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Abstract. In this paper, we show that different semantics of ability give
rise to different validity sets. The issue is important for several reasons.
First, many logicians identify a logic with its set of true sentences. As
a consequence, we prove that different notions of ability induce different
logics in the traditional sense. Secondly, the study can be seen as the first
systematic step towards satisfiability-checking algorithms for variants of
ATL other than the basic variant.

1 Introduction

Alternating-time temporal logic (ATL) [2] is a temporal logic that incorporates
some basic game theoretical notions. In ATL we can for instance express that
a group of agents is able to bring about ϕ, i.e., they are able to enforce that
property ϕ holds whatever the other agents might do. ATL has been studied
extensively in previous years; however, most of the research was focused on the
way such logics can be used for verification of multi-agent systems. In particular,
the complexity of model checking was investigated and compared for different
settings and different variants of the logic [10, 11, 7]. Studies of other formal
meta-properties have been relatively scarce. Axiomatization and satisfiability
were investigated in [4, 12, 9], some expressivity issues were raised in [8], and
invariance of the semantics with respect to a couple of classes of models was
proven in [3]. Moreover, most of these studies were limited to the basic variant
of ATL where agents possess perfect information about the current state of the
system and perfect memory about the evolution of the system so far. Formal
properties of other variants of ATL are largely left untouched, and so is the
comparison between different semantic variants of the logic.

Semantic variants of ATL are usually derived from different assumptions
about agents’ capabilities. Can the agents “see” the current state of the system,
or only a part of it? Can they memorize the whole history of observations in
the game? Is it enough that they can enforce the required temporal property
“objectively”, or should they be able to come up with the right strategy on their
own? Different answers to these questions induce different semantics of strategic
ability, and they clearly give rise to different analyses of a given problem domain.
However, it is not entirely clear to what extent they give rise to different logics.



One natural question that arises in this respect is whether these semantic variants
generate different sets of valid (and, dually, satisfiable) sentences.

The question is important for several reasons. First, many logicians identify
a logic with the set of sentences that are true in the logic; semantics is just a pos-
sible way of defining the set, alternative to an axiomatic inference system. Thus,
by comparing validity sets we compare the respective logics in the traditional
sense. Moreover, validities of ATL capture general properties of games under
consideration: if, e.g., two variants of ATL generate the same valid sentences
then the underlying notions of ability induce the same kind of games. Finally,
the satisfiability problem for ATL, though far less studied than model check-
ing, is not necessarily less important. While model checking ATL can be seen
as a modal logic analogue of game solving, satisfiability corresponds naturally
to mechanism design. A systematic study on the abstract level is the first step
towards devising algorithms that solve the problem.

So, do different notions of ability induce different strategic logics (in the
traditional sense)? Informal discussions revealed that the issue is by no means
obvious. While it was clear for some researchers that we should get different
validity sets, for others it was equally clear that validities should stay the same
regardless of the actual notion of strategy. In this paper, we settle the issue and
show that most of the known semantic variants of ATL are indeed different,
and we characterize the relationship between their sets of validities.

Our results are relevant also outside the logical context. As already men-
tioned, by looking at validity sets we study general properties of strategic ability
under various semantic assumptions. And since much of our study concerns
ability under imperfect information, one can claim that it regards abilities of
agents in realistic multi-agent systems. Ultimately, we show that what agents can
achieve is much more sensitive to the strategic model of an agent (and a precise
notion of achievement) than it was generally realized. No less importantly, our
study reveals that some natural properties – usually taken for granted when rea-
soning about action – may cease to be universally true if we change the strategic
setting. Prime examples include fixpoint characterizations of temporal/strategic
operators (that enable incremental synthesis and iterative execution of strate-
gies) and the duality between necessary and obtainable outcomes in a game.

The paper is structured as follows. We begin with presenting the relevant
variants of ATL in Section 2. Then, we investigate the relationships between
their validity sets in Section 3. Finally, we present some conclusions in Section 4.

2 Reasoning about Abilities

ATL [2] generalizes the branching time logic CTL by replacing path quanti-
fiers E,A with cooperation modalities 〈〈A〉〉. Informally, 〈〈A〉〉γ expresses that the
group of agents A has a collective strategy to enforce temporal property γ. ATL
formulae include temporal operators: “ g” (“in the next state”), “2” (“always
from now on”) and U (“until”). The additional operator “3” (“now or sometime
in the future”) can be defined as 3γ ≡ >U γ.
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Fig. 1. Two robots and a carriage: (A) Perfect information model M0 (left); (B) Imper-
fect information CGS M ′0 (right). Dashed lines represent indistinguishability relations
between states.

2.1 Syntax of ATL

In the rest of the paper we assume that Π is a nonempty set of proposition
symbols and Agt a nonempty and finite set of agents. Alternating-time temporal
logic comes in several syntactic variants, of which ATL∗ is the broadest. For-
mally, the language of ATL∗ is given by formulae ϕ generated by the grammar
below, where A ⊆ Agt is a set of agents, and p ∈ Π is an atomic proposition:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ, γ ::= ϕ | ¬γ | γ ∧ γ | gγ | γ U γ.

The best known syntactic variant of alternating time temporal logic is “ATL
without star” (or “vanilla” ATL) in which every occurrence of a cooperation
modality is uniquely coupled with a temporal operator. ATL+ sits between
ATL∗ and “vanilla” ATL: it allows cooperation modalities to be followed by a
Boolean combination of simple temporal subformulae. We will use the acronym
ATL to refer to the “ATL without star” when no confusion can arise.

2.2 Basic Models of ATL

In [2], the semantics of alternating-time temporal logic is defined over a variant
of transition systems where transitions are labeled with combinations of actions,
one per agent. Formally, a concurrent game structure (CGS) is a tuple M =
〈Agt, St,Π, π,Act, d, o〉 which includes a nonempty finite set of all agents Agt =
{1, . . . , k}, a nonempty set of states St, a set of atomic propositions Π and
their valuation π : Π → 2St, and a nonempty finite set of (atomic) actions
Act. Function d : Agt× St→ 2Act defines nonempty sets of actions available to
agents at each state, and o is a (deterministic) transition function that assigns the
outcome state q′ = o(q, α1, . . . , αk) to state q and a tuple of actions 〈α1, . . . , αk〉
for αi ∈ d(i, q) and 1 ≤ i ≤ k, that can be executed by Agt in q.

A path λ = q0q1q2 . . . is an infinite sequence of states such that there is a
transition between each qi, qi+1. We use λ[i] to denote the ith position on path
λ (starting from i = 0) and λ[i,∞] to denote the subpath of λ starting from i.



The set of paths starting in q is denoted by ΛM (q). Moreover, we define Λfin
M (q)

as the set of all finite prefixes of ΛM (q) and we define Λfin
M :=

⋃
q∈St Λ

fin
M (q).

Example 1 (Robots and Carriage). Consider the scenario depicted in Figure 1A.
Two robots push a carriage from opposite sides. As a result, the carriage can
move clockwise or anticlockwise, or it can remain in the same place. We assume
that each robot can either push (action push) or refrain from pushing (action
wait). Moreover, they both use the same force when pushing. Thus, if the robots
push simultaneously or wait simultaneously, the carriage does not move. When
only one of the robots is pushing, the carriage moves accordingly.

2.3 Basic Semantics of ATL

In the standard version of ATL [2], strategies are represented by functions
sa : St+ → Act. A collective strategy for a group of agents A = {a1, . . . , ar} is
simply a tuple of individual strategies sA = 〈sa1 , . . . , sar 〉. Let a ∈ A; by sA|a,
we will denote agent a’s part sa of the collective strategy sA. The “outcome”
function out(q, sA) returns the set of all paths that may occur when agents A
execute strategy sA from state q onward:

out(q, sA) = {λ = q0q1q2 . . . | q0 = q and for each i = 1, 2, . . . there exists
a tuple of all agents’ decisions 〈αi−1

1 , . . . , αi−1
k 〉 such that αi−1

a ∈ da(qi−1)
for every a ∈ Agt, and αi−1

a = sA|a(q0q1 . . . qi−1) for every a ∈ A, and
o(qi−1, α

i−1
1 , . . . , αi−1

k ) = qi}.

Let M be a CGS, q a state, and λ a path in M . The semantics of ATL∗

and its sublanguages can be defined by the standard clauses for Boolean and
temporal operators, plus the following clause for 〈〈A〉〉 (cf. [2] for details):

M, q |= 〈〈A〉〉γ iff there is a strategy sA for agents A such that for each path
λ ∈ out(sA, q), we have M,λ |= γ.

Example 2 (Robots and Carriage, ctd.). Since the outcome of each robot’s action
depends on the current action of the other robot, no agent can make sure that
the carriage moves to any particular position. So, we have for example that
M0, q0 |= ¬〈〈1〉〉3pos1. On the other hand, the robots can cooperate to move the
carriage. For instance, it holds that M0, q0 |= 〈〈1, 2〉〉3pos1 (example strategy:
robot 1 always pushes and robot 2 always waits).

2.4 Some Important Formulae

The following fixpoint properties are valid in the standard semantics of ATL
(that follows from the correctness of the model checking algorithm proposed
in [2]):

〈〈A〉〉2ϕ↔ ϕ ∧ 〈〈A〉〉 g〈〈A〉〉2ϕ
〈〈A〉〉ϕ1 U ϕ2 ↔ ϕ2 ∨ ϕ1 ∧ 〈〈A〉〉 g〈〈A〉〉ϕ1 U ϕ2.



Moreover, the path quantifiers A,E of CTL can be expressed in ATL with
〈〈∅〉〉, 〈〈Agt〉〉 respectively. As a consequence, the CTL duality axioms can be
rewritten in ATL, and become validities in the standard semantics:

¬〈〈Agt〉〉3ϕ↔ 〈〈∅〉〉2¬ϕ,
¬〈〈∅〉〉3ϕ↔ 〈〈Agt〉〉2¬ϕ.

2.5 Between Uncertainty and Recall

It makes sense, from a conceptual and computational point of view, to distinguish
between two types of strategies: an agent may base its decision on the current
state or on the whole history of events that have happened. Also, the agent may
have complete or incomplete knowledge about the current global state of the
system. To distinguish between those cases, a natural taxonomy of 4 strategy
types was introduced in [10] and labeled as follows: i (resp. I ) stands for imperfect
(resp. perfect) information, and r (resp. R) refers to imperfect (resp. perfect)
recall. Then, the semantics of ATL can be parameterized with the strategy type
that we use – this way we obtain 4 different semantic variants of the logic, labeled
accordingly (ATLIR, ATLIr, ATLiR, and ATLir). In this paper, we extend the
taxonomy slightly by adding the distinction between objective and subjective
abilities under imperfect information, denoted by is and io, respectively.

The semantic variants are defined as follows: models, imperfect information
concurrent game structures (iCGS), can be seen as concurrent game structures
augmented with a family of indistinguishability relations ∼a⊆ St× St, one per
agent a ∈ Agt. The relations describe agents’ uncertainty: q ∼a q

′ means that
agent a cannot distinguish between states q and q′ of the system. Each ∼a is
assumed to be an equivalence relation. It is also required that agents have the
same choices in indistinguishable states: if q ∼a q

′ then d(a, q) = d(a, q′).
We define a history to be a sequence of states. Two histories h = q0q1 . . . qn

and h′ = q′0q
′
1 . . . q

′
n′ are indistinguishable for agent a (h ≈a h

′) iff n = n′ and
qi ∼a q

′
i for i = 1, . . . , n. Concatenation of h and h′ is denoted by h◦h′ or simply

hh′. We also use last(h) to refer to the last state on history h. Additionally, for
any equivalence relation R over a set X we use [x]R to denote the equivalence
class of x. Moreover, we will use the abbreviations ∼A:=

⋃
a∈A ∼a and ≈A:=⋃

a∈A ≈a. We also write ∼M
A ,≈M

A if the model is not clear from the context.
Note that relations ∼A,≈A implement the “everybody knows” type of collective
knowledge (i.e., q and q′ are indistinguishable for group A iff there is at least
one agent in A for whom q, q′ look the same).

The following types of strategies are used in the respective semantic variants:

– Ir: sa : St→ Act such that sa(q) ∈ d(a, q) for all q;
– IR: sa : St+ → Act such that sa(q0 . . . qn) ∈ d(a, qn) for all q0, . . . , qn;
– ir (i.e., isr or ior): like Ir, with the additional constraint that q ∼a q

′ implies
sa(q) = sa(q′);

– iR (i.e., isR or ioR): like IR, with the additional constraint that h ≈a h′

implies sa(h) = sa(h′).



That is, strategy sa is a conditional plan that specifies a’s action in each state
of the system (for memoryless agents) or for every possible history of the sys-
tem evolution (for agents with perfect recall). Moreover, imperfect information
strategies specify the same choices for indistinguishable states (resp. histories).

A collective xy-strategy sA is a tuple of individual xy-strategies sa, one per
a ∈ A. Note that the constraints in collective strategies refer to individual choices
and individual relations ∼a (resp. ≈a), and not to collective choices and the
derived relations ∼A (resp. ≈A). The set of outcomes of a strategy is redefined
as follows:

– outxy(q, sA) = out(q, sA) for x ∈ {I, io} and y ∈ {r,R};
– outxy(q, sA) =

⋃
q∼Aq′ out(q′, sA) for x = is and y ∈ {r,R}.

We obtain the semantics for ATLxy by changing the clause for 〈〈A〉〉γ from
Section 2.3 in the following way:

M, q |=xy 〈〈A〉〉γ iff there is an xy-strategy sA for agents A such that for each
path λ ∈ outxy(q, sA), we have M,λ |=xy γ.

Note that the I and io semantics of ATL look only at outcome paths starting
from the current global state of the system. In other words, they formalize the
properties which agents can enforce objectively (but, in case of uncertainty about
the current state, they may be unaware of the fact). In contrast, the is semantics
of 〈〈A〉〉γ refers to all outcome paths starting from states that look the same as the
current state for coalition A. Hence, it formalizes the notion of A knowing how to
play in the sense that group A can identify a single strategy that succeeds from all
the states they consider possible. We follow [10] by taking the “everybody knows”
interpretation of collective uncertainty. A more general setting was proposed
in [6]; we believe that the results presented in this paper carry over to the other
cases of “knowing how to play”, too.

Example 3 (Robots and Carriage, ctd.). We refine the scenario from Example 1
by assuming that the first robot can distinguish between position 0 and position
1, but positions 0 and 2 look the same to it. Likewise, the second robot can
distinguish between positions 0 and 2, but not 0 and 1 (cf. Figure. 1B). Now, we
have that M ′0, q0 |=xy ¬〈〈1〉〉2¬pos1 for all x ∈ {is, io}, y ∈ {r,R} (that is, for all
variants with imperfect information). Note in particular that the strategy from
Example 1 cannot be used here because it is not uniform. The robots can achieve
the task together, but only in the objective sense: M ′0, q0 |=ior 〈〈1, 2〉〉2¬pos1.
However, they cannot identify a strategy which guarantees that: M ′0, q0 |=isr

¬〈〈1, 2〉〉2¬pos1 (when in q0, robot 2 considers it possible that the current state
of the system is q1, in which case all hope is gone).

So, do the robots know how to play to achieve anything? Yes, for example they
know how to make the carriage reach a particular state eventually: M ′0, q0 |=isr

〈〈1, 2〉〉3pos1 etc. – it suffices that one of the robots pushes all the time and the
other waits all the time.

It is important to note that in “vanilla” ATL both semantics for perfect
information coincide:



Proposition 1 ([2, 10]). For every iCGS M , state q, and ATL formula ϕ,
we have that M, q |=

IR
ϕ iff M, q |=

Ir
ϕ.

3 Comparing Validities for Variants of ATL

In this section we present a formal comparison of the semantic variants defined
in Section 2. As stated in the introduction, we compare the variants on the
level of their validity sets (or, equivalently, satisfiable sentences). In most cases,
the variants turn out to be different. Also in most cases, we can show that one
variant is a refinement of the other in the sense that its set of validities strictly
subsumes the validities induced by the other variant.

In what follows, we write Val(ATLsem) to denote the set of ATL validi-
ties under semantics sem. Likewise, we write Sat(ATLsem) for the set of ATL
formulae satisfiable in sem.

3.1 Perfect vs. Imperfect Information

We begin by comparing models of perfect and imperfect information scenarios.
That is, in the first class (I), agents recognize the current global state of the
system by definition. In the latter (i), uncertainty of agents about states can be
encoded.

Comparing ATLir vs. ATLIr First, we observe that perfect information can
be seen as a special case of imperfect information.

Proposition 2. Val(ATLisr) ⊆ Val(ATLIr) and Val(ATLior) ⊆ Val(ATLIr).

Proof. Since perfect information of agents can be explicitly represented in iCGS
by fixing all relations ∼a as the minimal reflexive relations (q ∼a q

′ iff q = q′),
we have that ϕ ∈ Sat(ATLIr) implies ϕ ∈ Sat(ATLisr) and ϕ ∈ Sat(ATLior).
Thus, dually, Val(ATLisr) ⊆ Val(ATLIr) and Val(ATLior) ⊆ Val(ATLIr).

Proposition 3. Val(ATLIr) 6⊆ Val(ATLisr).

Proof. We show that by presenting a validity for ATLIr which is not valid in
ATLisr. Consider the formula that captures the right-to-left direction in the
fixpoint characterization of 〈〈a〉〉3:

Φ1 ≡ p ∨ 〈〈a〉〉 g〈〈a〉〉3p→ 〈〈a〉〉3p

Φ1 is Ir-valid (cf. Section 2.4). To see its invalidity in the isr semantics, con-
sider model M1 from Figure 2.3 Indeed, for p ≡ shot, we get M1, q0 |=isr

p ∨ 〈〈a〉〉 g〈〈a〉〉3p and M1, q0 6|=isr
〈〈a〉〉3p, which formally concludes our proof.

3 The story behind Figure 2 is as follows. A man wants to shoot down a duck in a
shooting gallery. (With all respect to animal rights, this is just a yellow rubber duck,
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Fig. 2. Model M1: shooting the poor duck. The model includes only one player (a),
and transitions are labeled with a’s actions. Automatic transitions (i.e., such that there
is only one possible transition from the starting state) are left unlabeled.

Proposition 4. Val(ATLIr) 6⊆ Val(ATLior).

Proof. It is sufficient to show that Φ1 ≡ p ∨ 〈〈a〉〉 g〈〈a〉〉3p → 〈〈a〉〉3p is invalid
in the ior semantics. Take model M2 in Figure 3 and p ≡ shot. Now we have
that M2, q

′
0 |=ior

p∨ 〈〈a〉〉 g〈〈a〉〉3p and M2, q
′
0 6|=ior

〈〈a〉〉3p, which concludes the
proof.

Corollary 1. Val(ATLisr) ( Val(ATLIr) and Val(ATLior) ( Val(ATLIr).

Comparing ATLiR vs. ATLIR First, we observe that for ATLioR vs. ATLIR

we can employ the same reasoning as for for ATLior vs. ATLIr. Abilities under
perfect information can be still seen as a special case of imperfect information
abilities, and we can use the same model M2 to invalidate the same formula Φ1.
Thus, analogously to Corollary 1 we get:

Corollary 2. Val(ATLioR) ( Val(ATLIR).

By the same reasoning as above, Val(ATLisR) ⊆ Val(ATLIR). To settle the
other direction, we need to use another counterexample, though.

so there is no reason to worry about it.) The man knows that the duck is in one of
the two cells in front of him, but he does not know in which one. Moreover, this has
been a long party, and he is very tired, so he is only capable of using memoryless
strategies at the moment. Does he have a memoryless strategy which he knows will
achieve the goal? No. He can either decide to shoot to the left, or to the right, or
reach out to the cells and look what is in (note also that the cells close in the moment
after being opened). In each of these cases the man risks that he will fail (at least
from his subjective point of view). Does he have an opening strategy that he knows
will guarantee his knowing how to shoot the duck in the next moment? Yes. The
opening strategy is to look; if the system proceeds to q4 then the second strategy is
to shoot to the left, otherwise the second strategy is to shoot to the right.
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Fig. 3. M2: a variant of the “poor duck problem” with 2 agents a, b. This time, we
explicitly represent the agent (b) who puts the duck in one of the cells.

Proposition 5. Val(ATLIR) 6⊆ Val(ATLisR).

Proof. This time we consider the other direction of the fixpoint characterization
for 〈〈a〉〉3: Φ2 ≡ 〈〈a〉〉3p→ p∨〈〈a〉〉 g〈〈a〉〉3p. Φ2 is IR-valid, but it is not valid in
isR. Consider the “poor duck model” M1 from Figure 2 and p ≡ shot. We have
that M1, q4 |=isR

〈〈a〉〉3p, but M1, q4 6|=isR
p ∨ 〈〈a〉〉 g〈〈a〉〉3p, which concludes

the proof.

Corollary 3. Val(ATLisR) ( Val(ATLIR) and Val(ATLisR) ( Val(ATLIr).

3.2 Perfect Recall vs. Memoryless Strategies

Now we proceed to examine the impact of perfect vs. imperfect recall on the
general strategic properties of agent systems.

Comparing ATLIr vs. ATLIR We have already mentioned that, in “vanilla”
ATL, the Ir and IR semantics coincide (Proposition 1). As a consequence, they
induce the same vailidities: Val(ATLIr) = Val(ATLIR). Thus, regardless of
the type of their recall, perfect information agents possess the same abilities
with respect to winning conditions that can be specified in “vanilla” ATL. An
interesting question is: does it carry over to more general classes of winning
conditions, or are there (broader) languages that can discern between the two
types of ability? The answer is: yes, there are. The Ir- and IR-semantics induce
different validity sets for ATL∗, and in fact the distinction is already present in
ATL+. Moreover, it turns out that perfect recall can be seen as a special case
of imperfect recall in the sense of their general properties.
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Our proof of Proposition 6 draws inspiration from the proof of [1, Theorem
8.3]. We start with some additional notions and two useful lemmata.

Definition 1 (Tree-like CGS). Let M be a CGS and q be a state in it. M
is called tree-like iff there is a state q (the root) such that for every q′ there is
a unique finite sequence of states leading from q to q′.

Definition 2 (Tree unfolding). Let M = (Agt, St,Π, π,Act, d, o) be a CGS
and q be a state in it. The tree-unfolding of M starting from state q denoted
T (M, q) is defined as (Agt, St′, Π, π′, Act, d′, o′) where St′ := Λfin

M (q), d′(a, h) :=
d(a, last(h)), o′(h,α) := h ◦ o(last(h),α), and π′(h) := π(last(h)).

Lemma 1. For every tree-like CGS M , state q in M , and ATL∗ formula ϕ,
we have: M, q |=

Ir
ϕ iff M, q |=

IR
ϕ.

Proof (sketch). Induction over the structure of ϕ. The main case is ϕ ≡ 〈〈A〉〉γ;
to see that the proof goes through, observe that the subtree of M starting from
q is also a tree-like CGS, and on tree-like CGS’s Ir and IR strategies coincide.

Lemma 2. For every CGS M , state q in M , and ATL∗ formula ϕ, M, q |=
IR
ϕ

iff T (M, q), q |=
IR
ϕ.

Proof (sketch). Induction over the structure of ϕ. The main case is again ϕ ≡
〈〈A〉〉γ for which it is sufficient to observe that (i) IR strategies in M, q uniquely
correspond to IR strategies in T (M, q), q; (ii) outM (q, sA) = outT (M,q)(q, sA) for
every IR strategy sA.

Proposition 6. Val(ATL∗Ir) ⊆ Val(ATL∗IR)

Proof. Let an ATL∗ formula ϕ be Ir-valid in CGS’s, then it is also Ir-valid in
tree-like CGS’s, and by Lemma 1 also IR-valid in tree-like CGS’s. Thus, by
Lemma 2, it is IR-valid in arbitrary CGS’s.

In particular, the subsumption holds for formulae of ATL+. Moreover:

Proposition 7. Val(ATL+
IR) 6⊆ Val(ATL+

Ir).



Proof. Consider formula

Φ3 ≡ 〈〈a〉〉(3p1 ∧3p2)↔ 〈〈a〉〉3(p1 ∧ 〈〈a〉〉3p2 ∨ p2 ∧ 〈〈a〉〉3p1).

The formula is valid in ATL+
IR [5]. On the other hand its right-to-left part is not

valid in ATL+
Ir. To see this, we take the single-agent CGS M3 from Figure 4

where agent a (the robot) can either do the cleaning or the delivery of a package.
Then, for p1 ≡ clean, p2 ≡ delivered, we have M3, q0 |=Ir

〈〈a〉〉3(p1 ∧ 〈〈a〉〉3p2 ∨
p2 ∧ 〈〈a〉〉3p1) but also M3, q0 6|=Ir

〈〈a〉〉(3p1 ∧3p2).

Corollary 4. Val(ATL+
Ir) ( Val(ATL+

IR).

Comparing ATLior vs. ATLioR Now we compare the memoryless and perfect
recall semantics under uncertainty. The basic idea is similar to the one behind
Proposition 6. First, we define tree-like iCGS’s analogously to Definition 1. Tree
unfoldings of iCGS’s are also similar – this time, however, we must take into
account the indistinguishability relations.

Definition 3 (ioR-tree unfolding). Given an iCGS M and a state q in it,
we define the ioR-tree unfolding of M, q, denoted TioR(M, q) as T (M, q) from

Definition 2, and add epistemic relations ∼TioR(M,q)
a reflecting indistinguishability

of histories in M : h ∼TioR(M,q)
a h′ iff h ≈M

a h′.

Let T = TioR(M, q), and h a node in it. We define the h-subtree of T as
the tree-like iCGS obtained from T by removing all nodes except for h and its
descendants. We have the following obvious lemma.

Lemma 3. Let Th be the h-subtree of T := TioR(M, q0), where h = q0q1 . . . qn.
Then, for every node h′ in Th and every a ∈ Agt if we have h′ ∼Th

a h′′ then
hh′ ∼T

a hh′′.

In other words, the information sets in a game can only be more precise when
the game already follows some previous interaction. Analogously to Lemma 1
we have the following result.

Lemma 4. For every tree-like iCGS M , state q in M , and ATL∗ formula ϕ,
we have that M, q |=

ior
ϕ iff M, q |=

ioR
ϕ.

Lemma 5. For every node h in TioR(M, q0) it holds that TioR(M, q0), h |=ioR ϕ
iff M, last(h) |=ioR ϕ.

Proof. The proof follows by induction on the structure of ϕ. Here, we only show
it for ϕ ≡ 〈〈A〉〉2ψ; the other cases are either analogous or straightforward. Let
T := TioR(M, q0).

“⇒”: We have T, h |=ioR 〈〈A〉〉2ψ iff T, h |=ior 〈〈A〉〉2ψ by Lemma 4. So
there is an ir-strategy sA such that (?) ∀λ ∈ outT (h, sA)∀j.T, λ[0, j] |= ψ.



q0 q1

q2

angry

q3

suspicious

a

n
o
t-k

iss

k
iss

kiss n
o
t-kiss

Fig. 5. Model M4: dangers of marital life

We construct a witnessing perfect recall strategy s′A in M as follows: s′a(ĥ) =

sa(hh′) for every a ∈ A and ĥ such that last(h)h′ ∼M
a ĥ. We define s′a arbi-

trarily for all other histories with the condition to assign the same actions to
indistinguishable histories.

Strategy s′A is uniform by construction. Moreover, by (?), we have ∀λ ∈
outM (last(h), s′A)∀j.T, hλ[1..j] |=ioR ψ (where hλ[1..j] is the history obtained
by combining h and λ[0..j], and extracting state λ[0]). Hence, by induction hy-
pothesis: ∀λ ∈ outM (last(h), s′A)∀j.M, last(hλ[1..j]) |=ioR ψ. Thus, we have
M, last(h) |=ioR 〈〈A〉〉2ψ.

“⇐”: We have M, last(h) |=ioR 〈〈A〉〉2ψ, so there is an iR-strategy sA such
that (??) ∀λ ∈ outM (last(h), sA)∀i.M, λ[i] |=ioR ψ. We construct the memory-

less strategy s′A in T as follows: s′a(ĥh′) = sa(last(h)h′) for every a ∈ A and ĥ

such that h ∼T
a ĥ. For all other histories h′ we define s′a(h) arbitrarily but in

a uniform way. The strategy s′A is uniform by Lemma 3 and by construction.
By (??), ∀λ ∈ outT (h, s′A)∀i.M, last(λ[i]) |=ioR ψ. So, by induction hypothesis:
∀λ ∈ outT (h, s′A)∀i.T, λ[i] |= ψ, and as a consequence T, h |=ioR 〈〈A〉〉2ψ.

Proposition 8. Val(ATLior) ⊆ Val(ATLioR).

Proof. We prove that Sat(ATLioR) ⊆ Sat(ATLior). Let ϕ ∈ Sat(ATLioR).
Then, there must be a pointed iCGS M, q such that M, q |=

ioR
ϕ. By Lemma 5,

TioR(M, q), q |=
ioR

ϕ. But on iR-tree unfoldings, iR- and ir-strategies coincide
(Lemma 4), so we get that TioR(M, q), q |=

ior
ϕ, and as a consequence ϕ ∈

Sat(ATLior).

The converse does not hold:

Proposition 9. Val(ATLioR) 6⊆ Val(ATLior)

Proof. To show this, we take the ATL embedding of the CTL duality between
combinators E2 and A3. In fact, only one direction of the equivalence is impor-
tant here: Φ4 ≡ ¬〈〈∅〉〉3¬p → 〈〈Agt〉〉2p (note that the other direction is valid
for all the semantics considered in this paper, and actually all the reasonable
semantics of strategic ability that one can come up with).



First, we observe that: (i) ¬〈〈∅〉〉3¬p expresses (regardless of the actual type
of ability being considered) that there is a path in the system on which p always
holds; (ii) in the “objective” semantics the set out(q, sAgt) always consists of
exactly one path; (iii) for every path λ starting from q, there is an ioR-strategy
sAgt such that out(q, sAgt) = {λ}. From these, it is easy to see that Φ4 is valid
in ATLioR.

Second, we consider model M4 in Figure 5.4 Let us take p ≡ ¬angry ∧
¬suspicious. Then, we have M, q0 |=ior ¬〈〈∅〉〉3¬p but also M, q0 6|=ior 〈〈Agt〉〉2p,
which demonstrates that Φ4 is not valid in ATLior.

Corollary 5. Val(ATLior) ( Val(ATLioR).

Proposition 10. Val(ATLisR) 6⊆ Val(ATLisr).

Proof. We take
Φ5 ≡ 〈〈a〉〉 g〈〈a〉〉3p→ 〈〈a〉〉3p.

The formula is stating that if a has an opening move and a follow-up strategy to
achieve p eventually, then these can be integrated into a single strategy achieving
p already from the initial state. It is easy to see that Φ5 is valid in ATLisR, and
that the single strategy is just a concatenation of the two strategies that we
get on the left hand side of the implication. On the other hand, for the “poor
duck model” M1 and p ≡ shot, we get that M4, q4 |=isr

〈〈a〉〉 g〈〈a〉〉3p but also
M4, q4 |=isr

〈〈a〉〉3p, so Φ5 is not valid in ATLisr.

We leave the other direction (Val(ATLisr) ⊆ Val(ATLisR)) for future research.

3.3 Between Subjective and Objective Ability

Finally, we compare validity sets for the semantic variants of ATL that differ
on the outcome paths which are taken into account, i.e., whether only the paths
representing the “objectively” possible courses of action are considered, or all
the executions that are “subjectively” possible from the agents’ perspective.

Proposition 11. Φ2 ≡ 〈〈a〉〉3p → p ∨ 〈〈a〉〉 g〈〈a〉〉3p is valid in ATLioR and
ATLior, but invalid in ATLisR and ATLisr.

Proof. We first prove validity of Φ2 in ATLior, which implies also validity in
ATLioR by Proposition 8. Suppose that M, q |=ior 〈〈a〉〉3p, then there must be
an ir-strategy sA that enforces 3p for every execution starting from q. But then,
if p is not the case right at the beginning, sA must lead to a next state from
which it enforces 3p.

For the second part, invalidity of Φ2 in ATLisR was already proved in Propo-
sition 5. Thus, by Proposition 10, Φ2 is not valid in ATLisr, too.

4 The example depicts some simple traps that await a married man if he happens to
be absent-minded. If he doesn’t kiss his wife in the morning, he is likely to make her
angry. However, if he kisses her more than once, she might get suspicious. It is easy
to see that the absent-minded (i.e., memoryless) husband does not have a strategy
to survive safely through the morning, though a “safe” path through the model does
exist (λ = q0q1q1 . . . ).
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Fig. 6. Summary: comparison of validity sets induced by various semantics of ATL.
The 1 symbol denotes incomparable sets. (∗) For ATL+ and ATL∗: Ir ( IR.
(∗∗) The other direction is still to be established.

Proposition 12. Let us define an additional operator N (“now”) as Nϕ ≡
ϕU ϕ. Formula Φ6 ≡ 〈〈a〉〉N〈〈c〉〉 g〈〈a〉〉 gp → 〈〈a, c〉〉3p is valid in ATLisR and
ATLisr, but invalid in ATLioR and ATLior.

Proof. Analogously to the proof of Proposition 11, we will prove the validity of
Φ6 in ATLisr, and its invalidity in ATLioR.

First, let M, q |=
isr
〈〈a〉〉N〈〈c〉〉 g〈〈a〉〉 gp. Then, for every state q′ ∈ [q]∼a

, c
has an action αc that enforces 〈〈a〉〉 gp from [q′]∼c

. By collecting these actions
into an ir-strategy sc (we can do it since single actions are successful for whole
indistinguishability classes of c), we have that sc enforces g〈〈a〉〉 gp from every
state in [q]∼{a,c} , regardless of what the other players do (in particular, regardless
of what a does). But then, for every execution λ of sc from [q]∼{a,c} , a will
have a choice to enforce gp from λ[1]. Again, collecting these choices together
yields an ir-strategy sa (we can fix the remaining choices arbitrarily). By taking
s{a,c} = (sa, sc), we get a strategy for {a, c} that enforces that p will be true in
two steps, from every state in [q]∼{a,c} . Hence, also M, q |=isr

〈〈a, c〉〉3p.
For the invalidity, consider the “modified poor duck model” M2 augmented

with additional agent c that has no choice (i.e., at each state, it has only a single
irrelevant action wait available). Let us denote the new iCGS by M ′2. If we
identify p with shot, it is easy to see that M ′2, q

′
0 |=ioR

〈〈c〉〉 g〈〈a〉〉 gshot, and
hence also M ′2, q

′
0 |=ioR

〈〈a〉〉N〈〈c〉〉 g〈〈a〉〉 gshot. On the other hand, M ′2, q
′
0 6|=ioR

〈〈a, c〉〉3shot, which concludes the proof.

Corollary 6. For every y, z ∈ {R, r}, sets Val(ATLisy) and Val(ATLioz) are
incomparable.

4 Summary and Conclusions

In this paper, we compare validity sets for different semantic variants of alternating-
time temporal logic. In other words, we compare the general properties of games
induced by different notions of ability. It is clear that changing the notions of
strategy and success in a game leads to a different game. The issue considered
here is whether, given a class of games, such a change leads to a different class of
games, too. And, if so, what is the precise relationship between the two classes.



A summary of the results is presented in Figure 6. The first, and most impor-
tant, conclusion is that all the semantic variants discussed here are different on
the level of general properties they induce; before our study, it was by no means
obvious. Moreover, our results suggest a strong pattern: perfect information is
a special case of imperfect information, perfect recall games are special case of
memoryless games, and properties of objective and subjective abilities of agents
are incomparable.
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