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ABSTRACT
In online advertising, search engines sell ad placements for key-

words continuously through auctions. This problem can be seen

as an infinitely repeated game since the auction is executed when-

ever a user performs a query with the keyword. As advertisers

may frequently change their bids, the game will have a large set

of equilibria with potentially complex strategies. In this paper, we

propose the use of natural strategies for reasoning in such setting

as they are processable by artificial agents with limited memory

and/or computational power as well as understandable by human

users. To reach this goal, we introduce a quantitative version of

Strategy Logic with natural strategies in the setting of imperfect

information. In a first step, we show how to model strategies for

repeated keyword auctions and take advantage of the model for

proving properties evaluating this game. In a second step, we study

the logic in relation to the distinguishing power, expressivity, and

model-checking complexity for strategies with and without recall.
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1 INTRODUCTION
In recent years a wealth of logic-based languages have been intro-

duced to reason about the strategic abilities of autonomous agents

in multi-agent systems (MAS), including Alternating-time Tempo-

ral Logic (ATL) [8], Strategy Logic (SL) [27, 54], and Game Logic [60],

just to name a few. In conjunction with model checking techniques

[10], these formal languages have allowed for the development of

efficient verification tools [25, 36, 51], which have been successfully

applied to the certification of MAS as different as voting protocols

[13, 45], robot swarms [32, 49], and business processes [30, 38].
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Still, verification tools and techniques are comparatively less

developed for data-driven and data-intensive systems
1
, that is, con-

texts where the data content of processes, or agents, is key to model

and account for the evolution of the system [15, 55]. This is the case

also for online advertising, where search engines sell ad placements

for keywords continuously through auctions. This problem can be

seen as an infinitely repeated game since the auction is executed

whenever a user performs a query with the keyword. As advertis-

ers may frequently change their bids, the game will have a large

set of equilibria with potentially complex strategies, thus making

the specification and verification of keyword auctions a complex

problem to solve for current model checking methods
2
.

In this paper, we investigate the use of natural strategies [46, 47]
for reasoning about equilibria in keyword auctions. The work

in [46, 47] followed some classical research on human concept learn-

ing [18, 35], social norms [67, 68], commonsense reasoning [29],

automated planning [37, 66] and the psychology of planning [56],

usability [57], agent-oriented programming [17, 42], as well as ro-

botics [58, 62]; in short, it proposed to model “human-friendly”

strategies by lists of condition-action pairs with bounded complex-

ity. This was in contrast to “combinatorial” strategies, defined as

functions from (sequences of) states to actions, and typically used in

the semantics of MAS logics [8, 27, 54, 60]. It was argued in [46, 47]

that natural strategies provide better models of behaviour for agents

with limited memory and computing capacity, such as humans or

simple bots. The concept have been already used to redefine some

security requirements for voting protocols in [45].

In our case, the bidding strategy in an auction should be exe-

cutable for a simple artificial agent, as well as reasonably transparent
to the human user, which makes natural strategies a good match.

Moreover, natural strategies provide a way to define complexity

(and hence also “simplicity”) metrics for various functionality, se-

curity, and usability properties in MAS. By focusing on simple

strategies, one can make the verification of equilibrium properties

1
“[Model checking] is mainly appropriate to control-intensive applications and less

suited for data-intensive applications" [10, p. 15]

2
“In principle, the sets of equilibria in such repeated games can be very large, with

players potentially punishing each other for deviations. The strategies required to

support such equilibria are usually quite complex, however, requiring precise knowl-

edge of the environment and careful implementation. In theory, advertisers could

implement such strategies via automated robots, but in practice they may not be

able to: bidding software must first be authorized by the search engines, and search

engines are unlikely to permit strategies that would allow advertisers to collude and

substantially reduce revenues." [34]



decidable, or even tractable, despite the prohibitive complexity of

the general problem. This is especially evident for strategies with

memory, which normally make the synthesis and model checking

problems undecidable [31, 72].

Contribution By leveraging on natural strategies, we introduce a

quantitative semantics for SL with natural strategies and imperfect

information. As a first contribution, we show how to represent

popular strategies for repeated keyword auctions in the proposed

framework, as well as prove properties pertaining to this game.

Second, we analyse our novel variant of SL in relation with its

distinguishing power, expressivity, and complexity of the model

checking problem, for natural strategies with and without recall.

Outline In Section 2, we recall the basic definitions. Secttion 3

introduces the new logic NatSL[F ]. In Section 4 we use it to anal-

yse repeated keyword auctions. The expressivity of NatSL[F ]is
investigated in Section 5. Section 6 establishes the complexity of

model checking, and Section 7 concludes the paper. The omitted

proofs are available at http://arxiv.org/abs/2201.09616.

1.1 Related work
Recently, there have been efforts to apply formal methods to the

(semi-)automatic verification of some decision-making mechanisms,

including auctions and voting protocols. A number of works [12,

23, 48] expresses these mechanisms in high-level specification lan-

guages. However, in contrast with standard model checking tech-

niques [10], their verification is not fully automated, but only as-

sisted by a reasoner. Troquard et al. [69] introduce a framework

for fully-automated verification of voting protocols. Still, their ap-

proach can only model one-shot mechanisms and thus does not

capture multi-stage protocols and repeated auctions. In prelimi-

nary works, Pauly and Wooldridge [61] and Wooldridge et al. [75]

advocate the use of ATL [8] to reason about decision-making mech-

anisms. As ATL lacks the expressivity to reason about quantitative

aspects such as valuations and payments, and solution concepts

such as equilibria, Maubert et al. [53] introduce SLK[F ], a quan-
titative and epistemic version of SL [27, 54], and show how it can

be used for reasoning about notions such as Nash equilibrium and

strategyproofness. Still, their approach considers strategies as func-

tions from states to actions and cannot handle strategies with recall.

A key assumption of the present contribution is that agents have

only partial observability of the global state of the system, as it

is often the case in real-life applications. Contexts of imperfect

information have been extensively considered in the literature on

formal verification [22, 31, 44, 50, 64]. Generally speaking, imper-

fect information immediately entails higher complexity of game

solving. In multi-player games, the complexity can go up to being

non-elementary [63], or even undecidability when considered in

the context of memoryful strategies [31]. Hence, it is of interest to

analyse imperfect information systems where agents have finite

or bounded memory, in order to retrieve a decidable model check-

ing problem. Works that are closest in spirit to our contribution

concern modeling, specification, and reasoning about strategies

of bounded-memory agents. We directly build on the research by

Jamroga, Malvone, and Murano on natural strategies [46, 47]. We

generalize the approach by considering quantitative semantics for

both natural strategies and the logic, which is more suitable for rea-

soning about mechanisms with monetary transfer (e.g., auctions).

We also consider SL instead of ATL, due to its expressive power. In a

related vein, Ågotnes and Walther [2] investigate strategic abilities

of agents with bounded memory, while Belardinelli et al. [14] con-

sider bounded memory as an approximation of perfect recall. On a

related direction, temporal and strategic logics have been extended

to handle agents with bounded resources [5, 6, 20, 21]. Issues related

to bounded rationality are also investigated in [11, 39, 43].

Also relevant for the present contribution are papers that study

explicit representations of strategies. This category is much richer

and includes extensions of ATL∗ with explicit reasoning about ac-

tions and strategies [1, 41, 70, 73], as well as logics that combine

features of temporal and dynamic logic [40, 59]. Duijf and Broersen

[33] present a variant of STIT logic, that enables reasoning about

strategies and their performance in the object language. Also, plans

in agent-oriented programming are in fact rule-based descriptions

of strategies. In particular, reasoning about agent programs using

strategic logics was investigated in [3, 4, 16, 28, 76].

2 PRELIMINARIES
We first recall basic notions. For the remainder of the paper, we

fix a set of atomic propositions AP, a set of agents Ag and a set

of strategy variables Var. We let n be the number of agents in Ag.

Finally, let F ⊆ {𝑓 : [−1, 1]𝑚 → [−1, 1] | 𝑚 ∈ N} be a set of

functions over [−1, 1] of possibly different arities.

2.1 Weighted Concurrent Game Structures
The semantics of natural strategies and NatSL[F ] are interpreted
over weighted concurrent game structures (wCGS). A difference

from classical structures is that the labelling of atomic propositions

is replaced by aweight function.We consider weighted propositions

for easily handling quantitative aspects (such as prices).

Definition 1. A weighted concurrent game structure with imper-
fect information (wCGS) is a tuple G = (Ac,𝑉 , 𝐿, 𝛿, ℓ,𝑉𝜄 , {∼𝑎}𝑎∈Ag)
where: (i) Ac is a finite set of actions; (ii) 𝑉 is a finite set of states;
(iii) 𝐿 : Ag×𝑉 → 2

Ac
is a legality function, defining the availability

of actions; (iv) 𝛿 is a transition function assigning a successor state

𝑣 ′ = 𝛿 (𝑣, (𝑐𝑎)𝑎∈Ag) to each state 𝑣 ∈ 𝑉 and any tuple of actions

(𝑐𝑎)𝑎∈Ag, where 𝑐𝑎 ∈ 𝐿(𝑎, 𝑣); (v) ℓ : 𝑉 × AP → [−1, 1] is a weight
function; (vi) 𝑉𝜄 ⊆ 𝑉 is a set of initial states; and (vii) ∼𝑎 ⊆ 𝑉 ×𝑉 is

an equivalence relation called the observation relation of agent 𝑎.

We require that the wCGS is uniform, that is 𝑣 ∼𝑎 𝑣 ′ implies

𝐿(𝑎, 𝑣) = 𝐿(𝑎, 𝑣 ′). We write 𝒐 for a tuple of objects (𝑜𝑎)𝑎∈Ag, one for
each agent, and such tuples are called profiles. Given a profile 𝒐 and
𝑎 ∈ Ag, we let 𝑜𝑎 be agent 𝑎’s component, and 𝑜−𝑎 is (𝑜𝑖 )𝑖∈Ag\{𝑎} .
Similarly, we let Ag−𝑎 = Ag \ {𝑎}.

In a state 𝑣 ∈ 𝑉 , each player 𝑎 chooses an available action 𝑐𝑎 ∈
𝐿(𝑎, 𝑣), and the game proceeds to state 𝛿 (𝑣, 𝒄) where 𝒄 is the action
profile (𝑐𝑎)𝑎∈Ag. A play 𝜋 = 𝑣0𝑣1𝑣2 ... is an infinite sequence of

states such that for every 𝑖 ≥ 0 there exists an action profile 𝒄 such
that 𝛿 (𝑣𝑖 , 𝒄) = 𝑣𝑖+1. We write 𝜋𝑖 = 𝑣𝑖 for the state at index 𝑖 in play

𝜋 . A history ℎ = 𝑣0𝑣1𝑣2 ...𝑣𝑛 is a finite sequence of states. The last

element of a history is denoted by 𝑙𝑎𝑠𝑡 (ℎ) = 𝑣𝑛 . 𝐻G denotes the set

of all histories in the wCGS G.

http://arxiv.org/abs/2201.09616


2.2 Natural Strategies
In this section we recall the notion of uniform natural strategies

from [47]. Natural strategies are conditional plans, represented

through an ordered list of condition-action rules [47]. The intuition

is that the first rule whose condition holds in the history of the game

is selected, and the corresponding action is executed. As we are

considering the setting of imperfect information, the conditions are

regular expressions overweighted epistemic (WE) formulas. Given an
agent 𝑎, theWE formulas over AP, denotedWE(AP), are conditions
on 𝑎’s knowledge and are expressed by the following Backus-Naur

Form grammar:

𝜓 ::= ⊤ | 𝐾𝑎𝜑 | 𝑓 (𝜓, ...,𝜓 )
𝜑 ::= 𝑝 | 𝑓 (𝜑, ..., 𝜑) | 𝐾𝑖𝜑

where 𝑓 ∈ F is a function, 𝑝 ∈ AP is an atomic proposition and

𝑖 ∈ Ag is an agent.

Given a wCGS G, a state 𝑣 ∈ 𝑉 and a WE(AP) formula 𝜑 , we

inductively define the satisfaction value of 𝜑 in 𝑣 , denoted ⟦𝜑⟧(𝑣):
⟦𝑝⟧(𝑣) = ℓ (𝑣, 𝑝)

⟦𝐾𝑎𝜑⟧(𝑣) = min

𝑣′∼𝑎𝑣
⟦𝜑⟧(𝑣 ′)

⟦𝑓 (𝜑1,..., 𝜑𝑚)⟧(𝑣) = 𝑓 (⟦𝜑1⟧(𝑣), ..., ⟦𝜑𝑚⟧(𝑣))
The semantics for the knowledge modality is the standard in

the literature on fuzzy epistemic logic (e.g. [52]). Let 𝑅𝑒𝑔(WE(AP))
be the set of regular expressions over the weighted epistemic con-

ditions WE(AP), defined with the constructors ·,∪, * representing
concatenation, nondeterministic choice, and finite iteration, re-

spectively. Given a regular expression 𝑟 and the language L(𝑟 )
on words generated by 𝑟 , a history ℎ is consistent with 𝑟 iff there

exists 𝑏 ∈ L(𝑟 ) such that |ℎ | = |𝑏 | and ⟦𝑏 [𝑖]⟧(ℎ[𝑖]) = 1, for all

0 ≤ 𝑖 ≤ |ℎ |. Intuitively, a history ℎ is consistent with a regular

expression 𝑟 if the 𝑖-th weighted epistemic condition in 𝑟 “holds”

in the 𝑖-th state of ℎ (for any position 𝑖 in ℎ).

A uniform natural strategy with recall 𝜎𝑎 for agent 𝑎 is a sequence
of pairs (𝑟, 𝑐), where 𝑟 ∈ 𝑅𝑒𝑔(WE(AP)) is a regular expression, and
𝑐 is an action available in last(ℎ), for all histories ℎ ∈ 𝐻G consistent

with 𝑟 . The last pair on the sequence is required to be (⊤*, 𝑐), with
𝑐 ∈ 𝐿(𝑎, 𝑣) for every 𝑣 ∈ 𝑉 and some 𝑐 ∈ Ac.

A uniform memoryless natural strategy is a special case of natural

strategy in which each condition is a weighted epistemic formula

(i.e., no regular operators are allowed).

Natural strategies are uniform in the sense they specify the same

actions in indistinguishable states (see [47]). We define Str𝜌𝑎 to

be the set of uniform natural strategies for agent 𝑎 and Str𝜌 =

∪𝑎∈AgStr
𝜌
𝑎 , where 𝜌 ∈ {𝑖𝑟, 𝑖𝑅}3. Let 𝑠𝑖𝑧𝑒 (𝜎𝑎) denote the number of

guarded actions in 𝜎𝑎 , 𝑐𝑜𝑛𝑑𝑖 (𝜎𝑎) be the 𝑖-th guarded condition on

𝜎𝑎 , 𝑐𝑜𝑛𝑑𝑖 (𝜎𝑎) [ 𝑗] be the 𝑗-th WE formula of the guarded condition

𝜎𝑎 , and 𝑎𝑐𝑡𝑖 (𝜎𝑎) be the corresponding action. Finally,𝑚𝑎𝑡𝑐ℎ(ℎ, 𝜎𝑎)
is the smallest index 𝑖 ≤ 𝑠𝑖𝑧𝑒 (𝜎𝑎) such that for all 0 ≤ 𝑗 ≤ |𝑙𝑎𝑠𝑡 (ℎ) |,
⟦𝑐𝑜𝑛𝑑𝑖 (𝜎𝑎) [ 𝑗]⟧(ℎ[ 𝑗]) = 1

4
and 𝑎𝑐𝑡𝑖 (𝜎𝑎) ∈ 𝐿(𝑎, 𝑙𝑎𝑠𝑡 (ℎ)). In other

3
As usual in the verification process, we denote imperfect recall with r, perfect recall

with R, imperfect information with i, and perfect information with I.

4
Note that, we considered the case in which the condition have the same length of the

history. There is also the case in which the condition is shorter than the history. This

is due to the usage of the finite iteration operator. In the latter case, we need to check

a finite number of times the same weighted epistemic formula in different states of

the history. For more details on this aspect see [46, 47].

words,𝑚𝑎𝑡𝑐ℎ(ℎ, 𝜎𝑎) matches the state 𝑙𝑎𝑠𝑡 (ℎ) with the first condi-

tion in 𝜎𝑎 that holds in ℎ, and action available in 𝑙𝑎𝑠𝑡 (ℎ).

Measurement of Natural Strategies. The complexity of the strat-

egy 𝜎 is the total size of its representation and is denoted as follows:

𝑐𝑜𝑚𝑝𝑙 (𝜎) := ∑
(𝑟,𝑐 ) ∈𝜎 |𝑟 |, where |𝑟 | is the number of symbols in 𝑟 ,

except by parentheses. If 𝑟 is a 𝑛-ary function in F , then |𝑟 | = 𝑛 + 1.

3 NATURAL STRATEGY LOGIC
SL[F ] [19] proposes a quantitative semantics for Strategy Logic,

in which strategies are functions mapping histories to actions.

For reasoning about intuitive and simple strategies, we introduce

SL[F ] with natural strategies and imperfect information, denoted

NatSL[F ]. Throughout this section, let 𝜌 ∈ {𝑖𝑟, 𝑖𝑅} denote whether
the semantics considers memoryless or recall strategies.

An assignment 𝜒 : Ag ∪ Var → Str𝜌 is a function from players

and variables to strategies. For an assignment 𝜒 , an agent 𝑎 and a

strategy 𝜎 for 𝑎, 𝜒 [𝑎 ↦→ 𝜎] is the assignment that maps 𝑎 to 𝜎 and is

otherwise equal to 𝜒 , and 𝜒 [𝑠 ↦→ 𝜎] is defined similarly, where 𝑠 is

a variable. For an assignment 𝜒 and a state 𝑣 we let Out(𝜒, 𝑣) be the
unique play that starts in 𝑣 and follows the strategies assigned by 𝜒 .

Formally, Out(𝜒, 𝑣) is the play 𝑣0𝑣1 ... such that 𝑣0 = 𝑣 and for all 𝑖 ≥
0, 𝑣𝑖+1 = 𝛿 (𝑣𝑖 , 𝒄) where for all 𝑎 ∈ Ag, 𝒄𝑎 = 𝑎𝑐𝑡𝑚𝑎𝑡𝑐ℎ (𝑣𝑖 ,𝜒 (𝑎) ) (𝜒 (𝑎)).

3.1 NatSL[F ] Syntax
Definition 2. The syntax of NatSL[F ] is defined as follows:

𝜑 ::= 𝑝 | ∃𝑠≤𝑘𝑎 . 𝜑 | (𝑎, 𝑠𝑎)𝜑 | 𝑓 (𝜑, ..., 𝜑) | X𝜑 | 𝜑U𝜑

where 𝑝 ∈ AP, 𝑠𝑎 ∈ Var ∪ Str𝜌𝑎 , 𝑎 ∈ Ag, and 𝑓 ∈ F .

The intuitive reading of the operators is as follows: ∃𝑠≤𝑘𝑎 . 𝜑

means that there exists a strategy with complexity less or equal than

𝑘 for agent 𝑎 such that 𝜑 holds; (𝑎, 𝑠𝑎)𝜑 means that when strategy

𝑠𝑎 is assigned to agent 𝑎, 𝜑 holds; X and U are the usual temporal

operators “next” and “until”. The meaning of 𝑓 (𝜑1, ..., 𝜑𝑛) depends
on the function 𝑓 . We use ⊤, ∨, and ¬ to denote, respectively,

function 1, function 𝑥,𝑦 ↦→ max(𝑥,𝑦) and function 𝑥 ↦→ −𝑥 .
A variable is free in formula 𝜑 if it is bound to an agent without

being quantified upon, and an agent 𝑎 is free in 𝜑 if 𝜑 contains a

temporal operator (X or U) that is not in the scope of any binding

for 𝑎. The set of free variables and agents in 𝜑 is written free(𝜑),
and a formula 𝜑 is a sentence if free(𝜑) = ∅. The strategy quantifier

∃𝑠≤𝑘𝑎 . 𝜑 quantifies on strategies for agent 𝑎.

3.2 NatSL[F ] Semantics
Definition 3. Let G = (Ac,𝑉 , 𝛿, ℓ,𝑉𝜄 , {∼𝑎}𝑎∈Ag) be a wCGS, and

𝜒 an assignment. The satisfaction value ⟦𝜑⟧G,𝜌𝜒 (𝑣) ∈ [−1, 1] of
a NatSL[F ] formula 𝜑 in a state 𝑣 is defined as follows, where 𝜋

denotes Out(𝑣, 𝜒):

⟦𝑝⟧G,𝜌𝜒 (𝑣) = ℓ (𝑣, 𝑝)

⟦∃𝑠≤𝑘𝑎 . 𝜑⟧G,𝜌𝜒 (𝑣) = max

𝜎∈{𝛼∈Str𝜌𝑎 :𝑐𝑜𝑚𝑝𝑙 (𝛼 )≤𝑘 }
⟦𝜑⟧G,𝜌

𝜒 [𝑠𝑎 ↦→𝜎 ] (𝑣)

⟦(𝑎, 𝑠𝑎)𝜑⟧G,𝜌𝜒 (𝑣) = ⟦𝜑⟧G,𝜌
𝜒 [𝑎 ↦→𝜒 (𝑠𝑎 ) ] (𝑣) if 𝑠𝑎 ∈ Var

⟦(𝑎, 𝜎𝑎)𝜑⟧G,𝜌𝜒 (𝑣) = ⟦𝜑⟧G,𝜌
𝜒 [𝑎 ↦→𝜎𝑎 ] (𝑣) if 𝜎𝑎 ∉ Var



⟦𝑓 (𝜑1,..., 𝜑𝑚)⟧G,𝜌𝜒 (𝑣) = 𝑓 (⟦𝜑1⟧G,𝜌𝜒 (𝑣), ..., ⟦𝜑𝑚⟧G,𝜌𝜒 (𝑣))

⟦X𝜑⟧G,𝜌𝜒 (𝑣) = ⟦𝜑⟧G,𝜌𝜒 (𝜋1)

⟦𝜑1U𝜑2⟧G,𝜌𝜒 (𝑣) = sup

𝑖≥0
min

(
⟦𝜑2⟧G,𝜌𝜒 (𝜋𝑖 ), min

0≤ 𝑗<𝑖
⟦𝜑1⟧G,𝜌𝜒 (𝜋 𝑗 )

)
If 𝜑 is a sentence, its satisfaction value does not depend on the

assignment, and we write ⟦𝜑⟧G,𝜌 (𝑣) for ⟦𝜑⟧G,𝜌𝜒 (𝑣) where 𝜒 is any

assignment. We also let ⟦𝜑⟧G,𝜌 = min𝑣𝜄 ∈𝑉𝜄⟦𝜑⟧G,𝜌 (𝑣𝜄 ).

Remark 1. When propositions only take values in {−1, 1} and F =

{⊤,∨,¬}, NatSL[F ] corresponds to a Boolean-valuated extension

of SL with Natural Strategies.

We define the classic abbreviations:⊥:= ¬⊤, 𝜑 → 𝜑 ′ := ¬𝜑 ∨ 𝜑 ′,
𝜑 ∧ 𝜑 ′ := ¬(¬𝜑 ∨ ¬𝜑 ′), F𝜓 := ⊤U𝜓 , G𝜓 := ¬F¬𝜓 and ∀𝑠≤𝑘 . 𝜑 :=

¬∃𝑠≤𝑘 .¬𝜑 , and check that they correspond to the intuition. For

instance, ∧ corresponds to min, F𝜓 computes the supremum of the

satisfaction value of𝜓 over all future points in time, G𝜓 computes

the infimum of these values, and ∀𝑠≤𝑘 . 𝜑 minimizes the value of 𝜑

over all possible strategies 𝑠 .

4 REPEATED KEYWORD AUCTIONS
Modeling mechanisms with monetary transfer and private valua-

tions require handling quantitative features and imperfect informa-

tion. Memoryless strategies are enough for mechanisms in which

all relevant information is encoded in the current state (e.g. English

auction). In repeated auctions, agents may, as well, use information

from the previous states for choosing their strategies.

We now focus on using NatSL[F ] to model and verify repeated

keyword auctions and related strategies. Repeated keyword auc-

tions are used by online search engines for selling advertising slots

when users perform a search with a keyword [24]. For a keyword

of interest, the advertisers (bidders) submit a bid stating the maxi-

mum amount she is willing to pay for a click on her sponsored link.

When a user submits a query, an auction is run to determinate the

slot allocation among the advertisers bidding on the keyword of

interest. The most common mechanism for keyword auctions is

the Generalized Second Price (GSP) [24], in which the agents are

allocated slots in decreasing order of bids and the payment for the

slot 𝑠 is the bid of the agent allocated to the slot 𝑠 + 1.

We assume that F contains the function ≤ : (𝑥,𝑦) ↦→ 1 if 𝑥 ≤ 𝑦
and ≤ : (𝑥,𝑦) ↦→ −1 otherwise; and for readability we use the infix

notation 𝑥 ≤ 𝑦 in the formula. We also assume that F contains the

equality = and comparison functions <, >, ≥ (defined similarly).

Finally, we assume F contains functions −, ∑, ×, \,𝑚𝑖𝑛,𝑚𝑎𝑥 and

𝑎𝑟𝑔𝑚𝑎𝑥 with the standard meaning (for details, see [53]).

Let us fix a price increment inc ∈ (0, 1], a set of slots 𝑆 =

{1, ...,m}, where m ∈ N \ {0}. Each slot has a click-through rate

𝜃1 > ... > 𝜃m, where 𝜃𝑠 ∈ [0, 1] is the probability that the user will

click on the advertisement in slot 𝑠 . The agents in Ag are the adver-

tisers, each one having a private valuation v𝑎 ∈ V𝑎 for a click, where
V𝑎 ⊂ [0, 1] is a finite set of possible valuations. We assume the

valuations are distinct, that is, if 𝑎 ≠ 𝑎′, then v𝑎 ≠ v𝑎′ . We denote

by ≺ an arbitrary order among the agents in Ag, used in case of ties.

The atomic propositional set is AP = {all𝑎,𝑠 , p𝑠 , 𝜗𝑎 : 𝑎 ∈ Ag, 𝑠 ∈ 𝑆},
where all𝑎,𝑠 represents whether agent 𝑎 is allocated to slot 𝑠 , p𝑠

denotes the price of slot 𝑠 and 𝜗𝑎 denotes 𝑎’s valuation. Define

G𝐺𝑆𝑃 = (Ac,𝑉 , 𝐿, 𝛿, ℓ,𝑉𝜄 , {∼𝑎}𝑎∈Ag), where:

• Ac = {0 + 𝑥 × inc : 0 ≤ 𝑥 ≤ 1

inc }, where 𝑏 ∈ Ac denotes a

bid with price 𝑏 for a click; given 𝒄 = (𝑐𝑎)𝑎∈Ag, let 𝑟𝑎𝑛𝑘𝒄 =

(𝑎1, ..., 𝑎n) be the sequence of distinct agents in Ag ordered

by their bid, that is, 𝑖 < 𝑗 if 𝑐𝑎𝑖 > 𝑐𝑎 𝑗
or 𝑐𝑎𝑖 = 𝑐𝑎 𝑗

and 𝑎𝑖 ≺ 𝑎 𝑗
for 𝑖, 𝑗 ∈ {1, ..., n} with 𝑖 ≠ 𝑗 . In case of draws, the sequence

is determined with respect to ≺. We let 𝑟𝑎𝑛𝑘𝒄 (𝑖) denote the
agent in the 𝑖-th position of the sequence 𝑟𝑎𝑛𝑘𝒄 .

• 𝑉 = {⟨𝑎𝑙1, ..., 𝑎𝑙m, 𝑝𝑟1, ..., 𝑝𝑟m, (𝑣𝑙𝑎)𝑎∈Ag⟩ : 𝑎𝑙𝑠 ∈ Ag∪{𝑛𝑜𝑛𝑒}
& 𝑝𝑟𝑠 ∈ Ac & 𝑣𝑙𝑎 ∈ V𝑎 & 𝑎 ∈ Ag & 1 ≤ 𝑠 ≤ m}, where each
state represents the current slot allocation and prices, with

𝑎𝑙𝑠 , 𝑝𝑟𝑠 , and 𝑣𝑙𝑎 denoting the winner of slot 𝑠 , the price per

click of 𝑠 and 𝑎’s valuation, resp.;

• For each 𝑎 ∈ Ag and 𝑣 ∈ 𝑉 , 𝐿(𝑎, 𝑣) = Ac;

• For each 𝑣 ∈ 𝑉 and 𝒄 = (𝑐𝑎)𝑎∈Ag such that 𝑐𝑎 ∈ 𝐿(𝑎, 𝑣), the
transition function uses the agent’s bids to chose the next al-

locations and prices and is defined as follows:𝛿 (𝑣, (𝑐𝑎)𝑎∈Ag) =
⟨𝑎𝑙 ′

1
, ..., 𝑎𝑙 ′m, 𝑝𝑟

′
1
, ..., 𝑝𝑟 ′m, (𝑣𝑙𝑎)𝑎∈Ag⟩, where for each agent 𝑎

and slot 𝑠 , (i) 𝑎𝑙𝑠 = 𝑟𝑎𝑛𝑘𝒄 (𝑠) if 𝑠 ≤ n, and 𝑎𝑙𝑠 = 𝑛𝑜𝑛𝑒 other-

wise; (ii) 𝑝𝑟𝑠 = 𝑐𝑟𝑎𝑛𝑘𝒄 (𝑠+1) if 𝑠+1 ≤ n, and 𝑝𝑟𝑠 = 0 otherwise.

• For each agent 𝑎, slot 𝑠 ∈ 𝑆 and state 𝑣 = ⟨𝑎𝑙1, ..., 𝑎𝑙m, 𝑝𝑟1, ...,
𝑝𝑟m, (𝑣𝑙𝑎)𝑎∈Ag⟩, the weight function is defined as follows:

(i) ℓ (𝑣, all𝑎,𝑠 ) = 1 if 𝑎𝑙𝑠 = 𝑎, and ℓ (𝑣, all𝑎,𝑠 ) = 0 otherwise; (ii)

ℓ (𝑣, p𝑠 ) = 𝑝𝑟𝑠 ; and (iii) ℓ (𝑣, 𝜗𝑎) = 𝑣𝑙𝑎 .
• In an initial state, the prices are 0 and the slots are allocated to

𝑛𝑜𝑛𝑒 , that is, 𝑉𝜄 = {⟨𝑛𝑜𝑛𝑒, ..., 𝑛𝑜𝑛𝑒, 0, ..., 0, 𝑣𝑙1, ..., 𝑣𝑙n⟩ ∈ 𝑉 };
• For each agent 𝑎 and two states 𝑣 = ⟨𝑎𝑙1, ..., 𝑎𝑙m, 𝑝𝑟1, ..., 𝑝𝑟m,
(𝑣𝑙𝑎)𝑎∈Ag⟩ and 𝑣 ′ = ⟨𝑎𝑙 ′

1
, ..., 𝑎𝑙 ′m, 𝑝𝑟

′
1
, ..., 𝑝𝑟 ′m, (𝑣𝑙 ′𝑎)𝑎∈Ag⟩ in

𝑉 , the observation relation ∼𝑎 is such that if 𝑣 ∼𝑎 𝑣 ′ then
(i) 𝑎𝑙𝑠 = 𝑎𝑙𝑠′ , for each 1 ≤ 𝑠 ≤ m; (ii) 𝑝𝑠 = 𝑝𝑠′ , for each

1 ≤ 𝑠 ≤ m; (iii) 𝑣𝑙𝑎 = 𝑣𝑙 ′𝑎 .

Notice there is exactly one initial state for each possible valuation

profile in (∏𝑎∈Ag V𝑎). Additionally, valuations remain unchanged

after the initial state. We use the formula 𝑠−1 := 1\𝑠 when it is

convenient to obtain a value in [−1, 1] for representing a slot 𝑠 . The
utility of agent 𝑎 when she is assigned to slot 𝑠 is denoted by the

formula ut𝑎,𝑠 := 𝜃𝑠 × (𝜗𝑎 − p𝑠 ). The expected utility for agent 𝑎

depends on her actual allocation, that is, ut𝑎 :=
∑
𝑠∈𝑆 all𝑎,𝑠 × ut𝑎,𝑠 .

4.1 Solution concepts for G𝐺𝑆𝑃

In this section, we show how NatSL[F ] can be used for the verifi-

cation of mechanisms with natural strategies. In sight of our mo-

tivating example, we aim at rephrasing conditions and properties

usually considered in the analysis of keyword auctions [24, 34, 71].

Nash equilibrium Since auctions are noncooperative, the solution

concept in the pure strategy setting usually considered is the Nash

equilibrium (NE). The NE captures the notion of stable solution: a

strategy profile is NE if no player can improve her utility through

an unilateral change of strategy [65]. With NatSL[F ], we restrict
the range of strategies to simple ones, as it enables us to reason

about artificial agents with limited capabilities and human-friendly

strategies. Let 𝝈 = (𝜎𝑎)𝑎∈Ag be a profile of strategies and 𝑘 > 0



and define the formula

NE(𝝈 , 𝑘) :=
∧
𝑎∈Ag

∀𝑡≤𝑘 .
[
(Ag−𝑎, 𝜎−𝑎) (𝑎, 𝑡)Xut𝑎 ≤ (Ag,𝝈)Xut𝑎

]
The formula NE(𝝈 , 𝑘)means that, for every agent and alternative

strategy 𝑡 of complexity at most 𝑘 , binding to 𝑡 when everyone else

binds to their strategies in 𝝈 leads to at most the same utility as

when she also binds to her strategy in 𝝈 . In relation to strategies

with complexity at most 𝑘 , the strategy profile 𝝈 leads to a NE in

the next state of 𝑣 if ⟦NE(𝝈 , 𝑘)⟧G,𝜌𝜒 (𝑣) = 1.

Predicting outcomes of a keyword auction is a difficult task given

the infinite nature of NE continuum [77]. For this reason, refined

solution concepts have been proposed to reduce the NE continuum

to subsets. Edelman et al. [34] studied the subset called locally

envy-free equilibrium (LEFE), in which no advertiser can improve

her utility by exchanging her current slot to the one ranked one

position above, given the current prices.

Locally envy free equilibrium Let 𝝈 = (𝜎𝑎)𝑎∈Ag be a profile of
strategies, we define the formula

LEFE(𝝈) :=
∧
𝑎∈Ag

(Ag,𝝈)X
[
LEF

𝑎
𝑤𝑖𝑛𝑠 ∧ LEF

𝑎
𝑙𝑜𝑠𝑒𝑠

]

where LEF
𝑎
𝑤𝑖𝑛𝑠

:=
∧

1<𝑠≤m (all𝑎,𝑠 = 1 → ut𝑎,𝑠 ≥ ut𝑎,𝑠−1) indicates
that when an agent is allocated to a slot, she does not prefer to

switch to the slot right above and LEF
𝑎
𝑙𝑜𝑠𝑒𝑠

:= (∧𝑠∈𝑆 all𝑎,𝑠 = 0) →
0 ≥ ut𝑎,m denotes that agents who were not assigned to any slot

do not prefer to get the last slot.

LEFE(𝝈) means that, for any agent, when everyone follows the

strategies in𝝈 , it holds that (i) if she wins 𝑠 , her utility for 𝑠 is greater
than for slot 𝑠 − 1 (at current prices) and (ii) if she does not get any

slot, then her utility for the last slot is at most zero. Strategy profile

𝝈 leads to LEFE in the next state of 𝑣 if ⟦LEFE(𝝈)⟧G,𝜌𝜒 (𝑣) = 1.

Based on [34, 71], we have that any LEFE is also a NE:

Proposition 1. For any complexity 𝑘 ≥ 0, state 𝑣 ∈ 𝑉 , 𝜌 ∈ {𝑖𝑅, 𝑖𝑟 }
and strategy profile 𝝈 = (𝜎𝑎)𝑎∈Ag with 𝜎𝑎 ∈ Str

𝜌
𝑎 for each agent 𝑎,

⟦LEFE(𝝈) → NE(𝝈 , 𝑘)⟧G𝐺𝑆𝑃 ,𝜌 (𝑣) = 1.

As LEFE is still an equilibrium continuum, Edelman et al. [34]
characterize an equilibrium in which the slot allocation and pay-

ments coincide with the ones in the dominant-strategy equilibrium

(DSE) of the Vickrey–Clarke–Groves (VCG) mechanism.

Let v = (v𝑎)𝑎∈Ag be a valuation profile. Truthfully reporting v
is the DSE of VCG [65]. For each slot 𝑠 and agent 𝑎, the allocation

rule for VCG in the keyword auction is the same as under GSP [34]:

all
∗
𝑎,𝑠 (v) = 1 if 𝑟𝑎𝑛𝑘v (𝑠) = 𝑎 and 𝑠 ≤ n. Otherwise, all∗𝑎,𝑠 (v) = 0.

The payment for the last slot m is p
∗
m (v) = 𝜃m · v𝑟𝑎𝑛𝑘v (m+1) if

m+1 ≤ n and p
∗
m = 0 otherwise. For the remaining slots 1 ≤ 𝑠 < m,

p
∗
𝑠 (v) = (𝜃𝑠 − 𝜃𝑠+1) · v𝑟𝑎𝑛𝑘v (𝑠+1) + p

∗
𝑠+1 (v). We assume p

∗
𝑠 (v) and

all
∗
𝑠,𝑎 (v) are functions in F .

VCG outcome The following formula denotes whether the allo-

cation and payments in the next state are the same as the ones for

the VCG when agents bid truthfully:

𝜑VCG (𝝈) := (Ag, 𝜎)X
[∧
𝑠∈𝑆

(p𝑠 = p
∗
𝑠 (𝝑) ∧

∧
𝑎∈Ag

all𝑠,𝑎 = all
∗
𝑠,𝑎 (𝝑))

]
If a strategy profile leads to the VCG outcome, then it is a LEFE:

Proposition 2. For any state 𝑣 ∈ 𝑉 , 𝜌 ∈ {𝑖𝑅, 𝑖𝑟 } and strategy
profile 𝝈 = (𝜎𝑎)𝑎∈Ag with 𝜎𝑎 ∈ Str

𝜌
𝑎 for each agent 𝑎, ⟦𝜑VCG (𝝈) →

LEFE(𝝈)⟧G𝐺𝑆𝑃 ,𝜌 (𝑣) = 1.

In fact, from [34, 71] the VCG payments are the lower bound of

locally envy-free equilibrium. Thus, in any other locally envy-free

equilibrium the total revenue obtained by GSP is at least as high as

the one obtained by VCG in equilibrium.

Corollary 1. For any state 𝑣 ∈ 𝑉 , 𝜌 ∈ {𝑖𝑅, 𝑖𝑟 } and strategy pro-
file 𝝈 = (𝜎𝑎)𝑎∈Ag with 𝜎𝑎 ∈ Str

𝜌
𝑎 for each agent 𝑎, ⟦LEFE(𝝈) →∑

𝑠∈𝑆 (p𝑠 ) ≥
∑
𝑠∈𝑆 (p∗𝑠 )⟧G𝐺𝑆𝑃 ,𝜌 (𝑣) = 1.

The solution concepts characterized in the previous section are

considered in a single stage of the game. Since the auction is re-

peated, advertisers can change their bids very frequently and one

may investigate whether the prices stabilize and at what values

[34]. Stable bids must be best responses to each other, that is, the

bids form an (one-shot) equilibrium. Cary et al. [24] raises the prob-
lem on whether there exists a “natural bidding strategy” for the

advertisers that would lead to equilibrium.

Convergence The concept of convergence or stabilization can be

easily encoded in NatSL[F ]: we say a wCGS G converge to a prop-

erty 𝜑 if the initial states lead to 𝜑 being eventually always the case.

Formally, a wCGS converge to a condition 𝜑 if ⟦FG(𝜑)⟧G,𝜌𝜒 (𝑣𝜄 ) = 1

for each initial state 𝑣𝜄 ∈ 𝑉𝜄 .

4.2 Natural Strategies for G𝐺𝑆𝑃

Given agent 𝑎 and the wCGS G𝐺𝑆𝑃 , we exemplify strategies for 𝑎 in

a repeated keyword auction. For readability, we omit the epistemic

operator 𝐾𝑎 from an epistemic condition 𝐾𝑎𝜑 when the satisfaction

value of 𝜑 is known by 𝑎 in all states. A common approach for an

advertiser is to assume that all the other bids will remain fixed in

the next round and target the slot that maximizes her utility at

current prices. This mechanism allows a range of bids that will

result in the same outcome from 𝑎’s perspective, so a number of

strategies are distinguished by the bid choice within this range.

Balanced bidding In the balanced bidding strategy (BB) [24], the

agent bids so as to be indifferent between successfully winning

the targeted slot at its current price, or winning a slightly more

desirable slot at her bid price. The natural strategy representing

balanced bidding for agent 𝑎 is denoted 𝐵𝐵𝑎 and is constructed in

three parts. First, include the guarded actions (𝐵𝐵𝑎,1 (𝑏), 𝑏) for each
action 𝑏 ∈ Ac. Second, include (𝐵𝐵𝑎,2 (𝑏, 𝑠), 𝑏) for each 𝑏 ∈ Ac and

1 < 𝑠 ≤ m. Third, the last guarded action is (⊤, 0). The condition
𝐵𝐵𝑎,1 (𝑏) refers to the case in which the slot maximizing 𝑎’s utility

is the top slot and 𝑏 is (𝜗𝑎 + p
1
)/2:

𝐵𝐵𝑎,1 (𝑏) := 𝑏 =
𝜗𝑎 + p

1

2

∧ (𝑎𝑟𝑔𝑚𝑎𝑥𝑠∈𝑆 (ut𝑎,𝑠 ) )
−1 = 1

Condition 𝐵𝐵𝑎,2 (𝑏, 𝑠) denotes the case in which the slot 𝑠 ≠ 1

maximizes 𝑎’s utility and 𝑏 is the bid value that is high enough to

force the prices paid by her competitors to rise, but not so high that

she would mind getting a higher slot at a price just below 𝑏.

𝐵𝐵𝑎,2 (𝑏, 𝑠) := ut𝑎,𝑠 = 𝜃𝑠−1 × (𝜗𝑎 − 𝑏) ∧ (𝑎𝑟𝑔𝑚𝑎𝑥𝑠′∈𝑆 (ut𝑎,𝑠′ ))−1 = 𝑠−1

Notice the guarded action 𝐵𝐵𝑎,2 (𝑏, 𝑠) is defined for 𝑠 > 1 since it

compares the utility with the one for 𝑠 − 1. The case 𝑠 = 1 is treated

by the guarded action 𝐵𝐵𝑎,1 (𝑏).



Given a valuation profile v = (v𝑎)𝑎∈Ag, let 𝜂𝑥 be the agent in

the 𝑥-th position of 𝑟𝑎𝑛𝑘v (that is, 𝜂𝑥 is the agent with 𝑥-th highest

valuation). We let 𝑏𝜂𝑥 (v) be a function in F defined as follows:

𝑏𝜂𝑥 (v) =

𝜃𝑥

𝜃𝑥−1
· 𝑏𝑟𝑎𝑛𝑘v (𝑥+1) (v) + (1 − 𝜃𝑥

𝜃𝑥−1
)v𝜂𝑥 if 𝑥 ≥ m + 1

v𝜂𝑥 if 2 ≤ 𝑥 ≤ m

If 𝑩𝑩 = (𝐵𝐵𝑎)𝑎∈Ag converges to the equilibrium with VCG

outcomes, the agent with the highest valuation bids any value

above 𝑏𝜂2 (v). The equilibrium bid for 𝑎 ≠ 𝜂1 is 𝑏𝑎 (v) [24]. When

there are two slots and all players update their bids according to

BB, the game converges to the equilibrium with VCG outcome.

However, this is not the case for more than two slots [24].

Proposition 3. For any initial state 𝑣𝜄 ∈ 𝑉𝜄 , state 𝑣 ∈ 𝑉 , and
1 < 𝑥 ≤ n, the following holds, where v = (ℓ (𝑣, 𝜗𝑎))𝑎∈Ag:

(1) If ⟦𝜑VCG (𝑩𝑩)⟧G𝐺𝑆𝑃 ,𝑖𝑟 (𝑣) = 1, then𝑎𝑐𝑡𝑚𝑎𝑡𝑐ℎ (𝑣,𝐵𝐵𝜂𝑥 ) = 𝑏𝜂𝑥 (v)
and 𝑎𝑐𝑡𝑚𝑎𝑡𝑐ℎ (𝑣,𝐵𝐵𝜂

1
) > 𝑏𝜂2 (v);

(2) If m = 2, then ⟦FG(𝜑VCG (𝑩𝑩))⟧G𝐺𝑆𝑃 ,𝑖𝑟 (𝑣𝜄 ) = 1;
(3) If m ≥ 3, then ⟦FG(𝜑VCG (𝑩𝑩))⟧G𝐺𝑆𝑃 ,𝑖𝑟 (𝑣𝜄 ) ≠ 1.

Restricted BB The restricted balanced bidding strategy (RBB) [24]

is a variation of BB in which the agent only targets slots that are

no better than her current slot. The natural strategy representing

RBB for agent 𝑎 is denoted 𝑅𝐵𝐵𝑎 and is constructed as follows.

First, include the guarded actions (𝑅𝐵𝐵𝑎,1 (𝑏), 𝑏) for each action

𝑏 ∈ Ac. Second, include (𝑅𝐵𝐵𝑎,2 (𝑏, 𝑠), 𝑏) for each 𝑏 ∈ Ac and

1 < 𝑠 ≤ m. Finally, the last guarded action is (⊤, 0). Let 𝑠𝑎 =

𝑚𝑖𝑛(m,∑𝑠′∈𝑆 𝑠
′ × all𝑎,𝑠′ ) be the slot assigned to agent 𝑎 or the last

slot if there is no such slot. Define 𝑅𝐵𝐵𝑎,1 (𝑏) and 𝑅𝐵𝐵𝑎,2 (𝑏, 𝑠):

𝑅𝐵𝐵𝑎,1 (𝑏) := 𝑏 =
𝜗𝑎 + p

1

2

∧ 𝑎𝑟𝑔𝑚𝑎𝑥𝑠∈𝑆&𝑠≥𝑠𝑎 (ut𝑎,𝑠 ) = 1

𝑅𝐵𝐵𝑎,2 (𝑏, 𝑠) := ut𝑎,𝑠 = 𝜃𝑠−1 × (𝜗𝑎 − 𝑏)
∧(𝑎𝑟𝑔𝑚𝑎𝑥𝑠′∈𝑆&𝑠′≥𝑠𝑎 (ut𝑎,𝑠′ ))

−1 = 𝑠−1

Similar to the results in [24], we have that if all agents follow

the restricted balanced-bidding strategy, the auction converge to

the VCG equilibrium outcome. RBB always converge:

Proposition 4. For any initial state 𝑣𝜄 ∈ 𝑉𝜄 , state 𝑣 ∈ 𝑉 , and
1 < 𝑥 ≤ n, the following holds, where v = (ℓ (𝑣, 𝜗𝑎))𝑎∈Ag:

(1) If ⟦𝜑VCG (𝑹𝑩𝑩)⟧G𝐺𝑆𝑃 ,𝑖𝑟 (𝑣) = 1, then 𝑎𝑐𝑡𝑚𝑎𝑡𝑐ℎ (𝑣,𝑅𝐵𝐵𝜂𝑥 ) =

𝑏𝜂𝑥 (v) and 𝑎𝑐𝑡𝑚𝑎𝑡𝑐ℎ (𝑣,𝑅𝐵𝐵𝜂
1
) > 𝑏𝜂2 (v);

(2) ⟦FG(𝜑VCG (𝑹𝑩𝑩))⟧G𝐺𝑆𝑃 ,𝑖𝑟 (𝑣𝜄 ) = 1.

Knowledge grounded RBB The knowledge grounded RBB strat-

egy (KBB) is a variation of RBB in which the agent uses her knowl-

edge about the valuation of the player currently at her target slot to

ground her bid value. The idea is to avoid bidding more than what

she knows her opponent valuates the slot. The natural strategy

representing KBB for agent 𝑎 is denoted 𝐾𝐵𝐵𝑎 is constructed in

three steps. First, include the guarded actions (𝐾𝐵𝐵𝑎,1 (𝑏, 𝑐, 𝑖), 𝑐) for
each 𝑏, 𝑐 ∈ Ac and agent 𝑖 ≠ 𝑎. Second, include (𝐾𝐵𝐵𝑎,2 (𝑏, 𝑠, 𝑐, 𝑖), 𝑐)
for each 𝑏, 𝑐 ∈ Ac, slot 1 < 𝑠 ≤ m and agent 𝑖 ≠ 𝑎. Finally, include

the guarded actions from 𝑅𝐵𝐵𝑎 . The conditions 𝐾𝐵𝐵𝑎,1 (𝑏, 𝑐, 𝑖) and
𝐾𝐵𝐵𝑎,2 (𝑏, 𝑠, 𝑐, 𝑖) are defined as follows:

𝐾𝐵𝐵𝑎,1 (𝑏, 𝑐, 𝑖) := 𝐾𝑎
(
𝑅𝐵𝐵𝑎,1 (𝑏) ∧ all𝑖,1 = 1 ∧ 𝑐 =𝑚𝑖𝑛(𝜗𝑖 , 𝑏)

)

𝐾𝐵𝐵𝑎,2 (𝑏, 𝑠, 𝑐, 𝑖) := 𝐾𝑎
(
𝑅𝐵𝐵𝑎,2 (𝑏, 𝑠) ∧ all𝑖,𝑠 = 1 ∧ 𝑐 =𝑚𝑖𝑛(𝜗𝑖 , 𝑏)

)
The prices under KBB are at most the same as under RBB:

Proposition 5. For any state 𝑣 ∈ 𝑉 , slot 𝑠 ∈ 𝑆 and agent 𝑎,
⟦(Ag,𝑲𝑩𝑩)p𝑠 ≤ (Ag, 𝑹𝑩𝑩)p𝑠⟧G𝐺𝑆𝑃 ,𝑖𝑟 (𝑣) = 1.

Remark 2. With natural strategies, we can easily construct an

strategy inwhich agent𝜂𝑥 plays according to𝑏𝜂𝑥 (v) (for 1 < 𝑥 ≤ n)
and agent 𝜂1 bids 𝑏𝜂2 + inc when she knows others’ valuations.

BB with recall Since BB may not converge to the VCG equilibrium

outcome due to loops on the slot allocation and prices, we construct

a strategy that behaves according to BB while there is no repetition

in the outcome and follows RBB otherwise. Hereafter, we show

that this strategy with recall prevents the loops that hinder the

convergence of BB. Define the set of weighted conditions Ψ =

{∧𝑠∈𝑆 (p𝑠 = 𝑝𝑟𝑠 ∧
∧

𝑎∈Ag all𝑎,𝑠 = 𝑎𝑙𝑎,𝑠 ) : 𝑝𝑟𝑠 ∈ Ac & 𝑎𝑙𝑎,𝑠 ∈ {0, 1}}.
The natural strategy representing balanced bidding with recall for

agent 𝑎 is denoted 𝐵𝐵𝑅𝑎 and is constructed as follows. First, include

the guarded actions (𝐵𝐵𝑅𝑎,1 (𝜓,𝑏), 𝑏) for each action 𝑏 ∈ Ac and

condition𝜓 ∈ Ψ. Second, include (𝐵𝐵𝑅𝑎,2 (𝜓,𝑏, 𝑠), 𝑏) for each𝜓 ∈ Ψ,
𝑏 ∈ Ac and 1 < 𝑠 ≤ m. Third, include (𝐵𝐵𝑅𝑎,3 (𝜓,𝑏), 𝑏) for each
action 𝑏 ∈ Ac. Fourth, include (𝐵𝐵𝑅𝑎,4 (𝑏, 𝑠), 𝑏) for each 𝑏 ∈ Ac and

1 < 𝑠 ≤ m. Finally, the last guarded action is (⊤*, 0).
Now we define each guarded condition in 𝐵𝐵𝑅𝑎 . If the current

allocation and payments have already happen in the past, 𝑎 plays

according to the restricted bidding strategy:

𝐵𝐵𝑅𝑎,1 (𝜓,𝑏) := ⊤* ·𝜓 · ⊤* · (𝜓 ∧ 𝑅𝐵𝐵𝑎,1 (𝑏))
𝐵𝐵𝑅𝑎,2 (𝜓,𝑏, 𝑠) := ⊤* ·𝜓 · ⊤* · (𝜓 ∧ 𝑅𝐵𝐵𝑎,2 (𝑏, 𝑠))

If there was no repetition on the payments and slot allocation,

she plays according to the balanced bidding strategy:

𝐵𝐵𝑅𝑎,3 (𝜓,𝑏) := ⊤* · 𝐵𝐵𝑎,1 (𝑏)
𝐵𝐵𝑅𝑎,4 (𝜓,𝑏, 𝑠) := ⊤* · 𝐵𝐵𝑎,2 (𝑏, 𝑠)

When all agents follow the strategy profile 𝑩𝑩𝑹 = (𝐵𝐵𝑅𝑎)𝑎∈Ag,
the game converges to the VCG equilibrium outcome.

Proposition 6. For any initial state 𝑣𝜄 ∈ 𝑉𝜄 , state 𝑣 ∈ 𝑉 , and
1 < 𝑥 ≤ n, the following holds, where v = (ℓ (𝑣, 𝜗𝑎))𝑎∈Ag:

(1) If ⟦𝜑VCG (𝑩𝑩𝑹)⟧G𝐺𝑆𝑃 ,𝑖𝑅 (𝑣) = 1, then 𝑎𝑐𝑡𝑚𝑎𝑡𝑐ℎ (𝑣,𝐵𝐵𝑅𝜂𝑥 ) =

𝑏𝜂𝑥 (v) and 𝑎𝑐𝑡𝑚𝑎𝑡𝑐ℎ (𝑣,𝐵𝐵𝑅𝜂
1
) > 𝑏𝜂2 (v);

(2) ⟦FG(𝜑VCG (𝑩𝑩𝑹))⟧G𝐺𝑆𝑃 ,𝑖𝑅 (𝑣𝜄 ) = 1.

When other agents are inactive (i.e. they repeat their last action),

if 𝐵𝐵𝑅𝑎 selects a different bid from the one assigned by 𝑅𝐵𝐵𝑎 , the

utility of 𝑎 in the next state is greater under 𝐵𝐵𝑅𝑎 .

Proposition 7. Let 𝜌 ∈ {𝑖𝑟, 𝑖𝑅} and 𝑣 = 𝛿 (𝑣 ′, 𝒄), for some state
𝑣 ′ ∈ 𝑉 and action profile 𝒄 = (𝑐)𝑎∈Ag. Given an agent 𝑎 ∈ Ag, let
𝜎
𝜌
−𝑎 = (𝜎𝜌

𝑖
)𝑖∈Ag−𝑎 be a 𝜌-strategy profile, where the strategy 𝜎𝜌

𝑖
of agent 𝑖 is such that 𝑎𝑐𝑡𝑚𝑎𝑡𝑐ℎ (𝑣,𝜎𝜌

𝑖
) = 𝑐𝑖 . If 𝑎𝑐𝑡𝑚𝑎𝑡𝑐ℎ (𝑣,𝐵𝐵𝑅𝑎 ) ≠

𝑎𝑐𝑡𝑚𝑎𝑡𝑐ℎ (𝑣,𝑅𝐵𝐵𝑎 ) , then ⟦(Ag−𝑎, 𝜎𝑖𝑅−𝑎) (𝑎, 𝐵𝐵𝑅𝑎)Xut𝑎⟧G𝐺𝑆𝑃 ,𝑖𝑅 (𝑣) >
⟦(Ag−𝑎, 𝜎𝑖𝑟−𝑎) (𝑎, 𝑅𝐵𝐵𝑎)Xut𝑎⟧G𝐺𝑆𝑃 ,𝑖𝑟 (𝑣).
Remark 3. In vindictive bidding [78], the agent bids as high as

possible to raise the payment of the advisor in the slot right below

hers. Since there is the risk that a change in other agents’ bids could

result in paying a higher price than expected, the player could use

memory to balance the use of aggressive bids.



5 EXPRESSIVITY
In relation to SL[F ]with combinatorial strategies, NatSL[F ] in-
troduces a new, broader class of human-friendly strategies and a

language for expressing properties of agents that use such strategies.

Clearly, strategies with quantitative conditions can be used to obtain

goals that would not be achievable otherwise. On the other hand,

bounded natural strategies of NatSL[F ] may not achieve some

goals that can be enforced with combinatorial strategies of SL[F ].
In this section, we show that the expressive power of NatSL[F ]
is incomparable to that of SL[F ]. In other words, there are prop-

erties of quantitative games with natural strategies that cannot

be equivalently translated to properties based on combinatorial

strategies, and vice versa. From this, we conclude that reasoning

about human-friendly strategies offers an inherently different view

of a multi-agent system from the “standard” one.

5.1 Expressive and Distinguishing Power
We first adapt the notions of distinguishing power and expressive

power to the quantitative case as follows
5
.

Definition 4 (Distinguishing power of real-valued logics). Let

L1 = (𝐿1, ⟦·⟧1) and L2 = (𝐿2, ⟦·⟧2) be two logical systems with

syntax 𝐿1, 𝐿2 and real-valued semantics ⟦·⟧
1
, ⟦·⟧

2
over the same

class of modelsM. We say that L2 is at least as distinguishing as

L1 (written: L1 ⪯𝑑 L2) iff for every pair of models 𝑀,𝑀′ ∈ M,

if there exists a formula 𝜑1 ∈ 𝐿1 such that ⟦𝜑1⟧𝑀1 ≠ ⟦𝜑1⟧𝑀
′

1
, then

there is also 𝜑2 ∈ 𝐿2 with ⟦𝜑2⟧𝑀2 ≠ ⟦𝜑2⟧𝑀
′

2
. In other words, if

there is a formula of L1 discerning𝑀 from𝑀′
, then there must be

also a formula of L2 doing the same.

Definition 5 (Expressive power of real-valued logics). L2 is at
least as expressive as L1 (written: L1 ⪯𝑒 L2) iff for every 𝜑1 ∈
𝐿1 there exists 𝜑2 ∈ 𝐿2 such that, for every model 𝑀 ∈ M, we

have ⟦𝜑1⟧𝑀1 = ⟦𝜑2⟧𝑀2 . In other words, every formula of L1 has a

translation in L2 that produces exactly the same truth values on

models inM.

It is easy to see that L1 ⪯𝑒 L2 implies L1 ⪯𝑑 L2. Thus, by

transposition, we also get that L1 ̸⪯𝑑 L2 implies L1 ̸⪯𝑒 L2.

In the remainder, M is the class of pointed weighted games, i.e.,

pairs (G, 𝑣) where G is a wCGS and 𝑣 is a state in G.

5.2 Expressivity of NatSL[F ] vs. SL[F ]
NatSL[F ] and SL[F ] are based on different notions of strategic

ability. The former refers to “natural” strategies, represented as

mappings from regular expressions over atomic propositions to

actions. The latter uses "combinatorial" strategies, represented by

mappings from sequences of states to actions. Each natural strat-

egy can be translated to a combinatorial one, but not vice versa.

Consequently, SL[F ] can express that a given coalition has a com-

binatorial strategy to achieve their goal (which is not expressible in

NatSL[F ]). On the other hand, NatSL[F ] allows expressing that
a winning natural strategy does not exist (which cannot be cap-

tured in SL[F ]). Now we show that NatSL[F ] allows to express

properties that cannot be captured in SL[F ], and vice versa.

Proposition 8. NatSL[F ] ̸⪯𝑑 SL[F ] in both 𝑖𝑟 and 𝑖𝑅 semantics.
5
Cf., e.g., [74] for a detailed discussion of standard notions of expressivity.
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Figure 1: Model G1. Its counterpart G′
1
is obtained by fixing p

to hold only in 𝑞1, 𝑞′
1
. Underscore fits any action label

Proof sketch. Consider model G1 in Figure 1, with agents

Ag = {1, 2}, actions Ac1 = {𝑎1, 𝑏1, 𝑐1, 𝑑1, 𝑒1} and Ac2 = {𝑎2, 𝑏2}
available at all positions, and propositions AP = {p,win}. Both
propositions are qualitative (that is, the propositions have only val-

ues in {-1,1}). For each proposition, the states where it evaluates to

1 are indicated; otherwise its truth value is assumed to be −1. The
outgoing transitions in 𝑞′

1
, 𝑞′′

1
(resp. 𝑞′

2
) are exact copies of those at

𝑞1 (resp. 𝑞2). Moreover, model G′
1
is obtained by fixing proposition

p to hold only in 𝑞1, 𝑞
′
1
, but not in 𝑞′′

1
. As all the propositions are

qualitative, formulas of NatSL[F ] and SL[F ] evaluate to −1 or 1.
Note also that the sets of 𝑖𝑟 and 𝑖𝑅 strategies in each model coincide,

so we can concentrate on the 𝑖𝑟 case w.l.o.g.

Let G†𝜎 denote the model obtained by fixing the (memoryless)

strategy 𝜎 in G. In order to prove that (G1, 𝑞0) and (G′
1
, 𝑞0) satisfy

the same formulas of SL[F ], it suffices to observe that:

(1) For every strategy 𝜎1 of agent 1 in G1, there is 𝜎
′
1
in G′

1
such

that agent 2 has the same strategic abilities in (G′
1
†𝜎1, 𝑞0)

and (G′
1
†𝜎1, 𝑞0) (and vice versa). For instance, playing 𝑐1 in

G obtains the same abilities of 1 as playing 𝑎1 in G′
.

(2) Analogously for strategies of agent 2, e.g., strategy𝑎2𝑎2𝑎2𝑏2𝑏2
in G1 can be simulated by strategy 𝑎2𝑎2𝑏2𝑏2𝑏2 in G′

1
.

On the other hand, the formula ∃𝑠≤2
2

∀𝑠≤1
1

(1, 𝑠1) (2, 𝑠2)Fwin of

NatSL[F ] holds in (G1, 𝑞0), but not in (G′
1
, 𝑞0). The winning nat-

ural strategy for agent 2 in G1 is

(
(⊤∗p, 𝑎2), (⊤∗, 𝑏2)

)
; clearly, it

does not succeed in G′
1
. □

Proposition 9. SL[F ] ̸⪯𝑑 NatSL[F ] in both 𝑖𝑟 and 𝑖𝑅 semantics.

Proof sketch. Consider models G2 and G′
2
in Figure 2. They

have isomorphic action/transition structures, the only difference

being the indistinguishability of states 𝑞1, 𝑞2 in G′
2
(but not in G2).

Since the two states have the same valuations of propositions, each

natural strategy must specify the same decision in 𝑞1, 𝑞2. Thus, both

players have exactly the same available natural strategies in G2 and

G′
2
, and hence (G2, 𝑞0) and (G′

2
, 𝑞0) produce the same valuations

of NatSL[F ] formulas.

On the other hand, we have that∃𝑠2∀𝑠1 (1, 𝑠1) (2, 𝑠2)Fwin of SL[F ]
holds in (G2, 𝑞0), but not in (G′

2
, 𝑞0). □
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Figure 2: Models G2 (left) and G′
2
(right)

The following is an immediate consequence.

Theorem 1. NatSL[F ] and SL[F ] have incomparable distinguish-
ing power over the class of pointed wCGS (in both 𝑖𝑟 and 𝑖𝑅 semantics).

Corollary 2. NatSL[F ] and SL[F ] have incomparable expressive
power over the class of pointed wCGS (in both 𝑖𝑟 and 𝑖𝑅 semantics).

6 MODEL CHECKING
In this section we show that the model checking problem for

NatSL[F ] with imperfect information is no harder than model

checking LTL or classic SL with memoryless agents. First of all, we

define the quantitative model-checking problem for NatSL[F ].
Definition 6. Given 𝜌 ∈ {𝑖𝑟, 𝑖𝑅}, the model-checking problem for

NatSL[F ] consists in deciding, for a given sentence 𝜑 , wCGS G,
state 𝑣 ∈ 𝑉 and predicate 𝑃 ⊆ [−1; 1], whether ⟦𝜑⟧G,𝜌 (𝑣) ∈ 𝑃 .

Now, we have all the ingredients to prove the following result.

Theorem 2. Assuming that functions in F can be computed in poly-
nomial space, model checking NatSL[F ] with imperfect information,
natural strategies with recall, and 𝑘 as parameter of the problem is
Pspace-complete.

Proof. For the lower-bound we recall that LTL[F ] model check-

ing is Pspace-complete [7]. For the upper-bound, to verify that a

given NatSL[F ] formula 𝜑 is satisfied over a wCGS G at a state

𝑣 ∈ 𝑉 under assignments 𝜒 over uniform natural strategies with re-

call, we make use of a recursive function as is done in [26]. We start

by showing that each recursive call only needs at most polynomial

space. First, observe that each assignment 𝜒 has a strategy 𝑠𝑎 for

each agent 𝑎 ∈ 𝐴𝑔 6
. We know that each strategy 𝑠𝑎 that can be as-

signed to agent 𝑎 is bounded, andwe have that 𝑐𝑜𝑚𝑝𝑙 (𝑠𝑎) ≤ 𝑘 . Thus,
each strategy can be stored in𝑂 (𝑘 · |𝐴𝑐𝑡 |) and, by consequence, any
assignment can be stored in space𝑂 (( |𝐴𝑔 | · |free(𝜑) |) · (𝑘 · |𝐴𝑐𝑡 |)).
Now, we can analyse the recursive function. For the base case,

⟦𝑝⟧G,𝜌𝜒 (𝑣) can be computed in constant space via the weight func-

tion. For strategy quantification ⟦∃𝑠≤𝑘𝑎 . 𝜑⟧G,𝜌𝜒 (𝑣), besides the re-
cursive call to ⟦𝜑⟧G,𝜌

𝜒 [𝑠 ↦→𝜎 ] (𝑣) we need space 𝑂 ( |𝑘 | · |Ac|) to store

the current strategy and the current maximum value computed. For

⟦𝑓 (𝜑1, ..., 𝜑𝑚)⟧G,𝜌𝜒 (𝑣), by assumption 𝑓 is computed in polynomial

6
Note that, as defined in Section 3, we consider only complete assignments. Thus, we

can assume that a strategy is assigned for each agent.

space. For ⟦X𝜑⟧G,𝜌𝜒 (𝑣), we only need to observe that the next state

in Out(𝑣, 𝜒) is computed in constant space. Finally, we detail how

⟦𝜑1U𝜑2⟧G,𝜌𝜒 (𝑣) is computed. Let 𝜋 = Out(𝑣, 𝜒). SinceG has finitely

many states, there exist two indices 𝑔 < 𝑙 such that 𝜋𝑔 = 𝜋𝑙 , and

since strategies are bounded by 𝑘 , the suffix of 𝜋 starting at index 𝑙

is equal to the suffix starting at index 𝑔. So there exist 𝜌1 = 𝑣0 ...𝑣𝑔−1
and 𝜌2 = 𝑣𝑔 ...𝑣𝑙−1 such that 𝜋 = 𝜌1 · 𝜌𝜔

2
. It follows that

⟦𝜑1U𝜑2⟧G,𝜌𝜒 (𝑣) = sup

𝑖≥0
min

(
⟦𝜑2⟧G,𝜌𝜒 (𝜋𝑖 ), min

0≤ 𝑗<𝑖
⟦𝜑1⟧G,𝜌𝜒 (𝜋 𝑗 )

)
= max

0≤𝑖<𝑙
min

(
⟦𝜑2⟧G,𝜌𝜒 (𝜋𝑖 ), min

0≤ 𝑗<𝑖
⟦𝜑1⟧G,𝜌𝜒 (𝜋 𝑗 )

)
This can be computed by a while loop that increases 𝑖 , computes

⟦𝜑2⟧G,𝜌𝜒 (𝜋𝑖 ) andmin0≤ 𝑗<𝑖⟦𝜑1⟧G,𝜌𝜒 (𝜋 𝑗 ), theirminimum, and records

the result if it is bigger than the previous maximum. This requires

to store the current value of min0≤ 𝑗<𝑖⟦𝜑1⟧G,𝜌𝜒 (𝜋𝑖 ), the current

maximum, and the list of states already visited, which are at most

𝑘 · |𝑉 |. Finally, the number of nested recursive calls is at most |𝜑 |,
so the total space needed is bounded by |𝜑 | times a polynomial in

the size of the input, and is thus polynomial. □

Since memoryless natural strategies are a special case of natural

strategies with recall, we obtain the following result.

Corollary 3. Assuming that functions in F can be computed in
polynomial space, model checking NatSL[F ] with imperfect infor-
mation, memoryless natural strategies, and 𝑘 as parameter of the
problem is Pspace-complete.

7 CONCLUSION
In this work we have introduced Natural Strategy Logic with quan-

titative semantics and imperfect information (NatSL[F ]) for rea-
soning about strategic ability in auctions. NatSL[F ] provides a
tool for mechanism design and offers a new perspective for formal

verification and design of novel mechanisms and strategies. We

demonstrated the usefulness of our approach by modelling and

evaluating strategies for repeated keyword auctions.

In terms of technical results, we proved that the model checking

problem for NatSL[F ] is Pspace-complete, that is, no harder than

model checking for the much less expressive language of quantita-

tive LTL (LTL[F ]). We also showed that NatSL[F ] has incompara-

ble distinguishing and expressive power to SL[F ]. This means that

the characterizations based on simple bounded strategies offer an

inherently different view of auctions and mechanism design from

characterizations using combinatorial strategies of arbitrary com-

plexity. Amazingly, this aspect has never been studied for natural

strategies, not even for the original proposal of NatATL [46].

We consider several directions for future work. First, a proba-

bilistic extension of Strategy Logic [9] would allow handling mech-

anisms in stochastic settings with mixed strategies. Another direc-

tion is to investigate the use of strategies with recall for learning

other players’ valuations based on their behaviour. Finally, the

implementation of a model checker for NatSL[F ] will enable the
empirical evaluation of auctions with natural strategies.
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