
Confidence Measure for a Learning Agent
Wojciech Jamroga

Parlevink Group, University of Twente, Netherlands
Institute of Mathematics, University of Gdansk, Poland

jamroga@cs.utwente.nl

Abstract. This paper reports a research aimed to design a confidence measure for an
agent who learns and uses probabilistic models of other agents’ behavior. If the agent
has several alternative models of a particular opponent, she can use the confidence val-
ues to combine the models or choose among them. The measure has been inspired by
the research on universal prediction, and based on the self-information loss function.
It was verified through some simple experiments with simulated software agents.

Keywords: multiagent systems, meta-uncertainty, confidence, machine learning,
user modeling, self-information loss function.

1 Introduction

An agent may benefit from keeping several alternative models of the reality in certain situ-
ations – the point has been advocated in [1]. If a software agent is designed to interact with
users, she can be obviously better off keeping the users’ profiles to approximate the actual
preferences of each user. However, when the identity of a user remains unknown or the user
is completely new to the system, an average user model or a default model may be used in-
stead. While a standard machine learning algorithm will assume some arbitrary initial model
of such a user (via uniform or random distribution, for instance), it should be clear that such
knowledge mustn’t be trusted when it comes to decision making, since the model is not sup-
ported by any data so far. Moreover, users’ preferences may evolve, and even worse: some
users may assume someone else’s identity (incidentally or on purpose). This calls for a kind
of self-reflection on the agent’s part: a confidence measure is needed to determine to which
extent every piece of knowledge can be considered reliable. If we provide the agent with such
a measure, she can base her decisions on the most reliable model, or use a linear combination
of all the appropriate models.

In this paper a confidence measure is proposed for an agent, interacting with other agents
(users) in a very simple environment. The agent is meant to employ a kind of meta-reasoning
to determine the level of reliability of the resulting knowledge. The aim of the confidence
measure is to represent meta-(un)certainty – thus the actual confidence values range from
0 (complete distrust) to 1 (full confidence). Some researchers from the probability theory
community suggest that – to solve the problem – we should take the agent’s probabilistic
knowledge as a random quantity, and use its variance as a clue [11, 6]. The suggestion was
followed in [2], with rather negative results. Another possibility explored in that paper was
based on self-information loss function (or log-loss function), used widely in the fields of

2 Wojciech Jamroga

information theory and universal prediction [9]. As the latter idea proved promising, we will
explore it further in this paper.

Confidence has been recognized an important and useful notion within the Machine
Learning community. Explicit representing and analyzing confidence in the knowledge or be-
liefs being constructed has been successfully used in the areas of movement recognition [15],
speech recognition ([8, 18] and many more) or in mobile user location [7], for instance.
The confidence measure proposed here comes perhaps closest to the measure proposed by
Wang [14], based on the amount of data available to the agent. The time flow and the re-
sulting devaluation of the old data and/or knowledge have also been focus of several papers.
Kumar [5] uses a confidence measure to improve a Q-learning based algorithm for adaptive
network routing. The measure is very simple – the confidence in every Q-value which hasn’t
been updated in the last step is subject to ‘time decay’: Cnew(x) = λ Cold(x), where λ ∈ (0, 1)
is the decay constant. A similar idea was introduced in [4] to track the user’s drifting interests
effectively.

2 Motivation: Multilevel User Modeling

The motivation behind the confidence was the following: if a numerical evaluation can be
computed for every decision with respect to a particular model (the expected payoff, for
instance), then the agent’s decision may be based on a linear combination of the evaluations,
with the confidence providing weights. If the agent trusts the user’s profile in, say, 70% – the
final evaluation may depend on the profile in 70%, and the remaining 30% can be derived
from the default model. In consequence, the decision is based on both models at the same
time, although in different proportions – weighting the partial evaluations with the confidence
the agent has in them [1]. Another way is to combine strategies directly – we can do it if we
treat them as mixed (probabilistic) ones [3].

profile

default

C

Figure 1: The simplest hierarchy: two models of reality

Here, the agent utilizes two models of the user: the profile (for which confidence C is be-
ing computed after every step of interaction), and the default model defined in Game Theory
fashion: the user is assumed an enemy who always chooses the optimal response. The hybrid
agent from Figure 1 can make her decisions two ways:

1. combining evaluations: evaluation of every action a is based on sub-evaluations derived
from both models separately: eval(a) = C evalprofile(a) + (1 − C) evaldefault(a). The agent
chooses a with maximal eval(a);

2. combining strategies: if Sprofile is the strategy that maximizes evalprofile(a), and Smaxmin

is the agent’s maxmin strategy (i.e. the safest possible decision), then S = C Sprofile + (1−

C) Smaxmin is chosen (i.e. ”choose the strategy based on the profile with probability C,
and the maxmin strategy otherwise”).

Confidence Measure for a Learning Agent 3

A confidence measure for such agents is proposed in Section 3. Some results of experi-
ments with simulated agents can be found in Section 4.

3 Detecting Changes of the Pattern

There are roughly two possible sources of doubt. First, the agent may have too little data. This
shows the need for a confidence measure in an obvious way: when the agent starts interaction
with a completely new user, her knowledge about the user is virtually none. However, the
model of the user is utilized in the same way by most algorithms – regardless of the number
of learning steps that have been taken – although the model is more or less random when
we have, say, two user’s responses as the whole data set. A measure for tackling this kind
of doubt was proposed in [14]: CWang = n/(n + k), where n is the amount of data and k is
an arbitrary fixed number. For instance, CWang = n/(n + 1) for k = 1. It seems simple and
rather ad hoc, but works surprisingly well – even in the experiments conducted within this
study (section 4).

Next, the environment might have changed considerably, so the data do not reflect its
current shape. The agent can certainly benefit from detecting conspicuous changes of pattern
in the user’s behavior, and acting more cautiously in such situations. The latter kind of doubt
is the focus of this paper.

3.1 Confidence Based on the Logarithmic Loss Function

Log-loss function is used in the research on machine learning and time series prediction –
especially universal prediction, where a prediction doesn’t necessarily have to be a simple
estimation of the next observation, but it can be a complex structure (a probability assess-
ment, a strategy etc.), and the real underlying structure (the ‘source’) generating the events
is assumed to be unknown [9]. The universal prediction methods focus on finding a good
predictor, not on assessing how good it is, though. A way of transforming the log-loss values
into confidence values is proposed in this section.

Let p̂i represent the agent’s beliefs about the preferences of the user in response to a
particular action from the agent or a particular state of the environment (at the ith step of
interaction within this context). Let b∗i be the user’s actual response at that step. One-step loss
li and the average loss in n steps Ln can be defined using the log-loss function:

li = logloss(p̂i, b
∗
i) = − log2 p̂i(b

∗
i)

Ln =
1

n

n
∑

i=1

li = −
1

n

n
∑

i=1

log2 p̂i(b
∗
i)

Note that the expected value of l is a function of two probability distributions: the real
distribution p (the ‘source’ distribution), and its model p̂ built by the learning agent. More
formally, E l = −

∑

b p(b) log2 p̂(b) = El(p, p̂). The loss is minimal (in the sense of expected
value) when the agent has been guessing correctly, i.e. when the model she used was a true
reflection of the reality: p̂ = p [9]. However, this holds only if we assume that p is fixed, and
not in general, as the following example demonstrates.

Example 1. Consider an agent who estimates the user’s policy with probability distribution
p̂ = P1 at some moment (see Figure 2). If her guess is right (i.e. the user’s policy is p = P1

4 Wojciech Jamroga

0

0.25

0.5

0.75

1

b1 b2 b3

P1 P2

Figure 2: Minimal vs. optimal loss – an example

indeed), the expected loss is E l = −0.5 log2 0.5 − 2 · 0.25 log2 0.25 = 1.5. Yet if the real
policy is p = P2, then E l = −1 log2 0.5 = 1: the agent’s loss can be smaller when her guess
is wrong! In other words, El(p, p̂) has a global minimum of p̂ = p for a fixed p, but not when
we consider all the possible source distributions.

Note that this is not a problem in time series prediction. The source distribution is pre-
sumably fixed in a single interaction (there is one objective source distribution), and hence
El(p, p̂) is objectively minimal for p̂ = p (out of all the objectively possible values of E l). As
long as the agent is not interested in the loss values themselves – only in finding the minimum
point – minimizing the mean Ln is a valid strategy for her to find a model p̂ that approximates
the true probability distribution p. However, when the source distribution is unknown, some
smaller loss values may be deemed possible from the agent’s subjective point of view. More-
over, she may experience a smaller loss in a subsequent interaction in which her beliefs would
be actually farther from the reality.

Example 2. Consider the learning agent from Example 1 again. Suppose the agent computes
her disconfidence in her own model of the reality as a value somehow proportional to Ln.
Suppose that she interacts with two users, and in both cases she gets p̂ = P1. Moreover, let
the real policy of the first user be p = P1, and the second: p′ = P2. In a long run, our agent
is going to obtain average loss of 1.5 in the first case, and 1 in the second. Thus, she is going
to trust her beliefs more in the latter (where she actually guessed the policy incorrectly) –
which is unacceptable. In consequence, the minimal loss is not the optimal loss in this case.

What does ‘optimal’ mean then? Let us define the optimal series of models as a sequence
of the true probability distributions: p̂i = pi for i = 1..n. Now the optimal expected loss is
the expected value of the average loss we get provided our actual sequence p̂1..p̂n is optimal:

Optn = ELn = −
∑

(b1..bn)

[

p(b1..bn)
1

n

n
∑

i=1

log2 p̂i(bi)
]

=

= −
1

n

n
∑

i=1

∑

bi

pi(bi) log2 p̂i(bi) = −
1

n

n
∑

i=1

∑

b

p̂i(b) log2 p̂i(b)

Now, the loss deviation (or rather its absolute value) seems a better basis for the confidence:

∆n = Ln −Optn = −
1

n

n
∑

i=1

[

log2 p̂i(b
∗
i)−

∑

b

p̂i(b) log2 p̂i(b)
]

Confidence Measure for a Learning Agent 5

As different p̂’s give different loss characteristics, they also define very different deviation
intervals. For p̂i = P2, i = 1..n, for instance, the only possible values for ∆n are 0 and∞
– if the model has proved to be even slightly mistaken, then ∆n will remain∞ forever. On
the other end of the scale it’s easy to observe that if the agent stubbornly keeps the uniform
distribution as the user’s model (i.e. p̂(b) = 1

|ActB| all the time), then the deviation ∆n is
always 0, regardless of the actual responses from the user! In both cases the value of ∆n tells
virtually nothing about the actual reliability of p̂. It would be desirable that our confidence
measure produced more appropriate values, or at least ‘signal’ such situations instead of
giving unreliable output.

Between both extremes the range of possible ∆n also vary: it is close to (0,∞) for very
unbalanced models, and very narrow when p̂ is close to the uniform distribution. It is pro-
posed here that we can normalize the loss deviation with its range (∆max

n − ∆min
n) to obtain

disconfidence value that does not depend on the actual models p̂ so much. Now the log-loss-
based confidence measure can be defined as:

Clog = 1− |
∆n

∆max
n −∆min

n

|

where

∆max
n = max

(b∗
1
..b∗n)
{∆n} = max

(b∗
1
..b∗n)
{Ln −Optn} = max

(b∗
1
..b∗n)
{Ln} −Optn

∆min
n = min

(b∗
1
..b∗n)
{∆n} = min

(b∗
1
..b∗n)
{Ln −Optn} = min

(b∗
1
..b∗n)
{Ln} −Optn and

∆max
n −∆min

n = max
(b1..bn)

{−
1

n

n
∑

i=1

log2 p̂i(bi)} − min
(b1..bn)

{−
1

n

n
∑

i=1

log2 p̂i(bi)}

= −
1

n

n
∑

i=1

min
bi

log2 p̂i(bi) +
1

n

n
∑

i=1

max
bi

log2 p̂i(bi)

=
1

n

n
∑

i=1

[

log2 max
b

p̂i(b)− log2 min
b

p̂i(b)
]

=
1

n

n
∑

i=1

log2

maxb p̂i(b)

minb p̂i(b)

The measure has the following properties:

• n ∆n and n (∆max
n − ∆min

n) can be computed incrementally – the agent doesn’t have to
keep any additional information;

• if the value of Clog can be computed, then 0 ≤ Clog ≤ 1;

• Clog is undefined exactly in the two cases where ∆n is most dubious: when p̂i’s are uni-
form for all i = 1..n or when there exist i and b such that p̂i(b) = 0. Note also that, when
p̂i are frequency distributions (more generally: probability distributions obtained through
Bayesian updating), the first situation can happen only at the very beginning of the inter-
action, i.e. for i = 1. Moreover, the agent can be prevented from the latter situation by
starting from an initial distribution such that p̂1(b) > 0 for every b (for instance, she may
use the uniform rather than nil distribution as the starting point). Then we make sure that
the probabilities will always be positive.

6 Wojciech Jamroga

3.2 Log-loss Confidence with Temporal Decay

To implement a simple forgetting scheme, the idea of the decay rate λ ∈ [0, 1] is used in this
paper: the older items in a time series are supposed to decay with every step.

Let the sample mean with decay be defined as follows:

Mλ(Xi=1,...,n) =
X1λ

n−1 + X2λ
n−2 + ... + Xn−1λ + Xn

λn−1 + λn−2 + ... + λ + 1
=

∑n
i=1 λn−iXi

∑n
i=1 λn−i

for a series of n items and a temporal decay rate λ. Note that Mλ can also be computed
incrementally:

Mλ(Xi=1..n) =
Mλ(Xi=1..n−1) · (1− λn−1)λ + (1− λ)Xn

1− λn

Temporal decay can be introduced into the log-loss confidence to make the recent loss
values matter more than the old ones – we can redefine Ln to be a mean with decay:

Lλ
n = Mλ(li=1..n) =

−
∑n

i=1 λn−i log2 p̂i(b
∗
i)

∑n
i=1 λn−i

Then:

∆λ
n = Lλ

n −Optλn =

∑n
i=1 λn−i[− log2 p̂i(b

∗
i) +

∑

b p̂i(b) log2 p̂i(b)]
∑n

i=1 λn−i
=

= −Mλ

(

log2 p̂i(b
∗
i)

)

i=1..n
+ Mλ

(

∑

b

p̂i(b) log2 p̂i(b)
)

i=1..n

∆max,λ
n −∆min,λ

n = max
(b∗

1
..b∗

n
)
{−Mλ(log2 p̂i(b

∗
i))} − min

(b∗
1
..b∗

n
)
{−Mλ(log2 p̂i(b

∗
i))} =

=
−

∑n
i=1 λn−i log2 minb∗

i
p̂i(b

∗
i)

∑n
i=1 λn−i

+

∑n
i=1 λn−i log2 maxb∗

i
p̂i(b

∗
i)

∑n
i=1 λn−i

=

=

∑n
i=1 λn−i log2[maxb p̂i(b)/minb p̂i(b)]

∑n
i=1 λn−i

= Mλ

(

log2
maxb p̂i(b)

minb p̂i(b)

)

Again,

Cλ
log = 1− |

∆λ
n

∆max,λ
n −∆min,λ

n

|

and Cλ
log retains the properties of Clog.

4 Experiments

A number of simulations were run in order to verify the confidence measure.

4.1 Online Banking Scenario

The experiments were inspired by the following scenario: a software agent is designed to
interact with users on behalf of an Internet banking service; she can make an offer to a user,
and the user’s response determines her output at this step of interaction. The banking agent

Confidence Measure for a Learning Agent 7

is an adaptive 1-level agent, i.e. an agent that models other agents as 0-level agents (agents
whose behavior can be described with a probabilistic policy [12]) and uses the models in the
decision-making process. The user is simulated as a 0-level agent. The agent estimates the
user’s policy p with a probability distribution p̂, computed through simple Bayesian updat-
ing [10]:

p̂(b)←

{

p̂(b)n+1
n+1 if b = b∗

p̂(b)n
n+1 if b 6= b∗

; n← n + 1

where b∗ is the actual response from the user in the last round of interaction. Value n0 ≥ 0
is the number of ”virtual” training examples. Initial distribution p̂0 is uniform in most experi-
ments, although the ”safe” distribution (corresponding to the maxmin strategy) has also been
tried.

Adaptive user models are often useful when the domain is cooperative or neutral, or when
the adversaries are generally weaker than ‘our’ agent. Classical Game Theory solutions [13]
are still tempting, though, in a situation when the agent risks real money. Even one opponent
who plays his optimal strategy persistently can be dangerous then. In that case the agent can
use her maxmin strategy to play things safe, or choose a more sophisticated behavior in the
way described in section 2.

4.2 The Game

In the actual experiments the agent has had 3 possible offers at hand: the ‘risky offer’, the
‘normal offer’ and the ‘safe offer’, and the customer could respond with: ‘accept honestly’,
‘cheat’ or ‘skip’. The complete table of payoffs for the game is given below. The ‘risky offer’,
for example, can prove very profitable when accepted honestly by the user, but the agent will
lose much if the customer decides to cheat; as the user skips an offer, the bank still gains
some profit from the advertisements etc.

accept cheat skip
risky offer 30 -100 0.5
normal offer 10 -30 0.5
safe offer 0.5 0 0.5

The agent plays with various kinds of simulated ‘users’, i.e. processes displaying different
dynamics and randomness. Those include:

• static (or stationary) 0-level user with a random policy: p0 = · · · = p100 is generated at
random at the beginning of each interaction,

• ‘stepping’ user: a dynamic 0-level agent with the initial and the final preferences p0, p100

generated at random; his policy changes every 30 steps: pi(b) = p0(b)+(i div 30)(p100(b)−

p0(b))/3,

• ‘malicious’: an adversary 0-level user with a stationary random policy for the first 30
rounds, after which he cheats all the time.

1000000 independent random interactions (a sequence of 100 rounds each) have been sim-
ulated for every particular setting; the results (averaged for every round separately) are pre-
sented in section 4.3.

The user has been assumed rather simple-minded, in order to get rid of the exploration/exploitation
tradeoff. Thus, it was assumed that the user’s response doesn’t depend on the actual offer

8 Wojciech Jamroga

being made: p(cheat), p(accept) and p(skip) are the same regardless of the offer (if he’s dis-
honest, he cheats for a small reward as well as a big one, for instance). In consequence, no
specific exploration strategy is necessary. The ‘single-mindedness’ assumption looks like a
rough simplification. On the other hand, the preferences of a particular user (with respect to
different offers) are hardly uncorrelated in the real world. For most human agents the situa-
tion seems to be somewhere between both extremes: if the user tends to cheat, he may cheat
in many cases (although not all by any means); if the user is generally honest, he’ll rather
not cheat (although the temptation can be too strong if the reward for cheating is very high).
Therefore the assumption that the user has the same policy for all the agent’s offers may be
also seen as the simplest way of collaborative modeling [19].

4.3 Results

Figure 3 shows how the confidence values evolve against a ‘stepping’ user. The confidence
values are compared against the expected absolute deviation of the learned profile from the
real policy of the user: expdev =

∑

b |p̂(b) − p(b))| · p(b), or rather the ‘accurateness’ of the
profile, i.e. 1 − expdev. It can be observed that the log-loss-based measure is able to detect
changes in the user’s behavior – especially when temporal decay is employed. Wang’s mea-
sure, designed for static sources of data, increases always in the same manner regardless of
the users’ responses.

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Clog, =1.0

Clog, =0.9

Clog, =0.8

Cwang, k=1

1-expdev

l

l

l

Figure 3: Confidence values: Clog vs. CWang vs. accurateness

Confidence Measure for a Learning Agent 9

-5

-4

-3

-2

-1

0

1

0 10 20 30 40 50 60 70 80 90 100

profile only

default model only

profile+default, confidence: Clog, =1.0

profile+default, confidence: Cwang, k=1

l

Figure 4: Hybrid agents vs. single-model agents: payoffs against ‘stepping’ users

-1

0

1

0 10 20 30 40 50 60 70 80 90 100

profile only

profile+default, confidence: Clog, =1.0

profile+default, confidence: Cwang, k=1

l

Figure 5: Hybrid agents vs. single-model agents: payoffs against stationary users

Figures 4, 5 and 6 show that an agent using such a hybrid model of the reality can be
better off than an agent using either the profiles or the default user model alone. Such a
‘multi-model’ agent doesn’t lose so much money at the beginning of an interaction (because
the confidence is low and therefore she’s using mostly the default model). On the other hand,
the confidence is almost 1 by the time the acquired knowledge becomes more accurate so
the agent can start using the user profile successfully. In most cases there were no significant
differences in the output of the agents using Clog with or without temporal decay. Only against
‘malicious’ users smaller λ proves safer, since it makes the agent react faster.

10 Wojciech Jamroga

-15

-13

-11

-9

-7

-5

-3

-1

1

0 10 20 30 40 50 60 70 80 90 100

profile only

profile+default, confidence: Clog, =1.0

profile+default, confidence: Clog, =0.9

profile+default, confidence: Cwang, k=1

l

l

Figure 6: Hybrid agents vs. single-model agents: payoffs against ‘malicious’ users

All the above results were obtained for combining evaluations. Combining strategies di-
rectly, on the other hand, didn’t prove successful in this setting – as Figure 7 shows. It seems
that either the latter decision-making scheme isn’t suitable for the ‘banking game’, or the
confidence measure being used should be different in this case.

5 Conclusions

The experiments showed that a confidence measure can be useful – at least in some settings
– for instance, to detect changes in a user’s behavior, or as a means for weighting alterna-
tive beliefs. A confidence measure, based on logarithmic loss function was investigated with
encouraging results. The loss function provides a direct link between the model and the new
observations, and the temporal decay scheme lets the agent focus more on the results of re-
cent predictions rather than all of them. In consequence, the measure is flexible enough to
react appropriately even after many steps of collecting and analyzing data.

The author would like to thank Mannes Poel for the discussions and all his suggestions.

References

[1] W. Jamroga. Multiple models of reality and how to use them. In H. Blockeel and M. Denecker, editors,
BNAIC 2002, pages 155–162, 2002.

Confidence Measure for a Learning Agent 11

-5

-4

-3

-2

-1

0

1

0 10 20 30 40 50 60 70 80 90 100

profile only

default model only

profile+default, confidence: Clog, =0.8

profile+default, confidence: Clog, =1.0l

l

Figure 7: Hybrid agents vs. single-model agents: payoffs against ‘stepping’ users, combining strategies

[2] W. Jamroga. A confidence measure for learning probabilistic knowledge in a dynamic environment. In
Proceedings of International Conference on Computational Intelligence for Modeling Control and Au-
tomation, 2003.

[3] W. Jamroga. Safer decisions against a dynamic opponent. In Proceedings of IIPWM 2003, Advances in
Soft Computing. Springer, 2003. To appear.

[4] I. Koychev. Gradual forgetting for adaptation to concept drift. In Proceedings of ECAI 2000 Workshop
”Current Issues in Spatio-Temporal Reasoning”, pages 101–106, 2000.

[5] S. Kumar. Confidence based dual reinforcement q-routing: an on-line adaptive network routing algorithm.
Master’s thesis, Department of Computer Sciences, The University of Texas at Austin, 1998. Tech. Report
AI98-267.

[6] H.E. Kyburg. Higher order probabilities and intervals. International Journal of Approximate Reasoning,
2:195–209, 1988.

[7] Z. Lei, C.U. Saraydar, and N.B. Mandayam. Paging area optimization based on interval estimation in
wireless personal communication networks. Mobile Networks and Applications, 5(1):85–99, 1999. Special
Issue on Mobile Data Networks: Advanced Technologies and Services.

[8] E. Mengusoglu and C. Ris. Use of acoustic prior information for confidence measure in ASR applications.
In Eurospeech 2001, 2001.

[9] N. Merhav and M. Feder. Universal prediction. IEEE Trans. Inform. Theory, IT-44(6):2124–2147, 1998.

[10] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[11] J. Pearl. Do we need higher-order probabilities and, if so, what do they mean? In Uncertainty in Artificial
Intelligence Workshop, 1987.

12 Wojciech Jamroga

[12] S. Sen and G. Weiss. Learning in multiagent systems. In Weiss G., editor, Multiagent Systems. A Modern
Approach to Distributed Artificial Intelligence, pages 259–298. MIT Press: Cambridge, Mass, 1999.

[13] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behaviour. Princeton University
Press: Princeton, NJ, 1944.

[14] P. Wang. Confidence as higher-order uncertainty. In Proceedings of the Second International Symposium
on Imprecise Probabilities and Their Applications, pages 352–361, 2001.

[15] R. Wang, H.-J. Zhang, and Y.-Q. Zhang. A confidence measure based moving object extraction system
built for compressed domain. Technical report, Microsoft Research, Beijing, 1999.

[16] G. Widmer. Tracking context changes through meta-learning. Machine Learning, 27:256–286, 1997.

[17] G. Williams. Knowing What You Don’t Know: Roles for Confidence Measures in Automatic Speech Recog-
nition. PhD thesis, University of Sheffield, Department of Computer Science, 1999.

[18] G. Williams and S. Renals. Confidence measures for hybrid HMM/ANN speech recognition. In Eu-
rospeech97, pages 1955–1958, 1997.

[19] I. Zukerman and D.W. Albrecht. Predictive statistical models for user modeling. User Modeling and
User-Adapted Interaction, 11:5–18, 2001.

