϕ ∈ L̂, we use ϕ̃ to denote the result of replacing each occurrence of ¬ in ϕ with ∼.
Formally, p̃ = p; K̃aψ = Kaψ̃; ˜〈〈G〉〉Tψ = 〈〈G〉〉T ψ̃; ψ̃1 ∧ ψ2 = ψ̃1 ∧ ψ̃2; ¬̃ψ =∼ ψ̃;
∼̃ψ =∼ ψ̃.
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We begin with defining the notion of constructive depth of a subformula – not to
be confused with the notion of depth in the proof of Theorem 60.

DEFINITION 72 (CONSTRUCTIVE DEPTH). — Let ϕ ∈ L̂. The constructive depth,
or just c-depth, Dϕ(ψ) in ϕ of a subformula ψ ∈ Subf (ϕ) is defined inductively as
follows:

– Dϕ(ϕ) = 0

– Dϕ(K̂γ) = D ⇒ Dϕ(γ) = D + 1
– Dϕ(〈〈G〉〉Tγ) = D ⇒ Dϕ(γ) = 0
– Dϕ(γ1 ∧ γ2) = D ⇒ Dϕ(γ1) = Dϕ(γ2) = D

– Dϕ(¬γ) = D ⇒ Dϕ(γ) = D

– Dϕ(∼γ) = D ⇒ Dϕ(γ) = 0

If ϕ has no occurrence of ¬ on c-depth D, i.e., if ¬ψ ∈ Subf(ϕ) implies that
Dϕ(¬ψ) 6= D, we say that ϕ is free of ¬ on depth D.

LEMMA 73. — If a formula ϕ ∈ L(¬,∧, 〈〈A〉〉T, K̂, ∼) is free of ¬ on all depths > 0,
then

ϕ ↔ ϕ̃

is valid.

Proof. We show that

ψ ↔ ψ̃ is
{

valid if Dϕ(ψ) = 0
strongly valid if Dϕ(ψ) > 0

for all ψ ∈ Subf (ϕ) by structural induction.

ψ = p: immediate (ψ̃ = ψ).

ψ = K̂Aγ: Dϕ(γ) > 0. M, Q |= ψ iff M, img(Q,∼KA) |= γ iff, by the induction
hypothesis, M, img(Q,∼KA) |= γ̃ iff M,Q |= KAγ̃ iff M,Q |= ψ̃.

ψ = 〈〈G〉〉2γ: M, Q |= ψ iff ∃SG
∀Λ∈out(Q,SG)∀j≥0M, Λ[j] |= γ iff, by the induc-

tion hypothesis (for γ, where Dϕ(γ) = 0), ∃SG
∀Λ∈out(Q,SG)∀j≥0M, Λ[j] |= γ̃

iff M,Q |= 〈〈G〉〉2γ̃. Similar for the other ATL connectives.

ψ = γ1 ∧ γ2: First, consider the case that Dϕ(ψ) = 0, in which case Dϕ(γ1) =
Dϕ(γ2) = 0. We must show that ψ ↔ ψ̃ is valid. M, q |= ψ iff M, q |= γ1

and M, q |= γ2 iff, by the induction hypothesis, M, q |= γ̃1 and M, q |= γ̃2

iff M, q |= γ̃1 ∧ γ̃2. Second, consider the case that Dϕ(ψ) > 0, in which case
Dϕ(γ1) > 0 and Dϕ(γ2) > 0. We must show that ψ ↔ ψ̃ is strongly valid.
M, Q |= ψ iff M, Q |= γ1 and M, Q |= γ2 iff, by the induction hypothesis,
M, Q |= γ̃1 and M, Q |= γ̃2 iff M, Q |= γ̃1 ∧ γ̃2.
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ψ = ¬γ: By the assumption in the lemma, Dϕ(ψ) = 0. Then also Dϕ(γ) = 0.
M, q |= ψ iff M, q 6|= γ iff, by the induction hypothesis, M, q 6|= γ̃ iff M, q |=
∼ γ̃.

ψ =∼γ: M, Q |= ψ iff ∀q∈QM, q 6|= γ iff, by the induction hypothesis (for γ, where
Dϕ(γ) = 0), ∀q∈QM, q 6|= γ̃ iff M, Q |=∼ γ̃.

¥

Proof of Theorem 62. Let ϕ ∈ L(¬,∧, 〈〈A〉〉T, K̂, ∼) be a formula, and let ϕ̂ be a
formula of CSNF equivalent to ϕ. Note that ϕ̂ ∈ L(¬,∧, 〈〈A〉〉T, K̂, ∼). We show that

Dϕ̂(ψ) > 0 ⇒ ψ ∈ Atoms or ψ = K̂γ (3)

for every ψ ∈ Subf (ϕ̂) by induction over the depth (not the constructive depth) of ψ,
for arbitrary γ and K̂. For the base case, let ψ = ϕ̂ and (3) is vacuously true. In the
inductive case assume that (3) holds for the parent of ψ. There are three circumstances
in which Dϕ̂(ψ) > 0. First, K̂ψ ∈ Subf (ϕ̂). Then, ψ ∈ Atoms or ψ is of the form
Kbγ, since ϕ̂ is of CSNF. Second, ¬ψ ∈ Subf (ϕ̂) with Dϕ̂(ψ) = Dϕ̂(¬ψ). By
the induction hypothesis, it must be the case that Dϕ̂(¬ψ) = 0, so (3) is vacuously
true. Third, ψ ∧ ψ′ ∈ Subf (ϕ̂) with Dϕ̂(ψ) = Dϕ̂(ψ′) = Dϕ̂(ψ ∧ ψ′). By the
induction hypothesis, it must be the case that Dϕ̂(ψ ∧ ψ′) = 0, so (3) is vacuously
true. Similarly for the case ψ′ ∧ ψ. This shows that ϕ̂ is free for ¬ on all depths > 0,
and thus ϕ is equivalent to ϕ̂ which is equivalent to ˜̂ϕ by Lemma 73 which is without
weak negation. ¥


