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ABSTRACT
We propose a notion of alternating bisimulation for strategic
abilities under imperfect information. The bisimulation pre-
serves formulas of ATL for both the objective and subjective
variants of the state-based semantics with imperfect infor-
mation, which are commonly used in the modeling and ver-
ification of multi-agent systems. Furthermore, we apply the
theoretical result to the verification of coercion-resistance in
the three-ballot voting system, a voting protocol that does
not use cryptography. In particular, we show that natural
simplifications of an initial model of the protocol are in fact
bisimulations of the original model, and therefore satisfy the
same ATL properties, including coercion-resistance. These
simplifications allow the model-checking tool MCMAS to
terminate on models with a larger number of voters and
candidates, compared with the initial model.

1. INTRODUCTION
The realm of formal languages for expressing strategic

abilities of rational agents has witnessed a steady growth
in recent years [8, 9, 23]. Among the most significant con-
tributions we mention alternating-time temporal logic [3],
strategy logic [13, 32], coalition logic [37]. These languages
include modal operators, indexed to coalitions A ⊆ Ag of
agents, to express that the agents in A have a strategy to
enforce a certain outcome, regardless of the behavior of the
agents in Ag ∖A. These syntactical features allow us to ex-
press winning conditions in multi-player games, notions of
equilibrium (e.g. Nash), strategy-proofness [13, 33].

However, if these logics for strategies are to be applied to
the specification and verification of multi-agent systems [21,
27, 30], they need to be coupled with efficient model check-
ing techniques. Unfortunately, while in contexts of perfect
information we benefit from tractable algorithms for model
checking [3], the situation is rather different once we consider
imperfect information. In contexts of imperfect information
the complexity of the verification task ranges between ∆P

2 -
completeness to undecidability, depending on whether we

Appears in: Proceedings of the 16th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2017), S. Das, E. Durfee, K. Larson, M. Winikoff
(eds.), May 8–12, 2017, São Paulo, Brazil.
Copyright © 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

allow for perfect recall [20, 25]. In this setting it is cru-
cial to develop complementary model checking techniques,
in order to make the problem amenable.

In this line of research abstractions have proved to be a
valuable tool for efficient verification [14, 15]. In this ap-
proach the concrete system S to be verified is abstracted
into a “simpler” model SA, which typically contains “less”
transitions and therefore is “easier” to check in principle.
Then, the verification result is transferred from the abstract
SA to the concrete S by virtue of some preservation result.
Normally, preservation is guaranteed by proving that the
abstract SA is (bi)similar to S. (Bi)simulations are a pow-
erful tool to analyze the expressiveness of modal languages,
starting with van Benthem’s result on modal logic as the
bisimulation-invariant fragment of first-order logic [6]. How-
ever, (bi)simulations are a lot less understood in logics for
strategies, where they have been studied mostly for contexts
of perfect information [4, 22, 2].

In this paper we advance the state-of-the-art by intro-
ducing (bi)simulations for alternating-time temporal logic
(ATL) under imperfect information. We prove that these
(bi)simulations preserve the interpretation of formulas in
ATL, when interpreted with imperfect information and im-
perfect recall, for both the objective and subjective seman-
tics [8, 9]. Most interestingly for MAS verification, we apply
these (bi)simulations to the abstraction of a class of elec-
tronic voting protocols without encryption.

Electronic voting has increasingly been considered as a ro-
bust alternative to paper-based voting due to a number of
advantages it offers: accessibility, availability, voter turnout,
less expensive and easier to use than paper voting, faster and
more accurate ballot counting and results. However, elec-
tronic voting poses a number of challenges, some of which
are common also to paper voting, but in a more technolog-
ical setting: resistance and resilience to coercion and other
types of fraud, secrecy, anonymity, verifiability, democracy
(the right to vote at most once), accountability. Other issues
are specific to electronic voting: access to internet, privati-
zation, as well as public understanding and trust [40].

An increasing amount of research has focused recently on
the verification of many of these properties for various types
of voting protocols [5, 16]. The frameworks used for mod-
eling and verifying security properties of voting protocols
include, to mention only a few, process calculi such as the
applied π-calculus or CSP [18, 24, 42], rewriting-based ap-



proaches [11, 19, 7], approaches based on flat transition sys-
tems etc.

Here we develop a verification procedure for voting pro-
tocols that is based on a multi-agent logics approach. The
main advantage of an approach based on multi-agent logics
is the provision of a unified specification language for a vari-
ety of properties. A simple example is the variety of english
statements of (non-probabilistic) coercion resistance that is
around in the literature, which are usually implemented as
behavioral equivalence properties involving some process al-
gebraic model of the system [16]. However such approaches
do not make it clear what is the system model and what is
the property to be verified on the system. Multi-agent logics
allow a clear separation of these two, as well as a wider vari-
ety of properties, involving the existence of attacker strate-
gies. Our results, while only preliminary and adressing a
simplified version of the Three Ballot protocol [39], allow the
verification of systems with an increasing number of voters
and candidates when compared with the approach based on
process calculi from [34, 35].

Scheme of the Paper. In Section 2 we introduce the
syntax and semantics of ATL interpreted under imperfect
information and imperfect recall. In Section 3 we define
(bi)simulation relations in this setting and prove that they
preserve the interpretation of formulas in ATL. Then, in
Section 4 we present the three-ballot voting protocol and
formalize it as a game structure. In particular, we provide
two abstractions of the three-ballot voting protocol and show
that all systems are indeed bisimilar. Finally, in Section 5 we
evaluate the gains in verification time and resources of model
checking these abstractions in comparison to the original
model. We conclude in Section 6 by discussing related works
and by pointing to future directions of research.

2. THE FORMAL SETTING
In this section we introduce the syntax of ATL and its se-

mantics defined on concurrent games structures with imper-
fect information. The following definitions and notation are
taken from [20]. Concurrent game structures have been in-
troduced in [3] in a perfect information setting. Here we con-
sider their version for contexts of imperfect information [26].

Definition 1. A concurrent game structure with imper-
fect information, or iCGS, is a tuple G = ⟨Ag,AP,S, s0,
{∼i}i∈Ag,Act, d,→, π⟩ such that

● Ag is a nonempty and finite set of agents. Subsets
A ⊆ Ag of agents are called groups.

● S is a non-empty set of states and s0 ∈ S is the initial
state of G.

● For each agent i ∈ Ag, ∼i is an equivalence relation on
S, called the indistinguishability relation for i.

● Act is a finite non-empty set of actions. A tuple a⃗ =
(ai)i∈Ag ∈ ActAg is called a joint action.

● d ∶ Ag ×S → (2Act ∖ {∅}) is the protocol function. For
every i ∈ Ag, d(i) returns the set of actions available to
agent i at each state. Protocol d satisfies the property
that, for all states s, s′ ∈ S and any agent i, s ∼i s′
implies d(i, s) = d(i, s′), that is, the same actions are
available to agent i in indistinguishable states.

● →⊆ S ×ActAg × S is the transition relation such that,
for every state s ∈ S and joint action a⃗ ∈ ActAg. We

write s
a⃗Ð→ r for (s, a⃗, r) ∈→. Moreover, s

a⃗Ð→ r only if
ai ∈ d(i, s) for every agent i ∈ Ag.

● AP is a set of atomic propositions and π ∶ S → 2AP is
the state-labeling function.

By Def. 1 in a given state s, each agent i ∈ Ag can perform
the enabled actions in d(i, s). A joint action a⃗ fires a transi-
tion from state s to some state s′ only if each ai is enabled
for agent i in s. Further, each agent i is equipped with an
indistinguishability relation ∼i, with s ∼i s′ meaning that i
cannot tell state s from state s′, i.e., agent i possesses the
same information in the two states. In particular, the same
actions are enabled in indistinguishable states.

Given an iCGS G as above, a run is a finite or infinite
sequence λ = s0a⃗0s1 . . . in ((S ⋅ActAg)∗ ⋅S)∪(S ⋅ActAg)ω such

that for every j ⩾ 0, sj
a⃗jÐ→ sj+1. Given a run λ = s0a⃗0s1 . . .

and j ⩾ 0, λ[j] denotes the j + 1-th state sj in the sequence.
For a group A ⊆ Ag of agents, a joint A-action denotes a
tuple a⃗A = (ai)i∈A ∈ ActA of actions, one for each agent in
A. For groups A ⊆ B ⊆ Ag of agents, a joint A-action a⃗A
is extended by a joint B-action b⃗B , denoted a⃗A ⊑ b⃗B , if for
every i ∈ A, ai = bi. Also, a joint A-action a⃗A is enabled at
state s ∈ S if for each agent i ∈ A, (aA)i ∈ d(i, s).

We now introduce a notion of strategy adapted to iCGS
with imperfect information [26].

Definition 2. A (uniform) strategy for an agent i ∈ Ag
is a function σ ∶ S → Act that is compatible with d and ∼i,
i.e.,

● for every state s ∈ S, σ(s) ∈ d(i, s);

● for all states s, r ∈ S, s ∼i r implies σ(s) = σ(r).

By Def. 2 a strategy in an iCGS has to be uniform in
the sense that in indistinguishable states it must return the
same action. Such strategies are also known as observational
in the literature on game theory. Note that in this paper we
use memoryless strategies, whereby only the current state
determines the action to perform. This choice is dictated by
the application in hand, namely voting protocols, in which
each agent’s memory is encoded in the agent’s state1. Per-
fect recall strategies with imperfect information can be de-
fined similarly, as memoryless strategies on tree unfoldings
of iCGS. We leave this extension for future work.

A strategy for a group A of agents is a family σA = {σa ∣
a ∈ A} of strategies, one for each agent in A. Given groups
A ⊆ B ⊆ Ag, a strategy σA for group A, a state s ∈ S, and
a joint B-action b⃗B ∈ ActB that is enabled at s, we say that
b⃗B is compatible with σA (in s) whenever σA(s) ⊑ b⃗B . For

states s, r ∈ S and strategy σA, we denote s
σA(s)ÐÐÐ→ r if s

a⃗Ð→ r
for some joint action a⃗ ∈ ActAg that is compatible with σA.

We define two notions of outcomes of strategy σA at state
s, corresponding to the objective and subjective interpreta-
tion of ATL operators. Fix a state s and a strategy σA for
group A.

1. The set of objective outcomes of σA at s is defined as

outGobj(s, σA) = {λ ∈ Run(G) ∣ ∀j ⩾ 0, λ[j] σA(λ[j])ÐÐÐÐÐ→
λ[j + 1]}.

1Therefore memoryless strategies already encode the agent’s
memory of all her past observations.



2. The set of subjective outcomes of σA at s is defined as
outGsubj(s, σA) = ⋃

i∈A,s′∼is
outGobj(s′, σA).

Definition 3. The set of ATL formulas ϕ is defined by
the following BNF:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ→ ϕ ∣ ⟪A⟫Xϕ ∣ ⟪A⟫ϕUϕ ∣ ⟪A⟫ϕRϕ

where p ∈ AP and A ⊆ Ag.

The ATL operator ⟪A⟫ intuitively means that ‘the agents
in group A have a (collective) strategy to achieve . . . ’, where
the goals are LTL formulas built by using operators ‘next’
X, ‘until’ U , and ‘release’ R. Note that the ’release’ operator
R cannot be defined in ATL with imperfect information by
using ’until’ U and ’globally’ G, as it is the case in perfect
information contexts [29], so we include it for completeness.
We define A-formulas as the formulas in ATL in which A is
the only group appearing in ATL modalities.

Traditionally, ATL under imperfect information has been
given either state-based or history-based semantics, and sev-
eral variations have been considered on the interpretation of
strategy operators. Here we present both the objective and
subjective variants of the state-based semantics with imper-
fect information and imperfect recall.

Definition 4. Given an iCGS G, an ATL formula ϕ,
the subjective (resp. objective) semantics of ϕ at state s,
denoted (G, s) ⊧x ϕ for x = subj (resp. x = obj), is defined
recursively as follows:

(G, s) ⊧x p iff p ∈ π(s)
(G, s) ⊧x ¬ϕ iff (G, s) /⊧x ϕ
(G, s) ⊧x ϕ ∧ ϕ′ iff (G, s) ⊧x ϕ and (G, s)⊧xϕ′

(G, s) ⊧x ⟪A⟫Xϕ iff ∃σA ∀λ ∈ outGx(s,σA), (G, λ[1])⊧xϕ
(G, s) ⊧x ⟪A⟫ϕUϕ′ iff ∃σA ∀λ ∈ outGx(s,σA),∃j ⩾ 0 with

(G, λ[j]) ⊧x ϕ′ and ∀0 ⩽ k < j, (G, λ[k]) ⊧x ϕ
(G, s) ⊧x ⟪A⟫ϕRϕ′ iff ∃σA ∀λ ∈ outGx(s,σA), either ∀j⩾0,

(G, λ[j]) ⊧x ϕ, or ∃k ⩾ 0 with (G, λ[k])⊧xϕ′

and ∀0 ⩽ l ⩽ k, (G, λ[l]) ⊧x ϕ

Remark 5. The knowledge operator Ki can be appended
to the syntax of ATL with the following semantics:

(G, s) ⊧x Kiϕ iff ∀s′ ∈ S, s′ ∼i s implies (G, s′) ⊧x ϕ

By considering the subjective interpretation of ATL, this
operator can be derived: (G, s) ⊧subj Kiϕ iff (G, s) ⊧subj
⟪i⟫ϕUϕ. There exists no such definition for the knowledge
operator in ATL with the objective semantics.

3. SIMULATIONS AND BISIMULATIONS
In this section we define simulation and bisimulation rela-

tions on iCGS with imperfect information and perfect recall.
The main result we prove is that bisimulations preserve the
interpretation of formulas in ATL. We start by introducing
relevant notions that will be used in the rest of the paper.

A partial strategy for agent i ∈ Ag is a partial function
σ ∶ S → Act such that for each s1, s2 ∈ S, if s1 ∼i s2 then
σ(s1) = σ(s2). We denote the domain of the partial strategy
σ as dom(σ). Given a group A ⊆ Ag, a partial strategy profile
for A ⊆ Ag is a tuple (σi)i∈A of partial strategies, one for

each agent i ∈ A. The set of partial strategy profiles for A
is denoted PStrA. Given a set U ⊆ S of states and a group
A ⊆ Ag, we denote PStrA(U) the set of partial strategies
whose domain is U :

PStrA(U) = {(σi)i∈A ∈ PStrA ∣ dom(σi) = U for all i ∈ A}

Given a group A ⊆ Ag of agents, the collective knowledge
relation ∼EA is defined as ⋃i∈A ∼i, while the common knowl-
edge relation ∼CA is the transitive closure (⋃i∈A ∼i)+ of ∼EA.
Then, EGA(q) = {q′ ∈ S ∣ q′ ∼EA q} and CGA(q) = {q′ ∈ S ∣
q′ ∼CA q} are respectively the collective and common knowl-
edge neighbourhoods of state q for group A in the iCGS G.

Definition 6 (Simulation). Given two iCGS G = ⟨Ag,
AP,S, s0,{∼i}i∈Ag,Act, d,→, π⟩ and G′ = ⟨Ag,AP,S′, s′0,
{∼′i}i∈Ag,Act′, d′,→′, π′⟩ sharing the set of agents Ag and the
set of atoms AP , and a group A ⊆ Ag of agents, a relation
⇛A⊆ S × S′ is a simulation for A iff q⇛A q

′ implies that

1. π(q) = π′(q′);

2. For every i ∈ A and r′ ∈ S′, if q′ ∼′i r′ then for some
r ∈ S we have that q ∼i r and r⇛A r

′.

3. By denoting CA(q) = CGA(q) and C′
A(q) = CG

′

A (q), there
exists a mapping ST = STCA(q),C′

A
(q′) with

ST ∶ PStrA(CA(q)) → PStrA(C′
A(q′)) such that for

any two states r ∈ CA(q), r′ ∈ C′
A(q′), if r ⇛A r

′ then
the following two properties hold:

(a) For every partial strategy σA ∈ PStrA(CA(q))
and state s′ ∈ S′, if r′

ST (σA)(r′)ÐÐÐÐÐÐ→ s′ then there ex-

ists some state s such that r
σA(r)ÐÐÐ→ s and s⇛A s

′.

(b) STCA(q),C′
A
(q′) = STCA(r),C′

A
(r′).

A relation ⇚⇛A is a bisimulation iff both ⇛A and ⇛−1
A =

{(q′, q) ∣ q⇛A q
′} are simulations.

Intuitively, by Def. 6 state q′ simulates q, i.e., q⇛A q
′ im-

plies that (1) q and q′ agree on the interpretation of atoms;
(2) q simulates the epistemic transitions from q′; and (3) for
every partial strategy σA, defined on the common knowl-
edge neighborhood CA(q), we are able to find some partial
strategy ST (σA) (the same for all states in CA(q)) such that

the transition relations
ST (σA)ÐÐÐÐ→ and

σAÐ→ commute with the
simulation relation ⇛A.

Remark 7. The problem of checking for the existence of
a bisimulation between two iCGS, for some set of agents A
is in PSPACE.

In order to prove that bisimilar states satisfy the same
formulas in ATL, we prove the following auxiliary result.

Proposition 8. If q⇛A q
′ then for every uniform strat-

egy σA, there exists a uniform strategy σ′A such that

(*) For every run λ′ ∈ outG
′
x (q′, σ′A), for x ∈ {subj, obj},

there exists an infinite run λ ∈ outGx(q, σA) such that
λ(i)⇛A λ

′(i) for every i ⩾ 0.

Proof. We will inductively define a sequence of partial
uniform strategy profiles (σnA)n∈N ∈ PStrA with σnA = (σni )i∈A
and dom(σnA) ⊆ dom(σn+1A ) for each n ∈ N. These partial



strategies will be constructed using the strategy σA and the
mapping ST from point 3 in Def. 6 of simulation.

Define first the sequence domn(σA, q), for n ∈ N, of sets
of G-states such that s ∈ domn(σA, q) if s can be reached in
at most n steps from q by applying actions compatible with
strategy σA:

dom0(σA, q) = ∅, dom1(σA, q) = CA(q)

domn+1(σA, q) = domn(σA, q)∪{r ∣ ∃s∈domn(σA, q), s
σA(s)ÐÐÐ→r}

Also, denote σnA the partial strategy resulting from re-
stricting σA to domn(σA, q) (and setting it as undefined on
the complement of this set).

Further, consider some total order ≾ on S. Then, min≾U
is the minimum of U w.r.t. ≾. Similarly, we assume that S′

is endowed with a total order ≾′.
The desired sequence of partial uniform strategy profiles

σnA, for n ⩾ 1, is defined as σ1
A(r)′ = STCA(u),C′

A
(u′)(σ1

A)(r′)
and

σn+1A (r′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σnA(r
′), for r′ ∈ dom(σnA)

STCA(u),C′
A
(u′)(σn+1A )(r′), for C′

A(r
′) ∩ ran(σnA) ≠ ∅,

r′ /∈ dom(σnA), u
′ =min≾′ C

′
A(r

′) ∩ ran(σnA)
and u =min≾{v ∈ domn(σA, q) ∣ v⇛A u

′}

By induction on n we may easily observe that whenever
C′
A(r′) ∩ dom(σnA) ≠ ∅, then C′

A(r′) ⊆ dom(σnA).
We may also show that, whenever we take some u′ ∈

C′
A(r′) ∩ ran(σnA) ≠ ∅ with r′ /∈ dom(σnA), we have {u ∈

domn(σA, q) ∣ u ⇛A u′} ≠ ∅. To see this, take some u′ ∈
C′
A(r′)∩ran(σnA), which implies that there exists v′ ∈dom(σnA)

with v′
σn
A(v′)
ÐÐÐÐ→ u′. But this means, by definition, that

σnA(v′) = STCA(v),C′
A
(v′)(σnA)(v′) for some v ⇛A v′ with

v ∈ dom(σn−1A ). From property 3.a, this implies the exis-

tence of u with u⇛A u
′ and v

σA(v)ÐÐÐ→ u, hence v ∈ dom(σnA).
We then prove by induction on n that σnA is uniform. The

case n = 1 is trivial. As regards the induction step, note
first that, if r′1, r

′
2 ∈ dom(σn+1A ), C′

A(r′1) = C′
A(r′2) and if

r′1 ∈ dom(σnA) then r′2 ∈ dom(σn+1A ) as well.
On the other hand, for r′1, r

′
2 ∈ dom(σn+1A ) ∖ dom(σnA), if

r′1 ∼i r′2 for some i ∈ A, we have that C′
A(r′1) = C′

A(r′2).
Therefore, if we take r′ = min≾′ C

′
A(r′1) ∩ ran(σnA) and r =

min≾{u ∈ domn(σA, q) ∣ u ⇛A r′} we have, by definition,
σn+1A (r′1) = STCA(r),C′

A
(r′)(σn+1A )(r′1) and σn+1A (r′2) =

STCA(r),C′
A
(r′)(σn+1A )(r′2) and these values are identical, since

STCA(r),C′
A
(r′)(σA) is a uniform strategy in G′.

As a result, the “limit” partial strategy profile σA = ⋃
n∈N
σnA,

defined by σA(q) = σnA(q) whenever q ∈ dom(σnA), is clearly
uniform and has dom(σA) = ran(σA). We then only need
to transform it into a (total) uniform strategy profile by
imposing a fixed action a0 ∈ Act wherever σnA was undefined,
that is, defining the following uniform strategy profile σ′A:

σ′A(r′) = {σA(r
′) for r′ ∈ dom(σA)

a0 otherwise

To prove property (*) for the objective semantics, con-

sider a run λ′ ∈ outG
′

obj(q′, σ′A) and set λ[0] = q. We then
build inductively the run λ as follows: assume λ[k] has
been built, with λ[j] ⇛A λ′[j] for all j ⩽ k. Then we ap-
ply point 3.a from Def. 6 of simulation to the pair λ[k]⇛A

λ′(k) and by using the fact that λ′(k + 1) ∈ σ′A(λ[k]) =

Figure 1: Three-ballot showing a vote for Bob Smith

STCA(v),C′
A
(v′)(σA)(λ′(k)), where v′ = min≾′ C

′
A(λ′(k)) and

v = min≾{u ∈ domn(σA, q) ∣ u⇛A λ
′(k)}, to obtain the exis-

tence of a state u ∈ σA(λ[k]) such that u⇛A λ
′(k+1). This

is the state that we choose for λ[k + 1], i.e., λ[k + 1] ∶= u.
To prove property (*) for the subjective semantics, con-

sider a run λ′ ∈ outG
′

subj(q′, σ′A). Hence, λ′(0) ∈ C′
A(q′). By

applying point 2 of the definition of simulation (and a short
induction on the length of the indistinguishability path con-
necting q′ with λ′(0)), we obtain the existence of a state
r ∈ CA(q) such that r ⇛A λ′(0). Then set λ[0] ∶= r. The
rest of the construction of λ′ is identical to the inductive
case for the objective semantics, that is, for every k, we set
λ[k + 1] ∶= u where u ∈ σA(λ[k]) and u⇛A λ

′(k + 1).
The property (*) is then proved for both semantics.

By using Proposition 8 we are finally able to prove the
main preservation result of this paper.

Theorem 9. Given two iCGS G and G′ and states q ∈ S,
q′ ∈ S′, suppose that q⇚⇛A q

′. Then for every A-formula ϕ,

(G, q) ⊧ ϕ if and only if (G′, q′) ⊧ ϕ
Proof. The proof is by induction on the structure of ϕ.
The case for propositional atoms is immediate as (G, q) ⊧ p

iff p ∈ π(q), iff p ∈ π′(q′)) by definition of bisimulation, iff
(G′, q′) ⊧ p. The inductive case for propositional connectives
is also straightforward.

For ϕ = ⟪A⟫ψ1Uψ2, (G, q) ⊧ ϕ implies that for some strat-
egy σA, for all λ ∈ outGx(q, σA), for some j1 ⩾ 0, (G, λ[j1]) ⊧
ψ2 and for every k < j1, (G, λ[k]) ⊧ ψ1. Again by Proposi-

tion 8, there exists strategy σ′A s.t. for all λ′ ∈ outG
′
x (q′, σ′A),

there exists λ ∈ outGx(q, σA) with λ[j] ⇚⇛A λ′[j] for all
j ⩾ 0. By the induction hypothesis, we get that for all
j, (G, λ[j]) ⊧ ψ1 iff (G′, λ′[j]) ⊧ ψ1 and similarly for ψ2.
Hence, (G′, λ′[j1]) ⊧ ψ2 and (G′, λ′[k]) ⊧ ψ1 for all k < j1,
that is, (G′, h′) ⊧ ϕ.

The cases for ϕ = ⟪A⟫Xψ and ϕ = ⟪A⟫ψ1Rψ2 are proved
similarly.

By Theorem 9 we obtain that bisimilar states preserve the
interpretation of ATL formulas. More precisely, if states q
and q′ are A-bisimilar then they satisfy the same A-formulas.

4. THREE-BALLOT VOTING PROTOCOL
ThreeBallot [39, 38] is a voting protocol that strives to

achieve some desirable properties, such as anonymity and
verifiability of voting, without the use of cryptography. The
protocol proceeds as follows. Each voter identifies herself at
the poll site, and gets a paper “multi-ballot” to vote with.
The multi-ballot consists of three vertical ballots – identical
except for ID numbers at the bottom, see Figure 1 (presented



after [39]). The voter fills in the multi-ballot, separates the
three parts and casts them in the ballot box. To cast a
vote for a candidate, one must mark exactly two (arbitrary)
bubbles on the row of the candidate. To not vote for a
candidate, one must mark exactly one of the bubbles on
the candidate’s row (again, arbitrary one). In all the other
cases the vote is invalid. The ballots are tallied by counting
the number of bubbles marked for each candidate, and then
subtracting the number of voters from the count.

While voting, the voter also receives a copy of one of her
three ballots, and she can take it home. After the election
closes, all the ballots are scanned and published on the web
bulletin board. In consequence, the voter can check if her
receipt matches a ballot listed on the bulletin board. If no
ballot matches the receipt, the voter can file a protest.

Since ThreeBallot is not a cryptographic protocol, it does
not heavily rely on computers and counting can be done di-
rectly. Moreover, voters have no responsibility to ensure the
integrity of cryptographic keys, and the security process in
their vote is essentially the same as with traditional ballots.

Properties. ThreeBallot was proposed to provide several
properties that reduce the possibility of electoral fraud.

Anonymity (cf. e.g. [34]) requires that no agent should
ever know how another voter voted, except in cases when
it is inevitable, such as when all the voters voted for the
same candidate. Anonymity is important because it limits
the opportunities of coercion and vote-buying. Coercion-
resistance requires that the voter cannot reveal the value
of her vote beyond doubt, even if she fully cooperates with
the coercer. As a consequence, the coercer has no way of
deciding whether to execute his threat (or, dually, pay for
the vote). A preliminary formalization of coercion-resistance
and receipt-freeness in ATL has been presented in [43].

Finally, end-to-end voter verifiability [41, 40] provides a
way to verify the outcome of the election by allowing voters
to audit the information published by the system. Typically,
the focus is on individual verifiability: each voter should be
able check if her vote has been taken into account and has
not been altered.

4.1 iCGS Model
We present here three iCGS models of the Three-Ballot

Voting system. All these models have been specified in
ISPL (Interpreted System Programming Language), the in-
put language of MCMAS. Several aspects of the voting sys-
tem have not been modeled: the ID of each ribbon, the copy
of the ribbon which is given back to each voter after casting
his/her ballot, the possibility for voters to verify the pres-
ence of the ribbon they are given back after voting. We
model a single attacker who is also a voter and, as such,
must obey the voting protocol and does not interact in any
particular way with the other agents.

In the iCGS below, each agent is represented by means
of its local variables and their evolution. The vote collec-
tor and bulletin board (BB) are modeled by the Environ-
ment agent (call it Env). This agent contains local variables
modeling the fact that the voting process is open and the
values of ribbons on the BB. These variables are observable
by all voters, including the attacker. Env also contains pri-
vate variables used for collecting ribbons and disposes of the
three actions Acte = {stop, collect, nop} for waiting closing
elections, collecting votes and, finally, looping after the end
of the publication of the BB.

Elections are closed immediately after the voting starts.
This peculiarity of our models avoids us dealing with a vote
collector which never stops the voting process, which may
lead to the vacuous falsity of the formulas checked unless
some fairness property is enforced – and, for the time being,
fairness is not handled by our alternating bisimulation.

The agents representing voters have each a private vari-
able representing their choice for a candidate. Then they
share three ”ballot” variables with Env. These variables rep-
resent the ribbons that are created by the ”voting machine”.
Casting the vote is modeled by creating the three ribbons,
compatible with the choice of each candidate. Votes are al-
ready cast in the initial state. Being visible by Env, the
values of the three ribbons are copied by Env on the (vari-
ables represented on the) BB in a random order. Each agent
has two actions: vote, by which the voter casts his/her vote,
and nop, a non-voting or idle action. vote is enabled only
in the initial state, nope is enabled everywhere. All agent
variables are never modified during the voting process.

In the first model, denoted Gtot, for each agent choice,
all configurations of the three ribbons which are compatible
with the agent’s choice may occur. The communication be-
tween each agent and Env is entirely at Env’s charge, who
has direct access to agents’ ribbons and copies them onto the
BB. Copying is also done at random: Env chooses a non-
copied ribbon from a voter who has cast his vote (boolean
variables are defined to help Env identify these situations)
and copies it onto a free position on the BB.

With the second model, denoted Glex, we model a voting
machine which sorts, according to the lexicographic order,
the three ribbons produced for the agent’s choice, and places
the largest one in the first ”ballot” variable of the voter, the
second largest in the second variable, and the smallest in the
third variable. Hence, for each choice of an agent, there are
still several configurations of ribbons that are produced, but
we no longer produce all permutations of a configuration,
but a single representative of that permutation.

Finally, we modify Glex into a third model, in which Env
no longer copies ribbons on the BB, but rather counts the
votes for each candidate by peeping at the ”ballot” variables
of each voter. This model is denoted Gcount.

Formally, in the case of Gtot for n voters and nc candidates,
each global state has the form (vopen, pub, (ribb`)1⩽`⩽3n,
(chi, vi)1⩽i⩽n, (sij , aij)1⩽i⩽n,1⩽j⩽3) where:

1. The local state for voter i is
(vopen, pub, ribb1, ribb2, ...ribb3n, vi, si1, si2, si3)

2. Boolean vopen holds true when the vote is opened and
pub signals that all ribbons of agents that have voted
are published on the BB.

3. Integer 1 ⩽ chi ⩽ nc specifies the choice of agent i.

4. Boolean vi (1 ⩽ i ⩽ n) tells whether agent i has voted.

5. Integer variables sij (1 ⩽ j ⩽ 3) represent the ”ballots”
of voter i. They are shared between each agent and
Env, who copies them onto the BB.

6. Integer variables ribb` (1 ⩽ ` ⩽ 3n) represent the BB.

7. Booleans aij are used by Env for remembering which
ballots sij have been copied on the BB.



Initial states are such that vopen = true, vi = false for
all i ⩽ n, variables ribb` are undefined value �, aij = false
and, for variables sij we have the following rules modeling
the creation of a triple of ribbons compatible with a choice
of a candidate: for each voter i, let bjk = bijk be the bit
representing the bubble on the line corresponding with can-
didate k of the jth ballot of i’s vote, as given by chi. A
tuple (bjk)1⩽j⩽3,1⩽k⩽nc is compatible with choice chi if the
following properties hold:

1. if k = chi then ∃p ⩽ 3 s.t. bpk = 0 and ∀p′ ≠ p, bp′k = 1

2. if k ≠ chi then ∃p ⩽ 3 s.t. bpk = 1 and ∀p′ ≠ p, bp′k = 0

Denote B(chi) the set of bit tuples (bjk)1⩽j⩽3,1⩽k⩽nc compat-
ible with chi. Denote further by R(chi) the transformation
of these bit tuples into integer triples modeling the valid bal-
lots compatible with the choice chi, R(chi) = {(stj)1⩽j⩽3 ∣
stj = ∑1⩽k⩽nc bjk ⋅ 2k−1, (bjk)1⩽j⩽3,1⩽k⩽nc ∈ B(chi)}. (For in-
stance, valid triples of integers compatible with a voting in-
tention for candidate 2 and nc = 2 are all permutations of
(3,2,0) plus all permutations of (2,2,1).)

Then (sij)1⩽j⩽3 ∈ R(chi) for each 1 ⩽ i ⩽ n,1 ⩽ j ⩽ 3.
Transitions are then of the form: (vopen, pub, (ribb`)1⩽`⩽3n,

(chi, vi)1⩽i⩽n, (sij , aij)1⩽i⩽n,1⩽j⩽3)
(ae,a1,a2,...,an)ÐÐÐÐÐÐÐÐÐ→ (vopen′, pub′,

(ribb′`)1⩽`⩽3n, (ch′i, v′i)1⩽i⩽n, (s′ij , a′ij)1⩽i⩽n,1⩽j⩽3) with:

1. vopen′ = false if (ae = stop or vopen = false) and
vopen′ = true otherwise. Action ae = stop is the only
available action for Env if vopen = true.

2. For ai = vote, v′i = true, and for ai = nop, v′i = vi.
3. For ae = collect and ai = nop for all i we have the

following rules:

(a) There exists some subset of pairs A ⊆ {1, .., n} ×
{1, ..,3} with a′ij = aij = true for all (i, j) ∈ A.

(b) There exists (i0, j0) /∈ A with a′i0,j0 = true, ai0,j0 =
false and for all (i, j) /∈ A∪{(i0, j0)}, a′ij = false.

(c) There exists some B ⊆ {1, ..,3n} with card(B) =
card(A), ribb′` = ribb` for all ` ∈ B.

(d) There exists some k /∈ B, 1 ⩽ k ⩽ 3n with ribbk = �,
ribb′k = si0,j0 and ribb′` = � for all ` /∈ B ∪ {k}.

4. Action ae = nop can only be executed when, for each
i, either all aij = true or vi = false, and its effect
is to modify only pub′ = true, all the other variables
remaining unchanged.

In Glex, transitions are identical to the above, the only
difference being in the initial states, more specifically in
the configuration of variables sij . These are instantiated
such that (sij)1⩽j⩽3 ∈ {max(Perm((stj)1⩽j⩽3)) ∣ (stj)1⩽j⩽3 ∈
Rchi} for each 1 ⩽ i ⩽ n, the maximum being considered un-
der the lexicographic order and Perm((stj)1⩽j⩽3) stands for
the set of all permutations of the tuple (stj)1⩽j⩽3.

Finally, the iCGS Gcount is similar with Glex but all vari-
ables ribb` are replaced with nc variables (cok)1⩽k⩽nc. The
local state for agent i is then (vopen, pub, co1, . . . , conc,
vi, si1, si2, si3). The description of transitions is then the
same, excepting the case for ae = collect and items 3.(c)-
3.(d) above (defining the updates of variables ribb`), which
are replaced by the following:

3.(c’) For each 1 ⩽ k ⩽ nc, if a′ij ≠ aij then co′k = cok +
bijk, where bijk is the k-th least significant bit of sij ,
otherwise co′k = cok.

4.2 Bisimulations for Gtot, Glex and Gcount
The three models defined in the previous section seem nat-

urally related w.r.t. some properties – in particular those
related with the attacker modifying the outcome of the vote
or breaking the anonymity. The interest in simplifying the
model is that checking the coercion resistance property can
be done faster and with less memory on Gcount than on Glex,
which, on its turn, requires less time and memory than Gtot,
as we will see in the last section. In this section we show
that the three models are bisimilar for the attacker, for the
set of atomic propositions that refer only to choices of the
agents. The fact which formalizes the ”natural relation” be-
tween them and allows us to check a coercion resistance
property on the simplest one and then generalizing the re-
sults on the two others, in particular on the largest model.
Note that this bisimulation works because the properties
do not refer to the status of the BB. For instance, these
bisimulations would not be useful for simplifying systems
for verifiability [18].

Formally, for each choice for an agent i to vote for a candi-
date j, we utilize an atomic proposition pchi=j , which holds
true only in those states in which chi = j. Then if we denote
the attacker att = n and AP = {pchi=j ∣ 1 ⩽ i ⩽ n,1 ⩽ j ⩽ nc},
the following relation is an {att}-bisimulation over AP be-
tween Gtot and Glex: (vopen, pub, (ribb`)1⩽`⩽3n, (chi, vi)1⩽i⩽n,
(sij , aij)1⩽i⩽n,1⩽j⩽3)⇚⇛1

{att} (vopen′, pub′, (ribb′`)1⩽`⩽3n,
(ch′i, v′i)1⩽i⩽n, (s′ij , a′ij)1⩽i⩽n,1⩽j⩽3) iff the following hold:

1. vopen = vopen′, pub = pub′, vi = v′i, chi = chi for all
1 ⩽ i ⩽ n and ribb` = ribb′` for all 1 ⩽ ` ⩽ 3n.

2. For each 1 ⩽ i ⩽ n, if we denote bjk the kth least sig-
nificant bit of sij and b′jk the kth bit of s′ij , then both
(bjk)1⩽j⩽3,1⩽k⩽nc, (b′jk)1⩽j⩽3,1⩽k⩽nc ∈ B(chi).

3. Denote ρi the S3-permutation of (si1, si2, si3) into (s′i1,
s′i2, s

′
i3), i.e. sij = s′iρi(j). Also when sij = s′ij = � we

put ρi = id{1,2,3}. Then aij = a′iρi(j) for all i, j.

Stated differently, the 3rd item above says that (b′jk) is
the largest, in lexicographic order, among all tuples in Bchi

which are permutations of (bjk).
For Glex and Gcount, we may consider the following {att}-

bisimulation overAP : (vopen, pub, (ribb )̀1⩽`⩽3n,(chi, vi)1⩽i⩽n,
(sij , aij)1⩽i⩽n,1⩽j⩽3)⇚⇛2

{att} (vopen′, pub′, (cok)1⩽k⩽nc,
(ch′i, v′i)1⩽i⩽n, (s′ij , a′ij)1⩽i⩽n,1⩽j⩽3) where:

1. vopen = vopen′, pub = pub′, vi = v′i, chi = chi, sij = sij
and aij = a′ij for all 1 ⩽ i ⩽ n,1 ⩽ j ⩽ 3.

2. For each 1 ⩽ ` ⩽ 3n and 1 ⩽ k ⩽ nc, if we denote b`k the
kth least significant bit on the ribbon ribb`, then:

cok =∑{b`k ∣ ribb` ≠ �,1 ⩽ ` ⩽ 3n}

To prove that these relations are indeed alternating bisim-
ulations, note that the condition 1 is trivially satisfied as
whenever q ⇚⇛ι

{att} q
′ (ι = 1,2), we must have that (chi =

j) ∈ q iff (chi = j) ∈ q′.
To prove properties 2 and 2-dual for ⇚⇛1

{att}, take states

q, r in Gtot and r ∈ Glex with q⇚⇛1
{att} q

′, q ∼att r. Then

q = (vopen,pub,(ribb )̀1⩽`⩽3n,(chi, vi)1⩽i⩽n,(sij ,aij)1⩽i⩽n,1⩽j⩽3)
q′ = (vopen,pub,(ribb )̀1⩽`⩽3n,(chi, vi)1⩽i⩽n,(s′ij,a′ij)1⩽i⩽n,1⩽j⩽3)
r = (vopen,pub,(ribb )̀1⩽`⩽3n,(chi, vi)1⩽i⩽n,(sij ,aij)1⩽i⩽n,1⩽j⩽3)



with q, q′ related by the definition of ⇚⇛1
{att} above and

chatt = chatt, satt,j = s′att,j and aatt,j = a′att,j for all 1 ⩽ j ⩽ 3.
Put then

r′ = (vopen, pub, (ribb`)1⩽`⩽3n, (ch′i, v′i)1⩽i⩽n−1, (chatt, vatt),
(s′ij , a′ij)1⩽i⩽n−1,1⩽j⩽3, (satt,j , aatt,j)1⩽j⩽3)

and we get the desired result: q′ ⇚⇛1
{att} r

′ and r ∼att r′.
The mirror argument also works: for q⇚⇛1

{att} q
′ and q′ ∼att

r′ we may choose q⇚⇛1
{att} r and r ∼att r′.

Conditions 2 and 2-dual for ⇚⇛2
{att} can be proved sim-

ilarly, by observing that, q ⇚⇛2
{att} q′ and q ∼att r with

q, r ∈ Glex and q′ ∈ Gcount, then:

q = (vopen,pub,(ribb )̀1⩽`⩽3n,(chi,vi)1⩽i⩽n,(sij ,aij)1⩽i⩽n,1⩽j⩽3)
q′= (vopen,pub,(cok)1⩽k⩽nc,(chi,vi)1⩽i⩽n,(s′ij,a′ij)1⩽i⩽n,1⩽j⩽3)
r = (vopen,pub,(ribb`)1⩽`⩽3n,(chi,vi)1⩽i⩽n,(sij ,aij)1⩽i⩽n,1⩽j⩽3)

with the same relationship between variables of q and r; and
then, for

r′ = (vopen, pub, (cok)1⩽k⩽nc, (ch′i, v′i)1⩽i⩽n−1, (chatt, vatt),
(s′ij , a′ij)1⩽i⩽n−1,1⩽j⩽3, (satt,j , aatt,j)1⩽j⩽3)

we get q′ ⇚⇛2
{att} r

′ and r ∼att r′.
Finally, for conditions 3 and 3-dual, note first that for any

state q ∈ Gtot or q ∈ Glex, Catt(q) is just the equivalence class
of q w.r.t. ∼att, that is, if q = (vopen, pub, (ribb`)1⩽`⩽3n,
(chi, vi)1⩽i⩽n, (sij , aij)1⩽i⩽n,1⩽j⩽3), then Catt(q) is composed
of all states with local state for att of the form ((ribb`)1⩽`⩽3n,
chatt, vatt, (satt,j , aatt,j)1⩽j⩽3). Similarly, for q′ ∈ Gcount with
q′ = (vopen, pub, (co′k)1⩽k⩽nc, (ch′i,v′i)1⩽i⩽n, (s′ij,a′ij)1⩽i⩽n,1⩽j⩽3),
Catt(q′) is composed of all states with local state for att
composed of ((cok)1⩽k⩽nc, chatt, vatt, (satt,j , aatt,j)1⩽j⩽3).

Note first that, in all three iCGS, on each neighborhood
Catt(q), only one or two partial strategies for att can be de-
fined, depending whether the vote is open or not. Therefore,
we may define the mapping ST

C
Gtot
att (⋅),CGlexatt (⋅)

to associate to

each partial strategy prescribing nop to att in some CGtotatt (q)
the quasi-identical strategy prescribing the same action in
CGlexatt (q′), and, similarly, to the partial strategy prescrib-
ing vote to att in CGtotatt (q) the strategy prescribing vote in

CGlexatt (q′). The dual mapping ST ′ is defined similarly, and
the same definitions work for the bisimulation ⇚⇛2

{att}. Note
that these definitions already satisfy property 3.(b) of bisim-
ulations.

To prove property 3.(a), consider first the strategy voteatt
prescribing vote for att on CGtotatt (q) and take some state r

with q′
voteattÐÐÐÐ→ r′. Since when voting is enabled, Environ-

ment does not collect votes, r′ has the same BB as q′ and all
booleans aij are false. Therefore, we may choose the state
r which has the same local variables as r′ for all voters and

the same BB as q, and get q′
ST (voteatt)ÐÐÐÐÐÐÐ→ r′ and r⇚⇛1

{att} r
′.

A similar proof works for ⇚⇛2
{att}.

Consider now the strategy noneatt prescribing action nop

for att on CGtotatt (q) and take again some state r′ with q′
nopattÐÐÐÐ→

r′. Note that this action is only enabled when the vote is
closed. Then the only agent which executes a non-idle action
on the above transition is Environment. By this transition,
Environment copies one of the ribbons onto the BB. This
transition can then be simulated in Gtot by copying the same

ribbon (but which might be stored at a different position in
q than in q′) onto the BB. A mirror argument can be used
to prove 3.(a) for ST ′.

Finally, for proving point 3.(a) for q⇚⇛2
{att} q

′, note that
the same considerations above apply for the case of a tran-
sition from a state q′ in which the voting is open. For the
case of states q, q′ where the voting is closed and hence
only strategy nopatt is available to the attacker, we note

that the only action which is compatible with q
nopattÐÐÐÐ→ r

in both models is Environment collecting votes. This cor-
responds in Gcount with an action in which Environment
counts votes, and hence we may find a state r which is an
nopatt-compatible successor of q, which has the same local
states for voters as r′ and in which each counter cok of r′

keeps the sum of the bullets on kth line on the copied ribbons
from r. This will ensure r⇚⇛2

{att} r
′.

5. EXPERIMENTAL RESULTS
In this section, we exhibit the improvements in running

time when checking the same properties over the three bisim-
ilar models. The three models are checked with growing
number of voters and candidates. For our experiments, we
have used the last version of MCMAS (1.2.2) [30]. Tests were
made on a virtual machine running Ubuntu 16.04.1 LTS on
a Dell PowerEdge R720 server with two Intel Xeon E5-2650
8 core processors at 2GHz, and 128 GB of RAM. The .ispl
files containing the tested models of the voting system are
available at [1].

The formulas that are verified on all these models repre-
sent a variant of coercion resistance [43]. They specify the
fact that the attacker att has no strategy by which he could
know how agent i has voted (i ≠ att):

ϕi = ⟪att⟫F (pub ∧ (vi → ⋁
1⩽j⩽nc

Katt(j = chi)))

(Recall that, in our model the attacker is also a voter, which
corresponds with situations in which a voter fully cooperates
with the attacker).

MCMAS provides two options, -atlk 2 or -uniform, for
checking ATL formulas with uniform strategies, with some
differences in the semantics of ATL formulas (-uniform is
similar with“irrevocable strategies”of [2]). We observed that
neither of these options were stable, and lead to a number of
experiments ending with inconsistent results or MCMAS ter-
minating abnormally. We refer the interested reader to [10].

We then checked the coercion resistance property with -

atlk 1 option, which utilizes ATL with perfect information.
This is nevertheless consistent with our theoretical setting
since all tests show that the formulas are false, and whenever
a positive ATL formula is false under the perfect information
semantics, it is also false under the imperfect information
semantics, and hence preserved by alternating bisimulations.

For the total model Gtot the only configurations for which
MCMAS produces results in reasonable time are shown in
Table 1, which gives running times and state space (denoted
∣S∣). For Glex, the state space is smaller and, therefore, the
model with three voters and three candidates gives a also
reasonable running time. For all the other cases, MCMAS
outputs the result faster than for Gtot. Statistics are given
in Table 2. Finally, the models Gcount can be verified much
faster, the number of reachable states decreasing substan-
tially, allowing for verifying the formula for 4 voters and 3
candidates in 44 seconds. Statistics are given in Table 3.



In all these tables, NA means a 2 hours timeout has been
reached without obtaining any result.

# voters
2v 3v 4v

#
ca

n
d
id

.

2c
0.93 s 7.765 s

NA|S| = 3.49091e+06 |S| = 1.46625e+10

3c
23.61 s

NA NA|S| = 2.44048e+08

Table 1: MCMAS statistics for Gtot

# voters
2v 3v 4v

#
ca

n
d
id

.

2c
0.38 s 3.42 s 823.12 s

|S| = 196388 |S| = 1.92068e+08 |S|= 2.26211e+11

3c
15.32 s 4807.79 s

NA|S| = 8.09895e+06 |S| = 1.03982e+11

Table 2: MCMAS statistics for Glex

# voters
2v 3v 4v 5v

#
ca

n
d
id

.

2c
0.15 s 0.72 s 2.39 s 17.03 s

|S| = 4406 |S| = 39201 |S|= 3.08043e+06 |S| = 6.57133e+07

3c
0.44 s 4.29 s 44.18 s

NA|S| = 101993 |S| = 3.81446e+06 |S| = 2.17425e+09

Table 3: MCMAS statistics for Gcount

We also verified an anonymity property, specified in CTLK,
with the same aim at showing the improvements obtained
with bisimulations. Note that, for any group A, an A-
bisimulation is also a bisimulation of the epistemic labeled
transition systems, hence the two systems satisfy the same
CTLK formulas. The CTLK formula that we tested is ϕci =
AG(not same → (⋀1⩽j⩽nc ¬Kattpchi=j)) which utilizes an
atomic proposition not same which avoids unanimity. Note
that not same can be defined using only the atoms in AP .

6. CONCLUSIONS
In this paper we advanced the state-of-the-art in the model

theory of the strategy logic ATL under imperfect informa-
tion and imperfect recall. Specifically, we introduced a novel
notion of (bi)simulation on iCGS that preserves the inter-
pretation of ATL formulas (Theorem 9). Then, we applied
this theoretical result to the verification of the ThreeBallot
voting system, a relevant voting protocol without cryptog-
raphy. In particular, we model check the “simpler” bisimilar
abstractions of the ThreeBallot system, and then transfer
the result to the original model in virtue of Theorem 9. As
reported in the experimental results, the gains in terms of
both time and memory resources are significant.

The literature on both logics for strategies and the for-
mal verification of voting protocols is extensive and rapidly
growing. Hereafter we only consider the works most closely
related to the present contribution.

Bisimulations for ATL. An in-depth study of model
equivalences induced by various temporal logics appears in
[22]. Bisimulations for ATL with perfect information have
been introduced in [4]. Since then there have been various
attempts to extend these to imperfect information contexts
[2, 17]. In [17, 31] non-local model equivalences for ATL with
imperfect information have been put forward. However, to
our knowledge these works do not deal with the imperfect
information/imperfect recall setting here considered, nor do
they provide a local account of bisimulations.

# voters
2v 3v 4v

#
ca

n
d
id

.

2c
0.776 s 6.531 s

NA|S| = 3.72655e+06 |S| = 1.46625e+10

3c
19.811 s 2628.61 s

NA|S| = 2.44048e+08 |S| = 1.69347e+13

Table 4: MCMAS statistics: Gtot and CTLK formula

# voters
2v 3v 4v

#
ca

n
d
id

.

2c
0.37 s 3.035 s NA

|S| = 196388 |S| = 1.92068e+08

3c
15.26 s NA s

NA|S| = 8.09895e+06

Table 5: MCMAS statistics: Glex and CTLK formula

# voters
2v 3v 4v 5v

#
ca

n
d
id

.

2c
0.099 s 0.553 s 1.507 s 8.87 s

|S| = 4406 |S| = 39201 |S|= 3.08043e+06 |S| = 6.57133e+07

3c
0.44 s 4.29 s 26.078 s

NA|S| = 101993 |S| = 3.81446e+06 |S| = 2.17425e+09

Table 6: MCMAS statistics: Gcount and CTLK formula

Verification of Voting Protocols. The present con-
tribution is inspired by recent works on the verification of
voting protocols, mostly by using the π-calculus and CSP
[18, 24, 42]. In [5] the authors define two semantic crite-
ria for single transferable vote (STV) schemes, then show
how bounded model-checking and SMT solvers can be used
to check whether these criteria are met. In [34] anonymity
properties of voting protocols are verified by using CSP. In
particular, in [35] the authors construct CSP models of the
ThreeBallot system and use them to produce an automated
formal analysis of their anonymity properties. One issue we
identify with this approach is that the system model and the
property to be verified are not clearly distinguished. On the
contrary, multi-agent logics allow a clear separation of the
two, as well as a wider variety of properties, also involving
the existence of attacker strategies. Specifically, in our ex-
periments we are able to model check ThreeBallot systems
with 5 voters and 2 candidates, or 4 candidates and 3 voters,
while in [35] results are provided for at most 3 voters and 2
candidates.

Future Work. We envisage several extensions of the
present contribution. First, it is of interest to develop bisim-
ulations for iCGS with perfect and bounded recall, as in
many application domains agents do have some memory of
past states and actions. Also for the verification of voting
protocols, it is key to extend ATL with epistemic modalities
to express naturally properties of anonymity and confiden-
tiality. We remarked that individual knowledge is express-
ible in the subjective semantics. However, no such result
holds for the objective interpretation, nor common knowl-
edge happens to be definable. Finally, we aim at automating
and implementing the procedures described in this paper in
a model checking tool for the formal verification of (elec-
tronic) voting protocols.
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