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Abstract Alternating-time temporal logic (ATL) is a modal logic that allows to rea-
son about agents’ abilities in game-like scenarios. Semantic variants of ATL are usu-
ally built upon different assumptions about the kind of game that is played, including
capabilities of agents (perfect vs. imperfect information, perfect vs. imperfect mem-
ory, etc.). ATL has been studied extensively in previous years; however, most of the
research focused on model checking. Studies of other decision problems (e.g., satisfi-
ability) and formal meta-properties of the logic (like axiomatization or expressivity)
have been relatively scarce, and mostly limited to the basic variant of ATL where
agents possess perfect information and perfect memory. In particular, a comparison
between different semantic variants of the logic is largely left untouched.

In this paper, we show that different semantics of ability in ATL give rise to
different validity sets. The issue is important for several reasons. First, many logi-
cians identify a logic with its set of true sentences. As a consequence, we prove that
different notions of ability induce different strategic logics. Secondly, we show that
different concepts of ability induce different general properties of games. Thirdly,
the study can be seen as the first systematic step towards satisfiability-checking algo-
rithms for ATL with imperfect information. We introduce sophisticated unfoldings
of models and prove invariance results that are an important technical contribution to
formal analysis of strategic logics.
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1 Introduction

Alternating-time temporal logic (ATL) [7,9] is a temporal logic that incorporates
some basic game theoretic notions. In ATL we can for instance express that a group
of agents is able to bring about ϕ, i.e., the agents in the group are able to enforce that
property ϕ holds whatever the other agents might do. Semantic variants of ATL are
usually derived from different assumptions about agents’ capabilities. Can the agents
“see” the current state of the system, or only a part of it? Can they memorize the whole
history of observations in the game? Is it enough that they have a way of enforcing
the required temporal property “objectively”, or should they be able to come up with
the right strategy on their own? Different answers to these questions induce different
semantics of strategic ability, and they clearly give rise to different analyses of a
given game model. However, it is not entirely clear to what extent they give rise
to different logics. One natural question that arises in this respect is whether these
semantic variants generate different sets of valid (and, dually, satisfiable) sentences.
In this paper, we settle the issue and show that most “classical” semantic variants of
ATL are indeed different, and we characterize the relationship between their sets of
validities.

The question is important for several reasons. First, many logicians identify a
logic with the set of sentences that are true in the logic; a semantics is just a possible
way of defining the set, alternative to an axiomatic inference system. Thus, by com-
paring validity sets we compare the respective logics in the traditional sense. Sec-
ondly, validities of ATL capture general properties of games under consideration:
if, e.g., two variants of ATL generate the same valid sentences then the underly-
ing notions of ability induce the same kind of games. All the variants studied here
are defined over the same class of models (imperfect information concurrent game
structures) that generalizes extensive form games. The difference between games
“induced” by different semantics lies in the available strategies and the winning con-
ditions for them.

Thirdly, the satisfiability problem for ATL, though far less studied than model
checking, is not necessarily less important. While model checking ATL can be seen
as the logical analogue of game solving, satisfiability corresponds naturally to mech-
anism design. A systematic study on the abstract level is the first step towards algo-
rithms that solve the problem.

Our results are relevant also outside the logical context. As already mentioned,
by looking at validity sets we study general properties of strategic ability under vari-
ous semantic assumptions. Ultimately, we show that what agents can achieve is more
sensitive to the strategic model of an agent (and a precise notion of achievement)
than it was generally realized. No less importantly, our study reveals that some nat-
ural properties – usually taken for granted when reasoning about temporal evolution
of systems – may cease to be universally true if we change the strategic setting. Ex-
amples include fixpoint characterizations of temporal/strategic operators (that enable
incremental synthesis and iterative execution of strategies) and the duality between
necessary and obtainable outcomes in a game. The former kind of properties is espe-
cially important for practical purposes, since fixpoint equivalences provide the basis
for most model checking and satisfiability checking algorithms. Finally, we intro-
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duce sophisticated unfoldings of models to show invariance results with respect to
memoryless and perfect recall strategies. The unfoldings form an important technical
contribution of this article. We believe that their impact goes beyond ATL, as they
can probably be applied to other strategy logics. For example, it would be interesting
to see which unfoldings preserve the truth values of formulae when imperfect infor-
mation is combined with strategic commitment [66], or when explicit quantification
over strategies is allowed [20,51,50].

The paper is structured as follows. We begin by presenting the relevant variants
of ATL in Sections 2 and 3. Then we define several unfoldings of ATL models, and
show that they preserve truth of ATL formulae under appropriate assumptions in Sec-
tion 4. This is the most technical part of the paper, and readers interested only in the
main conceptual contribution are advised to skip it and proceed to the next section. In
Section 5, we show the formal relationships between validity sets for different vari-
ants of ATL. Summary of the main results and some conclusions are presented in
Section 6.

About this article. Preliminary versions of this paper appeared in [40,41]. The jour-
nal version adds proofs, new results, examples, and more extensive discussions. This
applies in particular to Section 4 where we stress the importance of tree-like unfold-
ings and provide a sophisticated construction as well as full proofs. We have also
extended the results from [40,41] (formulated mainly for the restricted language of
ATL) to the more general language of ATL∗.

1.1 Related Work

ATL has been studied extensively in the last 15 years. The research can be roughly
divided into the computational and conceptual strands. The former has been focused
on the way in which ATL and its extensions can be used for verification of multi-
agent systems, in particular what is the complexity of model checking, and how one
can overcome the inherent difficulties. An interested reader is referred to [13] for an
overview, and to [9,57,59,42,48,17,24,20] for more specific results; some attempts
at taming the complexity were proposed e.g. in [46,38,23,47,18]. Studies on other
decision problems than model checking were much less frequent, though satisfiability
of the basic variant of ATL has been investigated in [31,64,54,30].

The conceptual strand originally emerged in quest of the “right” semantics for
strategies under uncertainty. ATL was combined with epistemic logic [60,61,1,62,
2,39], and several semantic variants were defined that match various possible inter-
pretations of ability [35,45,57,43,39]. Moreover, many conceptual extensions have
been considered, e.g., with explicit reasoning about strategies, rationality assump-
tions and solution concepts [63,58,65,19,20], agents with bounded resources [5,14,
6,15], coalition formation and negotiation [12], opponent modeling and action in
stochastic environments [37,16,56,55] and reasoning about irrevocable plans and in-
terplay between strategies of different agents [3,11].

In the rich literature on the conceptual virtues of alternating-time temporal logic,
formal analysis is relatively scarce. Axiomatization of the basic variant of ATL was
proposed in [31], and its expressivity was addressed in [9,48]. Axiomatization of
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a particular variant of imperfect information was proposed in [32]. For comparative
studies, invariance of the basic semantics with respect to a couple of classes of models
was proven in [27], and the correspondence between abstract and concrete models of
strategic logics was the object of study in [52,29,28]. Surprisingly, relationships be-
tween the “classical” semantic variants of ATL (as defined e.g. in [57]) have not yet
been studied, though analogous results exist that compare more sophisticated varia-
tions to a more standard variant (cf. [36] for undominated play, [3] for irrevocable
strategies, [4] for agents with bounded memory, and [18] for recomputable strategies
under uncertainty). That means in particular that formal properties of strategic ability
under imperfect information are largely left untouched. We are trying to fill in the
gap, and start a more systematic charting of the landscape.

2 Reasoning about Strategic Abilities

Alternating-time temporal logic ATL [7,9] is a temporal logic that incorporates some
basic game-theoretical notions. Essentially, ATL generalizes the branching time logic
CTL [21] by replacing path quantifiers E,A with strategic modalities 〈〈A〉〉. Infor-
mally, 〈〈A〉〉γ expresses that the group of agents A has a collective strategy to enforce
temporal property γ. ATL formulae include temporal operators: “ g” (“in the next
state”), “2” (“always from now on”), “3” (“now or sometime in the future”), and
U (“until”). Since ATL offers no way of representing agents’ uncertainty in its mod-
els, and no operators to refer to agents’ (lack of) knowledge in the object language,
it allows to reason only about abilities of agents with perfect information about the
current global state of the system.

2.1 Syntax of ATL

In the rest of the paper we assume that Π is a nonempty set of proposition symbols
and Agt a nonempty and finite set of agents. Alternating-time temporal logic comes
in several syntactic variants, of which ATL∗ is the broadest.

Definition 1 (Language of ATL∗) The language of ATL∗ is given by formulae ϕ
generated by the grammar below, where A ⊆ Agt is a set of agents, and p ∈ Π is an
atomic proposition:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ,
γ ::= ϕ | ¬γ | γ ∧ γ | gγ | γ U γ.

The “sometime” and “always” operators can be defined as 3γ ≡ >U γ and 2γ ≡
¬3¬γ.

Formulae ϕ are called state formulae, and γ path formulae of ATL∗. A path
formula is simple if it consists of a temporal operator followed immediately by a
state subformula and in the case of “until” the operator is also immediately preceded
by a state subformula. In other words, temporal operators have to be applied to state
subformulae.
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The best known syntactic variant of alternating time temporal logic is ATL in
which every occurrence of a strategic modality is immediately coupled with a tempo-
ral operator, i.e., we have coupled operators of the form 〈〈A〉〉 g, 〈〈A〉〉2, and 〈〈A〉〉U .
The language of ATL+ sits between ATL∗ and ATL: it allows strategic modalities
to be followed by a Boolean combination of simple temporal subformulae.

Formally, formulae of ATL are defined be the following grammar:1

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 gϕ | 〈〈A〉〉2ϕ | 〈〈A〉〉ϕU ϕ
and ATL+ formulae by:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ, γ ::= ¬γ | γ ∧ γ | gϕ | ϕU ϕ.

Example 1 The ATL formula 〈〈jamesbond, octopussy〉〉3kiss says that James Bond
and Octopussy can eventually kiss, no matter how the other agents act. On the other
hand, 〈〈jamesbond, jaws〉〉(2¬crash ∧ 3land) (James Bond and Jaws can prevent
the space ship from crashing and make it eventually land) is a formula of ATL+ but
not ATL. Finally, 〈〈jamesbond〉〉23deadBlofeld∧¬〈〈jamesbond〉〉32deadBlofeld
is an ATL∗ formula (which clearly belongs to neither ATL nor ATL+) which states
that agent 007 can kill Ernst Stavro Blofeld infinitely many times, but he cannot kill
Blofeld once and forever.

2.2 Basic Models of ATL

In [9], the semantics of alternating-time temporal logic is defined over a variant of
transition systems where transitions are labeled with combinations of actions, one per
agent.

Definition 2 (Concurrent game structure) A concurrent game structure2 (CGS)
is a tuple M = 〈Agt,St , Π, π,Act, d, o〉 which includes a nonempty finite set of
all agents Agt = {1, . . . , k}, a nonempty (possibly infinite) set of states St , a set
of atomic propositions Π and their valuation π : Π → 2St , and a nonempty set
of (atomic) actions Act . Function d : Agt × St → 2Act defines nonempty sets of
actions available to agents at each state, and o is a (deterministic) transition function
that assigns the outcome state q′ = o(q, α1, . . . , αk) to state q and a tuple of actions
αi ∈ d(i, q) that can be executed by Agt in q.

Thus, we assume that all the agents execute their actions synchronously; the com-
bination of the actions, together with the current state, determines the next transition
of the system.

In the rest of the paper, we will write di(q) instead of d(i, q), and we will denote
the set of collective choice of group A at state q by dA(q) =

∏
i∈A di(q).

We will sometimes use the term pointed CGS for a pair (M, q) of a concurrent
game structure and a state in it.

1 Note that “always” is not definable from “until” in ATL [48], and has to be added explicitly to the
language.

2 We would like to note that it is essential for this work that we do not require a finite set of states or
actions. We give a more detailed discussion in Section 2.3.
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Fig. 1 Two robots and a carriage: concurrent game structure M0

Definition 3 (Path) A path λ = q0q1q2 . . . is an infinite sequence of states such that
there is a transition between each qi, qi+1. We use λ[i] to denote the ith position on
path λ (starting from i = 0) and λ[i,∞] to denote the subpath of λ starting from i.
The set of paths starting in q is denoted by ΛM(q).

Example 2 (Robots and Carriage) Consider the scenario depicted in Figure 1. Two
robots push a carriage from opposite sides. As a result, the carriage can move clock-
wise or anticlockwise, or it can remain in the same place. We assume that each robot
can either push (action push) or refrain from pushing (action wait). Moreover, they
both use the same force when pushing. Thus, if the robots push simultaneously or
wait simultaneously, the carriage does not move. When only one of the robots is
pushing, the carriage moves accordingly.

To make our model of the domain discrete, we identify 3 different positions of the
carriage, and associate them with states q0, q1, and q2. We label the states with propo-
sitions pos0, pos1, pos2, respectively, to allow for referring to the current position of
the carriage in the object language.

2.3 Finite vs. Infinite CGS

In our definition of CGS (Def. 2.2) we have not put up any requirement of finiteness
with respect to the set of states and actions. The only requirement is that the set of
agents must be finite. In particular, we allow for infinitely many states in a model; we
also allow for infinitely branching models. In this section we shall discuss this choice
in more detail.

We begin by reviewing the literature and showing that both types of CGS – finite
and infinite ones – have been considered by other authors. The semantics of ATL in
concurrent game models was originally proposed for finite structures only [9].3 Many
follow-up papers also adopted the assumption of finite models, for example [43,57]

3 An interested reader may observe that the preliminary versions of the semantics (in alternating transi-
tion systems) did not assume models explicitly to be finite [7,8]. However, the authors de facto considered
only finite models since they were solely interested in the model checking problem, where the input must
be finite.
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that studied variants of ATL with imperfect information, [11] which extended ATL
with persistent strategies, in [48] the expressive power of ATL is investigated, etc.

On the other hand, other authors did not restrict their analysis to the finite case,
beginning with the work on coalition logic [52,53], through comparative studies of
different semantics of ATL [26,27], the interplay between knowledge and strate-
gies [2,39], strategic play in the presence of intentions and commitment [44,3], and
so on. Also, different formalisms extending ATL∗ with explicit quantification over
strategies follow different assumptions: on one hand, the strategy logic by Chatter-
jee et al. [20] assumes models to be finite; on the other, the strategy logic recently
proposed by Mogavero et al. [51,51] only requires states and actions to be countable.

As we have already stated, we assume neither St nor Act to be finite (or even
enumerable). How does that affect our work? First of all, for the new results in this
article, it is especially important that some existing technical results can be applied
to infinite models. This concerns in particular the axiomatization of ATL from [31]
which was shown sound and complete for finite as well as infinite concurrent game
models. To be more precise, the authors of [31] allow for infinitely many states, but
assume that, at any state, there are only finally many outgoing transitions. However,
their results extend to the case of infinite branching in a straightforward way. We use
the axiomatization as a source of “standard” validities (like the fixpoint characteriza-
tion for 〈〈A〉〉3), and to show that the semantics of “perfect information memoryless
ATL” and “perfect information perfect recall ATL” coincide also for infinite mod-
els (Proposition 1). Moreover, the notion of model equivalence for ATL (alternating
bisimulation alias strategic bisimulation), while originally proposed for finite models
only [10], was extended to the unrestricted case and proved correct in [3]. We use and
extend the concept to prove invariance results for tree-like unfoldings in Section 4.

Secondly, all the results proposed in this paper are proved to hold if the semantics
of ATL and ATL∗ does not restrict the class of models to finite ones. More precisely,
it may be possible that one of our inclusion results between the validity sets of two
logics, Val(L1) ⊆ Val(L2), requires the existence of an infinite model. This does
not mean that the theorems that we present do not hold in the class of finite models.
The latter issue, albeit interesting, is outside of the scope of the paper. Essentially,
showing that our results hold in the finite semantics would require establishing finite
model properties for the logics that we consider. To the best of our knowledge, such
properties have only been proven for the “perfect information/perfect recall” variant
of ATL [31] and ATL∗ [54]. Proving (or disproving) the finite model property for the
other variants of ATL/ATL∗ is undoubtedly important, and we would like to study it
further in the future.4

In summary:

1. Our inclusion results rely on the fact that we define the semantics of ATL and
ATL∗ in both finite and infinite models; and

2. whenever a finite model property holds for two logics under consideration, our
results comparing the two logics apply also when the semantics is restricted to
finite models.

4 We thank an anonymous JAAMAS reviewer for suggesting this.
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2.4 Strategies and Abilities in Basic Semantics of ATL

ATL modalities refer to the outcome of strategic play for a given coalition. Following
the tradition of extensive form games in game theory, a strategy of agent a is under-
stood as a plan that specifies what a is going to do in each situation. In the standard
version of ATL [7,9], strategies are represented by functions sa : St+ → Act. Thus,
it is implicitly assumed that agents have perfect information (at each moment, they
can precisely recognize the current global state of the system) and perfect recall (they
can base their choices on the whole history of the game so far, not just the last state).
Alternatively, one can assume that agents have no memory beyond what is already
contained in the current state, which gives rise to the notion of memoryless (or po-
sitional) strategy. As we explain more systematically in Section 3, we will use the
notation from [57] where i (resp. I) stands for imperfect (resp. perfect) information,
and r (resp. R) for imperfect (resp. perfect) recall.

Definition 4 (IR- and Ir-strategies) Let M be a CGS over states St and actions
Act . A perfect information perfect recall strategy for agent a in M (IR-strategy in
short) is a function sa : St+ → Act such that sa(q0q1 . . . qn) ∈ da(qn). The set of
such strategies is denoted by ΣIR

a .
A perfect information memoryless strategy for agent a in M (Ir-strategy in short)

is a function sa : St → Act where sa(q) ∈ da(q). The set of such strategies is
denoted by ΣIr

a .
A collective strategy for a group of agents A = {a1, . . . , ar} is simply a tuple

of individual strategies sA = 〈sa1 , . . . , sar 〉. The set of such strategies is denoted by
ΣIR
A (for IR strategies) and ΣIr

A (for Ir strategies, respectively).5

The “outcome” function out(q, sA) returns the set of all paths that may occur
when agents A execute strategy sA from state q onward. Let a ∈ A; by sA|a, we
denote agent a’s part sa of the collective strategy sA.

Definition 5 (Outcome) The outcome outM(q, sA) of an IR-strategy sA from state
q in model M is the set of all paths λ = q0q1q2 . . . such that q0 = q and for each
i = 1, 2, . . . there exists a tuple of agents’ decisions 〈αi−1a1 , . . . , αi−1ak

〉 such that: (i)
αi−1a ∈ da(qi−1) for every a ∈ Agt, (ii) αi−1a = sA|a(q0q1 . . . qi−1) for every a ∈ A,
and (iii) o(qi−1, αi−1a1 , . . . , αi−1ak

) = qi.
The outcome outM(q, sA) of an Ir-strategy sA is defined analogously but

sA|a(q0q1 . . . qi−1) is replaced by sA|a(qi−1).
Often, we will omit the subscript “M” if it is clear from the context.

Let M be a CGS, q a state, and λ a path in M. Now, the semantics of ATL∗ and
its sublanguages can be defined by the following clauses [9]:

M, q |= p iff q ∈ π(p), for p ∈ Π;
M, q |= ¬ϕ iff M, q 6|= ϕ;

5 As commonly done we assume an implicit order on the elements in Agt allowing to conveniently
represent collective strategies as tuples. In our setting where agents are represented by natural numbers the
order is apparent. In the general case, a collective strategy for A is a function that associates individual
strategies to the agents in A.
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M, q |= ϕ1 ∧ ϕ2 iff M, q |= ϕ1 and M, q |= ϕ2;

M, q |= 〈〈A〉〉γ iff there is an IR-strategy sA for agents A such that for each path
λ ∈ out(q, sA), we have M, λ |= γ.

M, λ |= ϕ iff M, λ[0] |= ϕ;
M, λ |= ¬γ iff M, λ 6|= γ;
M, λ |= γ1 ∧ γ2 iff M, λ |= γ1 and M, λ |= γ2;
M, λ |= gγ iff M, λ[1,∞] |= γ; and
M, λ |= γ1 U γ2 iff there is an i ∈ N0 such that M, λ[i,∞] |= γ2 and M, λ[j,∞] |=
γ1 for all 0 ≤ j < i.

Example 3 (Robots and Carriage, ctd.) Since the outcome of each robot’s action
depends on the current action of the other robot, no robot can make sure that the
carriage moves to any particular position. So, we have for example that M0, q0 |=
¬〈〈1〉〉3pos1. On the other hand, the robots can cooperate to move the carriage. For
instance, it holds that M0, q0 |= 〈〈1, 2〉〉3pos1 (example strategy: robot 1 always
pushes and robot 2 always waits). Moreover, single robots can play strategically to
avoid the carriage entering a particular position:M0, q0 |= 〈〈1〉〉2¬pos1 (the strategy:
wait in q0 and push in q2).

Note that the semantics does not address the issue of coordination between mem-
bers of the coalition [25,34]: if there exist several successful joint strategies for A,
the agents in A are assumed to somehow choose between them.

Finally, validity and satisfiability in ATL are defined in the standard way.

Definition 6 (Validity and satisfiability) Formula ϕ is valid in model M iff it holds
in every state of M, i.e., M, q |= ϕ for every q ∈ StM. The formula is valid in a class
of models C iff it is valid in every model from C.

Dually, ϕ is satisfiable in a class of models C iff there exists M ∈ C and a state q
in M such that M, q |= ϕ.

2.5 Some Important Validites

We recall that the following fixpoint properties are valid in the basic semantics of
ATL presented in Section 2.4:

〈〈A〉〉2ϕ↔ ϕ ∧ 〈〈A〉〉 g〈〈A〉〉2ϕ
〈〈A〉〉3ϕ↔ ϕ ∨ 〈〈A〉〉 g〈〈A〉〉3ϕ

〈〈A〉〉ϕ1 U ϕ2 ↔ ϕ2 ∨ ϕ1 ∧ 〈〈A〉〉 g〈〈A〉〉ϕ1 U ϕ2.

Validity of these formulae was demonstrated in [9] for finite models, and in [31] for
finitely branching models (with possibly infinitely many states). It is easy to check
that the argument extends to models with infinite branching.

The intuitive meaning of the fixpoint equivalences is that planning for a long-
term goal (like achieving ϕ eventually, or maintaining ϕ persistently) can be decom-
posed into finding a good opening move and a suitable follow-up. Such properties
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are crucial for building model checking and satisfiability checking algorithms, and in
particular they allow for incremental iterative synthesis of strategies.

Moreover, the path quantifiers A,E of CTL can be expressed in the standard
semantics of ATL with 〈〈∅〉〉, 〈〈Agt〉〉 respectively. Again, checking this is routine,
even for models with infinitely many states and infinite branching. As a consequence,
the CTL duality axioms can be rewritten in ATL, and become validities in the basic
semantics:

¬〈〈Agt〉〉 gϕ↔ 〈〈∅〉〉 g¬ϕ
¬〈〈Agt〉〉3ϕ↔ 〈〈∅〉〉2¬ϕ,
¬〈〈∅〉〉3ϕ↔ 〈〈Agt〉〉2¬ϕ.

We observe that all the properties presented in this subsection are schemes, rather
than single formulae, and allow for uniform substitution. More precisely, ϕ can be
replaced by any state formula of ATL, and the resulting formula is a validity of ATL.
Moreover, ϕ in the duality axioms can be replaced by any state or path formula of
ATL∗, and the resulting formula is a validity of ATL∗.

3 Semantic Variants: Uncertainty and Recall

As we already pointed out in Section 2.4, one can distinguish between two types of
strategies: an agent may base its decision on the current state or on the whole his-
tory of states that have occurred. Also, the agent may have complete or incomplete
knowledge about the current global state of the system throughout the game. A num-
ber of semantic variations have been proposed for ATL, e.g. [35,45,57,43,39,3,4].
In this paper, we study the “canonical” variants as proposed in [57]. There, a natural
taxonomy of four strategy types was introduced and labeled as follows: R (resp. r)
stands for perfect (resp. imperfect) recall, and I (resp. i) refers to perfect (resp. im-
perfect) information. The semantics of ATL, ATL+ and ATL∗ can be parameterized
with the strategy type – yielding four different semantic variants of the logic, labeled
accordingly (ATLIR, ATLIr, ATLiR, ATLir, etc.).

In this paper, we extend the taxonomy with a distinction between objective and
subjective abilities under imperfect information, denoted by io and is, respectively; the
distinction can be traced back to [35,45,43,39]. Intuitively, subjective ability to bring
about γ means that the agents are able to both identify and execute the right strategy,
i.e., they not only can play to achieve γ; they also know how to do it. Objective
ability is a weaker property: the agents could execute the right strategy, but they do
not necessarily know which one works out, and they might be even unaware that
such a strategy exists. Examples of agents who have objective but not subjective
ability to achieve their goals include: garbage collecting robots that execute a strategy
(program) provided by the producer, a Master’s student executing a strategy hinted
by his/her supervisor, etc.

The distinction between perfect and imperfect recall (R vs. r) is reflected in the
type of function used to represent strategies (St+ → Act vs. St → Act). The dis-
tinction between perfect and imperfect information (I vs. i) yields constraints on the
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set of functions that represent “feasible” strategies. The additional refinement of the
imperfect information case (io vs. is) determines which outcome paths will be taken
into account when evaluating the success of a strategy.

3.1 Imperfect Information Models and Strategies

Models, imperfect information concurrent game structures (iCGS) [61,57], are con-
current game structures augmented with a family of indistinguishability relations
∼a⊆ St × St , one per agent a ∈ Agt. The relations describe agents’ uncertainty:
q ∼a q′ means that agent a cannot distinguish between states q and q′ of the system.
Each ∼a is assumed to be an equivalence relation. It is also required that agents have
the same choices in indistinguishable states. Note that CGS’s can be seen as the
subclass of iCGS’s where all ∼a are the minimal reflexive relations. Formally, we
have:

Definition 7 (iCGS) An imperfect information concurrent game structure (iCGS)
is given by

M = 〈Agt,St , Π, π,Act, d, o, {∼a| a ∈ Agt}〉

where 〈Agt,St , Π, π,Act, d, o〉 is a CGS, each ∼a⊆ St × St is an equivalence
relation, and if q ∼a q′ then d(a, q) = d(a, q′).

Definition 8 (Histories, h ≈ h′, last(h), ◦, |h|) A history is a finite sequence of
states that can be effected by subsequent transitions. Two histories h = q0q1 . . . qn
and h′ = q′0q

′
1 . . . q

′
n′ are indistinguishable for agent a (h ≈a h′) iff n = n′ and

qi ∼a q′i for i = 0, . . . , n. Concatenation of h and h′ is denoted by h ◦ h′ or simply
hh′. We also use last(h) to refer to the last state on history h, and |h| to denote
the length of h (i.e., the number of states in h). As for paths, we use h[i, j], i ≤ j,
i < |h|, to refer to the subhistory h[i] . . . h[min(j, |h|−1)]. We do also allow j =∞.
We define ΛfinM (q) as the set of all histories in M starting from q, i.e., all the finite
prefixes of paths in ΛM(q). Moreover, ΛfinM :=

⋃
q∈St Λ

fin
M (q) denotes the set of all

histories in M.

Additionally, for any equivalence relation R over a set X we use [x]R to denote
the equivalence class of x. Moreover, we use the abbreviations ∼A:=

⋃
a∈A ∼a and

≈A:=
⋃
a∈A ≈a. We also write ∼M

A and ≈M
A if the model is not clear from the

context. Note that relations ∼A and ≈A implement the “everybody knows” type of
collective knowledge (i.e., q and q′ are indistinguishable for group A iff there is at
least one agent in A for whom q and q′ look the same).

Definition 9 (ir-, iR-strategies) An imperfect information memoryless strategy (ir-
strategy in short) is an Ir-strategy satisfying the following additional constraint: if
q ∼a q′ then sa(q) = sa(q

′).
An imperfect information perfect recall strategy (iR-strategy in short) of agent a

is an IR-strategy such that, if h ≈a h′, then sa(h) = sa(h
′).
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Fig. 2 Two robots and a carriage: (A) schematic view; (B) an imperfect information concurrent game
structureM ′0 that models the scenario. Dashed lines represent indistinguishability relations between states.

That is, strategy sa is a conditional plan that specifies a’s action in each state
of the system (for memoryless agents) or for every possible history of the system
evolution (for agents with perfect recall). Moreover, imperfect information strategies
specify the same choices for indistinguishable states (resp. histories).

Example 4 (Robots and Carriage, ctd.) We refine the scenario from Example 2 by
restricting perception of the robots. Namely, we assume that robot 1 is only able to
observe the color of the surface on which it is standing, and robot 2 perceives only the
texture (cf. Figure 2). As a consequence, the first robot can distinguish between posi-
tion 0 and position 1, but positions 0 and 2 look the same to it. Likewise, the second
robot can distinguish between positions 0 and 2, but not 0 and 1 (cf. Figure. 1B).

Note that the strategy from Example 3 cannot be used anymore because it is not
uniform (indeed, the strategy tells robot 1 to wait in q0 and push in q2 but both states
look the same to the robot).

3.2 Subjective Epistemic Outcome

Assumptions about agents’ (un)certainty (i.e. the distinction between I and i) and
recall (i.e. the distinction between R and r) are encoded in the mathematical struc-
tures that are used to represent strategies. However, if agent a is to make sure that
a strategy sa enforces property γ, it is not sufficient to consider only the paths from
out(q, sa) because a does not necessarily know that q is the current state. To know
that sa guarantees γ, agent a should also check the outcome paths starting from states
indistinguishable from q. From a conceptual point of view it makes sense to define
two types of ability under imperfect information. Objective ability (io) means that a
has an executable winning strategy, but the agent may be unaware of that, or be un-
able to identify the strategy on her own. Subjective ability (is) requires that a has a
winning strategy and that a can identify such a strategy, i.e., the agents knows how to
play and not only that a good way of playing exists.

On the semantic side, this is reflected by the set of paths that are taken into ac-
count. Objective ability refers to the outcome paths that can objectively happen, while
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subjective ability builds on the outcome paths that are subjectively possible according
to a’s available information.6

Definition 10 (Subjective epistemic outcome, x-outcome) Let M be an iCGS, q
a state in it and sA a collective strategy for group A ⊆ Agt. Let x ∈ {is, io, I}. The
x-outcome outxM(q, sA) is defined as follows:

outxM(q, sA) =

{⋃
q∼Aq′

outM(q′, sA) if x = is;
outM(q, sA) else.

Again, we omit M if it is clear from context.

Example 5 (Robots and Carriage) In the scenario from Example 4, a possible uni-
form strategy of robot 1 is to push in q0 and q2, and wait in q1. If the starting state
is q0 then the strategy objectively makes sure that the system will never move to q2.
However, robot 1 does not know that the strategy is successful in avoiding q2 since he
must take into account also the outcome paths starting from q2 which trivially violate
the path property 2¬pos2. Thus, 1 has the objective, but not the subjective, ability to
enforce 2¬pos2 in state q0.

In order to ensure a uniform notation, we introduce xy-strategies for x ∈ {is, io, I}
and y ∈ {r,R} as follows:

IR: sa : St+ → Act such that sa(q0 . . . qn) ∈ d(a, qn) for all q0, . . . , qn;
Ir: sa : St → Act such that sa(q) ∈ d(a, q) for all q;
ior, isr: like Ir, with the additional constraint that q ∼a q′ implies sa(q) = sa(q

′);
ioR, isR: like IR, with the additional constraint that h ≈a h′ implies sa(h) = sa(h

′).

As before, collective xy-strategies sA are tuples of individual xy-strategies sa, one per
a ∈ A. We emphasize that isy- and ioy-strategies are defined in the very same way,
only the notion of outcome is different. Note also that the constraints in collective
strategies refer to individual choices and individual relations ∼a (resp. ≈a), and not
to collective choices and the derived relations ∼A (resp. ≈A).

3.3 Unified Setting: xy-Semantics of ATL

Finally, we put the pieces together and define the semantics of ATLxy, ATL+
xy, and

ATL∗xy for x ∈ {is, io, I} and y ∈ {r,R} by changing the clause for 〈〈A〉〉γ from
Section 2.4 in the following way:

M, q |=xy 〈〈A〉〉γ iff there is an xy-strategy sA for agents A such that for each path
λ ∈ outx(q, sA), we have M, λ |=

xy
γ.

Note, again, that the I and io semantics look only at outcome paths starting from
the current global state of the system. In contrast, the is semantics of 〈〈A〉〉γ refers
to all outcome paths starting from states that look the same as the current state for
coalition A. Hence, it formalizes the notion of A knowing how to play in the sense

6 The issue is closely related to epistemic feasibility of plans, cf. e.g. [22,49].
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that A can identify a single strategy that succeeds from all the states they consider
possible. We follow [57] by taking the “everybody knows” interpretation of collec-
tive uncertainty. More general settings were proposed in [43,39]. We believe that the
results in this paper carry over to the other cases of “knowing how to play”, too.

Example 6 (Robots and Carriage, ctd.) Consider the modified robots scenario from
Example 4 (Figure 2). With observational capabilities of the robots restricted in this
way, no agent knows how to make the carriage reach or avoid any selected state sin-
glehandedly from q0, i.e., M ′0, q0 |=isy

¬〈〈i〉〉3posj and M ′0, q0 |=isy
¬〈〈i〉〉2¬posj

for all y ∈ {r,R}, i ∈ {1, 2}, j ∈ {1, 2, 3}. Note in particular that the strategy from
Example 3 cannot be used here because it is not uniform, and the strategy from Exam-
ple 5 does not succeed because of outcome paths from indistinguishable states. Still,
the latter strategy can be used to demonstrate that robot 1 has the objective ability to
avoid q2 (though not q1 anymore): M ′0, q0 |=ioy

〈〈1〉〉2¬pos2 ∧ ¬〈〈i〉〉2¬pos1.
The robots can keep the carriage away from pos1 together, but only in the ob-

jective sense: M ′0, q0 |=ioy
〈〈1, 2〉〉2¬pos1. However, they cannot identify a strategy

which guarantees that: M ′0, q0 |=isy
¬〈〈1, 2〉〉2¬pos1 (when in q0, robot 2 considers it

possible that the system is already in the “bad” state q1). So, do the robots know how
to play to achieve anything? Yes, for example they know how to make the carriage
reach a given state eventually: M ′0, q0 |=isy

〈〈1, 2〉〉3pos1 etc. – it suffices that one of
the robots pushes all the time and the other waits all the time.

For the above properties the type of robots’ recall does not matter (they hold in
both memoryless and perfect recall strategies). 〈〈1, 2〉〉32pos1 is an example for-
mula that distinguishes between the two sets of strategies. Note that M ′0, q0 |=ior

¬〈〈1, 2〉〉32pos1: the robots have no memoryless strategy to bring the carriage to
pos1 and keep it there forever, even in the objective sense. Still, they have a successful
perfect recall strategy for that, and are able to identify it:M ′0, q0 |=isR 〈〈1, 2〉〉32pos1.
The right strategy is that one robot pushes and the other waits for the first 3 steps. Af-
ter that, they know their current position exactly, and can go straight to position 1 and
stay there.

3.4 Folk Result: Memory Does Not Matter for Perfect Information

We observe that the basic semantics of ATL∗ from [9] corresponds exactly to ATL∗IR.
A folk result states that, in the restricted language of ATL both semantics for perfect
information coincide. That is, exactly the same formulae characterize models and
their states in ATLIR and ATLIr.

Proposition 1 For every iCGS M, state q, and ATL formula ϕ, we have that
M, q |=

IR
ϕ iff M, q |=

Ir
ϕ.

Proof. For finite models, equivalence of the semantics has been observed in [57],
and follows from correctness of the model checking algorithm presented in [9]. It is
not entirely obvious, however, that the result should extend to the infinite case. We
present our own proof sketch below.

First, we observe that ATLIR and ATLIr have the same validities. This follows
from the results in [3] showing that: (1) perfect recall strategies in a CGS correspond
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to memoryless strategies in its tree unfolding, (2) every pointed CGS is strategically
bisimilar to its tree unfolding, and (3) the same formulae of ATLIr hold in strategi-
cally bisimilar models (cf. also a more detailed exposition in Section 4.1).

Now we can prove the equivalence of M, q |=
IR
ϕ and M, q |=

Ir
ϕ by induction

over the structure of ϕ. Cases ϕ ≡ p,¬ψ,ψ1 ∧ψ2, 〈〈A〉〉 gψ are straightforward. For
ϕ ≡ 〈〈A〉〉2ψ, we take the axiom schemes (FP2) and (GFP2) from [31]. It was
proved in [31] that all their instances are validities of ATLIR.7 By the previous obser-
vation, all the instances of schemes (FP2) and (GFP2) are validities of ATLIr too.
But that means that 〈〈A〉〉2 is the greatest fixpoint of the same monotone transformer
of state sets in both semantics |=IR and |=Ir . Thus, the set of states satisfying 〈〈A〉〉ψ
in M is the same in both semantics.

The proof for 〈〈A〉〉ψ1 U ψ2 is analogous, by showing that its extension in |=
IR

and
|=

Ir
is the least fixpoint of the same monotone transformer of state subsets from M.

�

Note that the IR and Ir semantics coincide only for the restricted syntactic vari-
ant ATL. For ATL∗, and even ATL+, there are formulae that distinguish the two
semantics, as we demonstrate in Section 5.1.

4 Perfect Recall and Tree-Like Unfoldings

Now we can turn to the original contribution of this paper. We begin by preparing the
formal ground for our comparison of ATL validities under different semantics. In this
section, we define several tree-like unfoldings of models, and show that they preserve
truth of ATL formulae provided appropriate assumptions about agents’ uncertainty
and notion of success. This is the most technical part of the paper, needed mostly to
prove the inclusion results in Section 5.1. However, its importance goes beyond tech-
nicalities. The unfoldings uncover some of the conceptual structure that underlies
ATL. In particular, they expose a “forgetting” phenomenon in the semantics of ATL:
even agents with perfect recall are assumed to forget their past observations when
proceeding to a subtask specified by a nested subformula (like in 〈〈a〉〉3〈〈a〉〉2p). In
a way, one can talk about two variants of perfect recall: the “almost perfect recall”
where agents use perfect recall strategies but abandon their previous observations
when trying to enforce a nested strategic formula, and “truly perfect recall” where
their hitherto observations carry over to the nested strategic task. On the other hand,
our invariance theorems show that alternating-time temporal logic (even in its broad-
est syntactic variant ATL∗) is too poor to distinguish between the two kinds of recall.

We believe that this section is of interest to readers who are intrigued by intrica-
cies of game logics or search for tools that can be used to prove similar invariance
results. On the other hand, readers interested only in the main conceptual contribu-
tion of this paper (i.e., the comparison of validities for variants of ATL) are advised
to skip this part and proceed to Section 5.

7 The proof in [31] was for the class of finitely branching CGS (with possibly infinite state spaces)
but it extends to the case of infinite branching in a straightforward way.
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Plan of Section 4. A tree-like unfolding of an iCGS is an (infinite) model in which
nodes correspond to finite sequences of states (i.e., histories) in the original iCGS.
It is easy to see that the underlying transition structure of such an unfolding is a
tree or a forest. The advantage of these structures is that perfect recall strategies and
memoryless strategies coincide in tree-like unfoldings. Moreover, each perfect recall
strategy in the original model corresponds to a memoryless strategy in the unfolding
yielding an equivlant outcome, and vice versa. Both properties are rather standard in
the perfect information setting. For imperfect information, however, the constructions
are more involved due to the specialities of the iR-semantics; more precisely, the
knowledge of agents is “reset” whenever a nested strategic modality is evaluated.

For each of the three semantic settings of:

– perfect information,
– imperfect information with the objective semantics,
– imperfect information with the subjective semantics,

we proceed as follows:

1. We characterise appropriate tree-like structures and show that memoryless and
perfect recall strategies coincide on them;

2. We define appropriate unfoldings and show that they result in tree-like structures;
3. We show that the unfoldings are truth-preserving (i.e. a formula which is true in

the original model is also true in the tree-like unfolding and vice versa).

4.1 Perfect Information

We begin with tree unfoldings of perfect information CGS’s. We draw inspiration
from the proof of [3, Theorem 8.3].

Definition 11 (Tree-like CGS, ρM(q1, q2)) Let M be a CGS. M is called tree-like
iff there is a state q0 (the root) such that for every q there is a unique history leading
from q0 to q.

Let q1 and q2 be states in M. If q2 is reachable from q1 then we use ρM(q1, q2) to
refer to the unique history from state q1 to q2; otherwise, if q2 is not reachable from
q1 we set ρM(q1, q2) = ε. Moreover, we use ρM(q) as a shortcut for ρM(q0, q) (we
will omit the subscript if clear from context). We note that ρM(q0) = q0.

Every state q in a tree-like CGS uniquely determines the path that leads from the
root to q. Hence, perfect recall is already included in the states of the model. This is
formally shown in the following proposition.

Proposition 2 (Recall invariance for tree-like CGS) For every tree-like CGS M,
state q in M, and ATL∗-formula ϕ, we have: M, q |=

Ir
ϕ iff M, q |=

IR
ϕ.

Proof. The proof is done by induction over the structure of ϕ.
Base cases:

Propositional case: Straightforward.
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Fig. 3 Tree unfolding T (M0, q0) for the robots and carriage CGS from Figure 1

Case: ϕ ≡ 〈〈A〉〉γ where γ contains no nested strategic modalities. The left-to-right
direction is obvious. Now suppose that M, q |=

IR
〈〈A〉〉γ and let sA be a collective

IR-strategy for A such that for all λ ∈ out(q, sA) it holds that M, λ |=
IR
γ. We

define tA(q′) = sA(ρ(q, q
′)) for each state q′ in M reachable from q. Then,

tA is a well-defined Ir-strategy with out(q, tA) = out(q, sA). Hence, we have
M, q |=Ir 〈〈A〉〉γ.

Induction step:

Case: ϕ ≡ ψ1 ∧ ψ2. Straightforward.
Case: ϕ ≡ ¬ψ. M, q |=

Ir
¬ψ iff not M, q |=

Ir
ψ iff (by induction hypothesis) not

M, q |=
IR
ψ iff M, q |=

IR
¬ψ.

Case: ϕ ≡ 〈〈A〉〉γ. We observe that each state q′ at which a state subformula ψ of γ
is evaluated forms the root of a tree-like CGS. Then, by induction, ψ has the
same truth value in q′ according to the IR- and Ir-semantics and can be replaced
by a new atomic proposition with the appropriate valuation. This yields formula
ϕ′ ≡ 〈〈A〉〉γ′ with no nested strategic modalities, to which we apply the same
argument as above.

�

A natural question is whether every model has an equivalent tree-like CGS. By
“equivalent” we mean that the sets of formulae which hold at corresponding states
are always the same.

Definition 12 (Tree unfolding) Let M = (Agt,St , Π, π,Act, d, o) be a CGS and
q be a state in it. The (perfect information) tree unfolding of the pointed model (M, q)
denoted T (M, q) is defined as (Agt,St ′, Π, π′,Act , d′, o′) where

– St ′ := ΛfinM (q),
– d′(a, h) := d(a, last(h)),
– o′(h,α) := h ◦ o(last(h),α), and
– π′(h) := π(last(h)).
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The node q in the unfolding is called the root of T (M, q).

An example tree unfolding is shown in Figure 3. It is important to note that histories
in M are states in T (M, q) and that each tree unfolding is tree-like:

Proposition 3 The tree unfolding of a pointed CGS (M, q) is tree-like.

We now show that satisfaction of ATL∗-formulae is invariant under tree unfold-
ings and that memory is not needed in the tree unfolding.

Theorem 1 For every CGS M, state q in M, and ATL∗-formula ϕ we have:

M, q |=IR ϕ iff T (M, q), q |=IR ϕ iff T (M, q), q |=Ir ϕ.8

Proof. The second equivalence follows from Propositions 2 and 3. To prove the first
equivalence we show that, for all h ∈ ΛfinM (q), we have M, last(h) |=

IR
ϕ iff

T (M, q), h |=
IR
ϕ (by induction over the structure of ϕ). Note that for each state

q′ reachable from q in M there is a history h such that last(h) = q′.
Base cases:

Propositional case: Straightforward.
Case: ϕ ≡ 〈〈A〉〉γ where γ does not contain any strategic modalities.

“⇒”: Suppose that M, last(h) |=
IR
ϕ. Then, there is an IR-strategy sA such

that for all λ ∈ out(last(h), sA) we have that M, λ |= γ. Now let tA be an Ir-
strategy defined as follows: tA(hh′) = sA(last(h)h

′), and arbitrary otherwise.
By definition of the tree unfolding and the construction of tA we have that

last(h)q1q2 · · · ∈ outM(last(h), sA) iff
(h)(hq1)(hq1q2) · · · ∈ outT (M,q)(h, tA).

Since the valuation of propositions only depends on the final state of a history and
since Ir-strategies can be seen as special cases of IR-strategies, we have also that
T (M, q), h |=IR ϕ.
“⇐”: Suppose that T (M, q), h |=IR ϕ. Then, by Propositions 2 and 3, there is an
Ir-strategy sA such that for all λ ∈ out(h, sA) we have that T (M, q), λ |= γ. We
define the following IR-strategy tA:

tA(h
′) =

{
sA(h(h

′[1,∞])) if h′[0] = last(h)

α else, for some arbitrary α ∈ dA(last(h′))

The first case of the definition tA applies if h′[1,∞], i.e. h′ without the initial
state, is a possible extension of history h. The history h(h′[1,∞]) is the extension
of h with h′ where the last state of h or the initial state of h′ has to be removed as
it occurs twice. Again, we have

last(h)q1q2 · · · ∈ outM(last(h), tA) iff
(h)(hq1)(hq1q2) · · · ∈ outT (M,q)(h, sA)

8 The equivalence of M, q |=IR ϕ and T (M, q), q |=IR ϕ follows also from the results on alternating
bisimulation, cf. [10] for the bisimulation in finite models, and [3] for the general case. We present the
construction nevertheless, as it will be adapted in the following sections to the case of imperfect informa-
tion.
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and thus M, last(h) |=IR ϕ.

Induction step:

Case: ϕ ≡ ψ1 ∧ ψ2. Straightforward.
Case: ϕ ≡ ¬ψ. Straightforward.
Case: ϕ ≡ 〈〈A〉〉γ. We observe that for each state q′ in M reachable from q at which

a state-subformula ϕ′ of γ is evaluated there is a history h such that T (M, q)
contains a state hq′ at which the very subformula holds (by induction hypothe-
sis). Then we apply the same reasoning as for the case with no nested strategic
modalities.

�

4.2 Imperfect Information: Objective Ability

Unlike in the perfect information case, tree unfoldings for imperfect information must
also take into account the indistinguishability relations. We construct our argument
for the io case similarly to Section 4.1. The notion of tree-like imperfect information
CGS has to include suitable constraints on the epistemic relations – otherwise we
would not get truth invariance with respect to recall. To handle the issue, we intro-
duce objective epistemic tree unfoldings under perfect recall, or ioR-tree unfoldings
in short.

Definition 13 (Tree structure of iCGS) Let M be an iCGS. M has tree structure
iff the underlying CGS of M (i.e., M without epistemic relations) is tree-like. As in
Definition 11 we use ρM(q1, q2) to refer to the unique history between q1 and q2 in
M if it exists and set ρM(q) = ρM(q0, q) where q0 is the root in M. Again, we omit
M from ρM(·) if clear from context.

Definition 14 (ioR-tree-like) Let M be an iCGS with tree structure. M is called
ioR-tree-like iff for all a ∈ Agt and all q1, q2 ∈ St we have q1 ∼M

a q2 iff ρ(q1) ≈M
a

ρ(q2). (We note that ρ(q1) ≈M
a ρ(q2) implies q1 ∼M

a q2 by definition of ≈M
a .)

In other words, in an ioR-tree-like structure the information sets in a game can
only be more precise when the game already follows some previous interaction. The
next proposition is analogous to Proposition 2.

Proposition 4 (Recall invariance for ioR-tree-like models) For every ioR-tree-like
iCGS M, state q in M, and ATL∗-formula ϕ, we have that M, q |=ior ϕ iff M, q |=ioR

ϕ.

Proof. Induction over the structure of ϕ.
Base cases:

Propositional case: Straightforward.
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Fig. 4 ioR-tree unfolding To(M ′0, q0) of the robots with limited information from Figure 2 (we omitted
reflexive epistemic links).

Case: ϕ ≡ 〈〈A〉〉γ where γ contains no strategic modalities. The left-to-right direc-
tion is obvious. Now suppose that M, q |=ioR 〈〈A〉〉γ and let sA be a collective
iR-strategy for A such that for all λ ∈ out(q, sA) it holds that M, λ |=ioR γ. We
define ta(q′) = sa(ρ(q, q

′)) for each state q′ in M which is reachable from q.
Then, we have out(q, tA) = out(q, sA). Moreover, we have for all states q1 and
q2 and all agents a ∈ Agt that q1 ∼a q2 iff ρ(q1) ≈a ρ(q2) because: (a) the right-
to-left direction is clear from the definition of≈, and (b) the left-to-right direction
follows because M is ioR-tree-like. Hence, tA is a well-defined ior-strategy with
out(q, tA) = out(q, sA) and thus: M, q |=ior 〈〈A〉〉γ.

Induction step:

Case: ϕ ≡ ψ1 ∧ ψ2. Straightforward.
Case: ϕ ≡ ¬ψ. M, q |=ior ¬ψ iff not M, q |=ior ψ iff (by induction hypothesis) not

M, q |=ioR ψ iff M, q |=ioR ¬ψ.
Case: ϕ ≡ 〈〈A〉〉γ. We observe that each state q′ at which a state subformula ψ of γ is

evaluated forms the root of a ioR-tree-like iCGS. Then, by induction, ψ has the
same truth value in q′ according to the ioR- and ior-semantics and can be replaced
by a new atomic proposition with the appropriate valuation. This yields formula
ϕ′ ≡ 〈〈A〉〉γ′ with no nested strategic modalities, to which we apply the same
argument as above.

�

Now, the ioR-tree unfolding is defined as standard tree unfolding for the perfect
information case extended with indistinguishability relations between histories of the
model (which are nodes of the unfolding).
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Definition 15 (ioR-tree unfolding) Given an iCGS M and a state q in it, we define
the ioR-tree unfolding of (M, q), denoted To(M, q), as T (M, q) from Definition 12
extended with epistemic relations∼To(M,q)

a reflecting indistinguishability of histories
in M; that is, h ∼To(M,q)

a h′ iff h ≈M
a h′ where h and h′ start in q.

As an example, the ioR-tree unfolding of the robots and carriage iCGS is pre-
sented in Figure 4.

Proposition 5 Let (M, q) be a pointed iCGS. The ioR-tree unfolding of (M, q) is
ioR-tree-like.

Proof. Clearly, the unfolding has tree structure and is ioR-tree-like by definition of
the indistinguishability relations in the ioR-tree-unfolding. �

Analogously to Theorem 1 we have that ioR-tree unfoldings are truth preserving
and that memory does not matter in these unfolded models.

Theorem 2 For every iCGS M, state q in M, and ATL∗-formula ϕ we have:

M, q |=ioR ϕ iff To(M, q), q |=ioR ϕ iff To(M, q), q |=ior ϕ.

The proof is given in the appendix on page 40.

4.3 Imperfect Information: Subjective Ability

The case for the subjective semantics (is) cannot be proven in the same way by using
ioR-tree unfoldings. Obviously, when constructing an unfolding of (M, q) for the isR-
semantics one has to take into account paths starting from states indistinguishable
from q. A first naive approach could be to define the isR-unfolding as a structure
consisting of ioR-tree unfoldings, one for each epistemic alternative, and to connect
the root nodes of all these unfoldings. Unfortunately, this simple idea is not sufficient
as illustrated in Example 7.

Example 7 (First naive approach to isR-tree unfoldings) We consider the iCGS M1

shown in Figure 5. The story is as follows. A man wants to shoot down a yellow
rubber duck in a shooting gallery. The man knows that the duck is in one of the two
cells in front of him, but he does not know in which one. He can shoot to the left
(action shootL) or to the right (shootR). Alternatively, he can reach out and open one
of the cells for a moment (action look ), thus removing his uncertainty.

Let us take the ioR-tree unfoldings To(M1, q0) and To(M1, q1), and interconnect
their nodes by epistemic links whenever the corresponding histories are indistinguish-
able in the original model. The resulting model is shown in Figure 6 (we will call the
model T1). Unfortunately, this construction is not truth-preserving. That is because if
a state-subformula is evaluated in states 040 and 151 of T1 the agent will know where
the game is – which is not consistent with the is semantics: only the last state of each
history should be considered.

To be more precise, let us consider formulaϕ = 〈〈a〉〉 g〈〈a〉〉 g〈〈a〉〉 gshot. Clearly,
we have M1, q0 6|=isR ϕ. On the other hand, we have T1, q0 |=isR ϕ.
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Fig. 5 “Poor duck model”M1 with one player (a) and transitions labeled with a’s actions. The dotted line
depicts a’s indistinguishability relation. Automatic transitions (i.e., such that there is only one possible
transition from the starting state) are left unlabeled.
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Fig. 6 Two ioR-tree unfoldings connected by epistemic links. Each label i1i2 . . . refers to the history
qi1qi2 . . . .

In order to improve the naive approach one may simply add an epistemic link
between states 040 and 151. Unfortunately, this does not work either. Such a link
indicates that the states 040 and 151 are indistinguishable for a; on the other hand,
player a can distinguish the histories which lead to these states. This contradicts the
conceptual idea in which states are associated with histories. Moreover, it is easy to
construct a concrete counterexample.

To make the observation in Example 7 more formal, suppose hq is some node in
the ioR-tree unfolding To(M, q0) and that in this node a formula 〈〈a〉〉γ is evaluated.
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Then, 〈〈a〉〉γ holds iff agent a has a successful iR-strategy not only for all paths start-
ing from hq, but also for paths starting from nodes h′q′ such that q ∼M

a q′. In the
ioR-tree unfolding, however, these nodes are usually not linked via an epistemic tran-
sition. On the other hand, we cannot simply introduce the link hq ∼To(M,q0)

a h′q′ as
we would loose soundness of the construction (in general, h and h′ do not need to be
indistinguishable). This observation makes it necessary to introduce a more sophis-
ticated construction for the subjective epistemic tree-like unfoldings under perfect
recall, or isR-pando unfoldings in short.9

Firstly, we discuss when an iCGS should be considered isR-pando-like. The idea
of a set of connected ioR-tree-like models (like in Example 7) seems to come close.
However, we should also account for the “forgetting” of the history of the play when
a nested strategic operator is evaluated. This is because if a state subformula (like
〈〈a〉〉γ) is evaluated in a history h, only the last state of h is relevant. The rest of h
is “lost” as it does not influence the truth of 〈〈a〉〉γ in h. We deal with it by adding
appropriate “hanging” trees with roots q that are indistinguishable from last(h) in
the original models. The new trees are connected to histories in the “basic” tree by
appropriate epistemic links. We must also make sure that there are no epistemic links
between such trees apart from the ones just explained.

Definition 16 (isR-pando-like, ρM(q, q′)) An iCGS

M = 〈Agt,St , Π, π,Act, d, o, {∼a}a∈Agt〉

is isR-pando-like iff it consists of submodels

Mi = 〈Agt,St i, Π, πi, Act, di, oi, {∼Mi
a }a∈Agt〉

for i ∈ I and some index set I ⊆ N, where:

– each Mi is an ioR-tree-like iCGS,
– St =

⊎
i∈I St i (i.e. the states of the Mi’s form a partition of M),

– π : St → 2Π with π(q) = πi(q) for q ∈ St i,
– d : St × Agt→ 2Act with d(q, a) = di(q, a) for q ∈ St i,
– o : St ×Act |Agt| → St with o(q, α) = oi(q, α) for q ∈ St i, and
– ∼a⊆ St × St with ∼a:=

(⋃
i∈I ∼Mi

a

)
∪ ∼̂a where each ∼̂a ⊆

⋃
i∈I St i ×⋃

i∈I St i,

and the following conditions are satisfied:

1. the relation ∼a is transitive for every a ∈ Agt.
2. ∼̂a is a symmetric relation for every a ∈ Agt.
3. for all i ∈ I we have ∼̂a ∩ (St i × St i) = ∅ (the relation does only exist between

different ioR-tree like models).

9 We thank an anonymous reviewer of JAAMAS for the excellent terminological suggestion. An isR
unfolding is not a tree, as it usually consists of several transition trees. On the other hand, it is not a typical
forest because the trees are not separate – they are intimately connected by epistemic relations. For the
biological Pando, see for example http://en.wikipedia.org/wiki/Pando(tree).
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q
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same level
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⇠Agt ⇠Agt

⇠Agt

Fig. 7 Condition 5 of Definition 16.

4. for q1 ∈ St i and q2 ∈ Stj with i, j ∈ I , i 6= j, we have that if q1∼̂aq2 then
ρMi(q1)≈̂M

a ρMj
(q2) or ρMi

(q1) = q1 or ρMj
(q2) = q2 where for two histories h

and h′ we have h≈̂M
a h
′ iff |h| = |h′| and h[l]∼̂ah′[l] for all l = 0, . . . , |h|−1 (in-

distinguishable nodes in different ioR-tree-like models must have indistinguish-
able histories or at least one of the nodes is a root node).

5. for q1, q2 ∈ St i and ∼Agt=
⋃
a∈Agt ∼a, if q1(∼Agt)∗q2 then |ρMi(q1)| =

|ρMi
(q2)| (nodes in the same tree indistinguishable for a group must be on the

same level). The idea behind this condition is illustrated in Figure 7.

Moreover, we define ρM(q1, q2) as ρMi
(q1, q2) for q1, q2 ∈ St i and set ρM(q1, q2) =

ε if q1 ∈ St i and q2 ∈ Stj for i 6= j.

Remark 1 We would like to note that it is possible, due to condition 4 of Defini-
tion 16, to weaken condition 5 of Definition 16 to the following: Let q1 ∈ St i,
q2 ∈ Stj , i, j ∈ I , i 6= j, q1(∼Agt)∗q2, and ρMj

(q2) = q2 where∼A=
⋃
a∈A ∼a for

A ⊆ Agt. If there is an q′1 ∈ St i, with q2(∼Agt)∗q′1; then, |ρMi
(q1)| = |ρMi

(q′1)|.

Before we give an intuitive example we show that the concept of isR-pando-like
iCGS is well-defined.

Proposition 6 Let M be an isR-pando like iCGS as defined in Definition 16. Each
relation ∼a is an equivalence relation for a ∈ Agt.

Proof. By definition, each ∼a is transitive. Symmetry follows from the symmetry of
∼̂a and of ∼Mi

a . Reflexivity of ∼Mi
a does also imply reflexivity of ∼a.

�
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040â040
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...
...

...
...

...

151â0
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Fig. 8 The figure shows the isR-pando unfolding of (M1, q0) from Figure 5. All dotted and dashed lines
denote the indistinguishability relation of agent a. Dashed links encode indistinguishability between nodes
in trees that have roots on the same level; dotted links connect nodes in trees from different levels. Again,
for the sake of readability, reflexive and transitive connections are omitted.

Example 8 Figure 8 depicts an isR-pando-like iCGS. In fact, the model shows a
suitable unfolding of the pointed iCGS (M1, q0) from Figure 5. We will formally
introduce isR-pando unfoldings in Definition 17.

In the spirit of Propositions 2 and 4 we have that memory is not needed in isR-
pando-like models. The proof for the left-to-right direction is obvious. The sophis-
ticated step is to construct an isr-strategy from an isR-strategy. For the sake of read-
ability we have moved the technical part in the appendix (Lemma 3 on page 41).

Proposition 7 (Recall invariance for isR-pando-like models) For every isR-pando-
like iCGS M, state q in M, and ATL∗-formula ϕ, we have that M, q |=isr ϕ iff
M, q |=isR ϕ.
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Proof. Firstly, we recall that all the “subpandos” which form an ioR-tree-like iCGS
are not interconnected by transitions and thus the path to each state is unique. The
proof is done analogously to Proposition 4; we only consider the important base case
where ϕ ≡ 〈〈A〉〉γ and γ contains no strategic modalities. The left-to-right direction
is obvious.

For the right-to-left direction suppose that M, q |=isR 〈〈A〉〉γ and let sA be a col-
lective iR-strategy for A such that for all λ ∈ outis(q, sA) it holds that M, λ |=isR γ.
Let q′ ∈ Stj be a state reachable from q̂ ∈ Stj with q̂ ∼M

a q for some a ∈ A. Then,
we define the memoryless strategy ta as follows: ta(q′) = sa(ρMj

(q̂, q′)).
We proceed like this for all states q′, q̂ and define the strategies ta arbitrarily but in
a uniform way for all other states in M. (Note, that these are all states which are
not reachable from any epistemic alternative of q for some agent in A.) Firstly, we
observe that each ta is well-defined as each Mj is ioR-tree-like and thus the path
ρMj

(q̂, q′) to a state q′ is unique.
In order to show that each ta is uniform and that outis(q, tA) = outis(q, sA) we

have to prove that for any two states q1 reachable from q̂1, and q2 reachable from q̂2
with q1 ∼M

a q2 and q̂1, q̂2 ∈ {q′ ∈ St | q ∼A q′} (i.e. q̂1 ∼M
b q ∼M

c q̂2 for some
b, c ∈ A) we also have ρ(q̂1, q1) ≈M

a ρ(q̂2, q2). This part is shown in Lemma 3 in the
appendix on page 41. �

The basic idea of the subjective epistemic pando unfolding under perfect recall
(isR-pando unfolding in short) is to create copies of the tree starting in q′, one for
each epistemic alternative. Then, we can link hq with these new root nodes q′ of
the “copies” of the trees starting in q′ (cf. Figure 8 and take e.g. h = 04, q = 0,
and q′ = 040â1; the new node is named 040â1 to ensure that the name is unique as
explained below). It is easy to see that these “new” subtrees can only be reached if a
formula 〈〈a〉〉γ is evaluated in hq (or some other state h′′q′′ with hq ∼Ts(M,q0)

a h′′q′′

by transitivity). As mentioned above all nodes in these new subtrees must have unique
names. This is the reason why we have to prefix each node h′′ in the new tree by hqâ
where hq is the history in the “current tree” and â encodes that we have used a’s
indistinguishability relation to reach the “new” tree.

Before we formally define the isR-pando unfolding, we introduce some addi-
tional notation. In the following, we consider words over D := (St ∪ St ◦ {â |
a ∈ Agt} ◦ St)+. Thus, D consists of finite sequences of states, possibly interleaved
by references to some agents. We use elements from D to give names to nodes of the
pando unfolding. Essentially, the name of a node shows how the node is reached from
a root by following temporal paths and “jumping” between different trees by use of
epistemic links (cf. Figure 8).

We also define auxiliary functions rel : D → St+, ref : D → D, lastr : D → St
and jump : D → Agt ∪ {ε} as follows:

rel(h) =

{
h , for h ∈ St+;
h′′ , for h = h′âh′′ and h′′ ∈ St+ and a ∈ Agt;

ref (h) =

{
h if h ∈ St+;

ĥ if h = ĥârel(h);
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lastr(h) = last(rel(h));

jump(h) =

{
ε if h ∈ St+;

a if h = ĥârel(h).

The intuition for these functions is as follows. Given an element h ∈ D, rel(h)
returns the “relevant” part of h, i.e., the subhistory at the end of h of maximal length
that does not contain any â symbol for any a ∈ Agt. On the other hand, ref(h)
returns the “reference” node in the higher-level tree which was used to obtain h.
Finally, jump(h) returns the agent whose epistemic link was used to “jump” between
the two trees. For example, rel(q1âq2q3b̂q4) = q4, ref (q1âq2q3b̂q4) = q1âq2q3,
lastr(ref (q1âq2q3b̂q4)) = q3 and jump(q1âq2q3b̂q4) = b.

Let M = (Agt,St , Π, π, {∼a}a∈Agt,Act , d, o) be an iCGS and q ∈ St . We
recursively define sets∆i

M ⊆ D which contain the nodes of the isR-pando unfolding:

∆0
M(q) :=

⋃
q′∼M

a q

ΛfinM (q′),

∆i+1
M (q) := {hâh′ | h ∈ ∆i

M(q), |rel(h)| ≥ 2, a ∈ Agt, and h′ ∈ ΛfinM (q′)

for some q′ ∼M
a lastr(h)}.

We write ∆i
M for ∆i

M(q) if state q is clear from context. Note that each h ∈ ∆i
M

contains exactly i symbols of type âj for aj ∈ Agt and j = 1, . . . , i. Intuitively,
â denotes that we took a ∼a-relation step between different trees. Note also that,
for instance, q0q1âq2 ∈ ∆1(q0) but q0âq2 6∈ ∆1(q0). This is because if a link to a
new tree model is taken histories have to be “forgotten” and in cases in which the
history consists of a single state (e.g. q0 in q0âq2) such a link is not necessary and
also not desired due to technical reasons. Now, we are ready to define the isR-pando
unfolding.

Definition 17 (isR-pando unfolding) Let M = (Agt,St , Π, π, {∼a}a∈Agt,Act , d,
o) be an iCGS and q ∈ St . The isR-pando unfolding of (M, q), denoted Ts(M, q),
is defined as Ts := Ts(M, q) = (Agt,St ′, Π, π′, {∼′a}a∈Agt,Act , d′, o′) where
d′(a, h), o′(h,α), and π′(h) are given as in Definition 12 and 15 where function
“last” is replaced with “lastr” and (note that ∼Ts

a referes to relation ∼′a):

1. St ′ :=
⋃∞
i=0∆

i
M(q);

2. for all a ∈ Agt, ∼Ts
a ⊆ StM × StM is the smallest reflexive relation such that

h ∼Ts
a h′ if:

(a) rel(h) ≈M
a rel(h′), for h, h′ ∈ ∆0

M(q), or
(b) rel(h) ≈M

a rel(h′) and
i. ref (h) ∼Ts

a ref (h′) and jump(h) = a = jump(h′), and h, h′ ∈ ∆i
M(q),

i > 0, or
ii. jump(h) = b = jump(h′) with a 6= b, and h, h′ ∈ ∆i

M(q), i > 0, or
(c) h ∈ ∆i

M, h′ ∈ ∆i+1
M , jump(h′) = a, ref (h′) ∼Ts

a h, lastr(ref (h′)) ∼M
a

rel(h′) or vice versa with the roles of h and h′ switched.
We note that this means that h′ = ĥâq, lastr(ĥ) ∼M

a q, and ĥ ∼Ts
a h for

some q ∈ StM and ĥ ∈ ∆i
M(q).



28 Nils Bulling, Wojciech Jamroga

Theorem 3: recall invariance in pando unfolding.

Prop. 8: pando 
unfolding is 

pando-like model

Prop. 7: recall invariance 
in pando-like model

recall invariance in pando 
unfolding

Lem. 9: saturation of 
epistemic alternatives in 

pando unfolding

Lem. 10: uniformity of 
witnessing strategy

pando unfolding is 
truth preserving

Lem. 3: consistency of individual 
indistinguishability rel. in pando-like models

Lem. 8: indistinguishability relation 
in pando unfolding is equivalence rel.

Lem. 6: consistency of 
group indistinguishability 

rel. in pando unfolding

Lem. 4: structure of pando 
unfolding wrt. individual 

indistinguishability relation

Lem. 5:  structure of pando unfolding 
wrt. group indistinguishability relation

Lem. 7:  node structure 
of pando unfolding

Fig. 9 Structure of the proofs of Propositions 7 and 8 and of Theorem 3. Full proofs of all results are given
in Appendix A.2.

Remark 2 (isR-pando unfolding) We motivate points 2(a), 2(b), and 2(c) in Defini-
tion 17. Items 2(a) and (b) define indistinguishability between nodes of trees from the
same set∆i. In this case, the “jump” must be obtained by the same epistemic relation
and the final parts of the corresponding histories in the current trees (the “relevant”
parts) must be indistinguishable; moreover, the “reference” nodes (in the trees one
level up) must be indistinguishable for the “jump” agent (point 2(b)i.) in case we
are concerned with epistemic alternatives of this very agent. This is needed to obtain
transitivity of the epistemic relation in the resulting forest. Note that, in particular,
the length of the relevant subhistories must be the same.

Item 2(c) defines the only way how nodes h and h′ from different sets ∆i and
∆j , i 6= j, can be linked via an epistemic link. Firstly, it must be the case that j =
i + 1. Secondly, the relevant part of h′ ∈ ∆i+1 must be a single state which is
indistinguishable from the last state of the reference part of h′ ∈ ∆i; moreover, the
reference part of h′ must also be linked to h. Note, that the relevant parts of h and
h′ do not have to have the same length. This models the “forgetting” if a new state-
subformula is evaluated in h.

Example 9 (isR-pando unfolding) The isR-pando unfolding of model (M1, q0) from
Figure 5 on page 22 is shown in Figure 8.

Similarly to Section 4.2 we can show that an isR-pando unfolding is isR-pando-
like as expected. For example, it has to be shown that all nodes are disjunct, in order to
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obtain a tree-like structure, and that the epistemic relation∼Ts(M,q)
a is an equivalence

relation for each agent a ∈ Agt. The proof of the following result is rather technical
and is formally proven in the appendix on page 44. The structure of the proof of this
proposition and also of our main result, Theorem 3, is outlined in Figure 9.

Proposition 8 The isR-pando unfolding of a pointed iCGS is isR-pando-like.

Then, thanks to Proposition 7, we obtain that isR-pando unfoldings are truth-
invariant under recall. Now we can state our main result for isR-pando unfoldings.

Theorem 3 For every iCGS M, state q in M, and ATL∗-formula ϕ, it holds that

M, q |=isR ϕ iff Ts(M, q), q |=isR ϕ iff Ts(M, q), q |=isr ϕ.

Again, the proof is moved to the appendix, and can be found on page 45.

5 Comparing Validities for Variants of ATL

In this section we present a formal comparison of the semantic variants defined in
Sections 2 and 3. As stated in the introduction, we compare the variants on the level
of their validity sets (or, equivalently, satisfiable sentences). In most cases, they turn
out to be different. Also, we can usually show that one variant is a refinement of the
other in the sense that its set of validities strictly subsumes the validities induced by
the other variant.

In what follows, we write Val(ATLsem) to denote the set of ATL validities, or the
theory of ATL, under semantics sem. Likewise, we write Sat(ATLsem) for the set of
ATL formulae satisfiable in the semantics sem. Note that validity and satisfiability of
formulae in all cases considered in this paper is defined over the same class of models,
namely the class of imperfect information concurrent game structures. The concep-
tual reading of Val(ATLsem1

) ( Val(ATLsem2
) can be as follows: for “game boards”

given by iCGS’s, we have that the “game rules” in the ATLsem1 variant strictly refine
the rules in ATLsem2 . Note also that Val(ATLsem1) ( Val(ATLsem2) is equivalent to
Sat(ATLsem2

) ( Sat(ATLsem1
). Thus, an alternative reading is “ATLsem1

admits
reasoning about a larger variety of games than ATLsem2

”.
We will always prove inclusion results for the broadest possible language (usually

ATL∗) and non-inclusion results for the narrowest one (usually ATL). Clearly, for
languages L ⊆ L′, we have that Val(L′sem1

) ⊆ Val(L′sem2
) implies Val(Lsem1) ⊆

Val(Lsem2), and Val(Lsem1) 6( Val(Lsem2) implies Val(L′sem1
) 6( Val(L′sem2

).
Summary of the results. Figure 10 gives an overview of the results of Sections 5.3-
5.6. We show that almost all the semantic variants discussed here are different on the
level of validities, and that they show a strong pattern: perfect information is a special
case of imperfect information, perfect recall games are special case of memoryless
games, and properties of objective and subjective abilities of agents are incomparable.
Moreover, the type of information has more impact on the validities than the type of
recall in the more restricted language of ATL. Interestingly, for the richer languages
of ATL+ and ATL∗ this is not the case anymore.

Note that if we reverse the subsumption signs in Figure 10 then the graphs de-
scribe the hierarchy of satisfiable sentences in different semantics of ATL/ATL∗.
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Fig. 10 Comparison of validity sets induced by various semantics of (a) ATL∗, and (b) ATL. Arrows de-
pict strict subsumption of validity sets, e.g., “ATL∗Ir → ATL∗IR” means that Val(ATL∗Ir) ( Val(ATL∗IR).
Dotted lines connect semantic variants with incomparable validity sets. We do not include links that fol-
low from transitivity of the subsumption relation. Note: the hierarchy for ATL+ is exactly the same as for
ATL∗.

Remark 3 It is important to observe that comparing validities is not the same as com-
paring abilities. For example, subjective ability to enforce γ always implies objective
ability to enforce γ. Yet, as we show in Section 5.6, the set of validities for objective
ability does not subsume the one for subjective ability. It is tempting to think that it
should, because for every validity 〈〈A〉〉γ in the subjective semantics, 〈〈A〉〉γ must be
also valid in the objective semantics. On the other hand, what about validities stating
inability, i.e., ¬〈〈A〉〉γ? Should they adhere to the reverse subsumption? Either way,
this line of reasoning is totally misleading.

The reason for that is simple. Almost no formulae of type 〈〈A〉〉γ or ¬〈〈A〉〉γ are
validities of ATL in any semantics that we study. There are only two exceptions:
〈〈A〉〉> and ¬〈〈A〉〉⊥. Or, to be more precise, all formulae 〈〈A〉〉γ where γ is tautolog-
ically true (i.e., holds on all paths that can occur in any CGS) and ¬〈〈A〉〉γ where
γ is tautologically false (i.e., fails on all paths in all CGS’s). For a nontrivial abil-
ity (that is, one which refers to a temporal property that can, but does not have to
be true), a valid formula can only connect it to another kind of ability. For example,
〈〈A〉〉3p→ 〈〈A ∪B〉〉3p is valid in all the semantics considered in this paper.

5.1 Perfect Recall vs. Memoryless Play under Perfect Information (IR vs. Ir)

We first proceed to examine the impact of recall on the general strategic properties
of agent systems under prefect information. The inclusion results follow naturally
from the invariance theorems for tree-like unfoldings presented in Section 4. Non-
inclusion will be demonstrated by appropriate formulae (that are valid in one se-
mantics and not valid in another). We have already mentioned that, in ATL, the Ir-
and IR-semantics coincide (Proposition 1). As a consequence, they induce the same
validities: Val(ATLIr) = Val(ATLIR). Thus, regardless of the type of their recall,
perfect information agents possess the same abilities with respect to winning condi-
tions that can be specified in ATL. An interesting question is: Does it carry over to
more general classes of winning conditions, or are there (broader) languages that
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Fig. 11 Single-agent model M5: robot with multiple tasks

can discern between the two types of ability? The answer is: no, it doesn’t, and yes,
there are. The Ir- and IR-semantics induce different validity sets for ATL∗, and in
fact the distinction is already present in ATL+. Moreover, it turns out that perfect
recall can be seen as a special case of memoryless play in the sense of their general
properties.

Proposition 9 Val(ATL∗Ir) ⊆ Val(ATL∗IR)

Proof. Let an ATL∗-formula ϕ be Ir-valid in iCGS’s, then it is also Ir-valid in tree-
like CGS’s, and by Proposition 2 also IR-valid in tree-like CGS’s. Thus, by The-
orem 1, it is IR-valid in arbitrary CGS’s. Since indistinguishability relations do not
influence the semantic relation |=IR, we get that ϕ is IR-valid in iCGS’s. �

In particular, the subsumption holds for formulae of ATL+. Moreover:

Proposition 10 Val(ATL+
IR) 6⊆ Val(ATL+

Ir ).

Proof. Consider formula

Φ3 ≡ 〈〈a〉〉(3p1 ∧3p2)↔ 〈〈a〉〉3(p1 ∧ 〈〈a〉〉3p2 ∨ p2 ∧ 〈〈a〉〉3p1).

The formula is valid in ATL+
IR [33]. On the other hand, its right-to-left part is not

valid in ATL+
Ir . To see this, we take the single-agent CGS M5 from Figure 11

where agent a (the robot) can do the cleaning or deliver a package. Then, for p1 ≡
clean, p2 ≡ delivered, we have M5, q0 |=Ir

〈〈a〉〉3(p1∧〈〈a〉〉3p2∨p2∧〈〈a〉〉3p1) but
also M5, q0 6|=Ir

〈〈a〉〉(3p1 ∧3p2). �

Theorem 4 Val(ATLIr) = Val(ATLIR). However, Val(ATL+
Ir ) ( Val(ATL+

IR) and
Val(ATL∗Ir) ( Val(ATL∗IR).

Proof. From Proposition 1 it follows that Val(ATLIr) = Val(ATLIR). From Proposi-
tion 9 we know that Val(ATL∗Ir) ⊆ Val(ATL∗IR) and can also deduce that Val(ATL+

Ir ) ⊆
Val(ATL+

IR) because the language of ATL+ is just a syntactic restriction of the one
of ATL∗. Finally, Proposition 10 proves that Val(ATL+

Ir ) ( Val(ATL+
IR) and also

that Val(ATL∗Ir) ( Val(ATL∗IR) because the formula given in the proof of the very
proposition is in particular also an ATL∗-formula. �
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5.2 Perfect Recall vs. Memoryless Play under Imperfect Information (iR vs. ir)

Now we compare the memoryless and perfect recall semantics under uncertainty. We
treat the case of objective and subjective ability separately.

5.2.1 Imperfect Information: Objective Ability

Proposition 11 Val(ATL∗ior) ⊆ Val(ATL∗ioR).

Proof. We prove that Sat(ATL∗ioR) ⊆ Sat(ATL∗ior). Let ϕ ∈ Sat(ATL∗ioR). Then,
there must be a pointed iCGS (M, q) such that M, q |=ioR ϕ. By Theorem 2,
To(M, q), q |=ioR ϕ. But on ioR-tree unfoldings, iR- and ir-strategies coincide (Theo-
rem 2), so we get that To(M, q), q |=ior ϕ, and as a consequence ϕ ∈ Sat(ATL∗ior).
�

The converse does not hold:

Proposition 12 Val(ATLioR) 6⊆ Val(ATLior)

Proof. To show this, we take the ATL embedding of the CTL duality between com-
binators E2 and A3 (see Section 2.5). In fact, only one direction of the equivalence
is important here:

Φ4 ≡ ¬〈〈∅〉〉3¬p→ 〈〈Agt〉〉2p

(note that the other direction is valid for all the semantics considered in this paper,
and actually for all the reasonable semantics of strategic ability that one can come up
with).

First, we observe that: (i) ¬〈〈∅〉〉3¬p expresses (regardless of the actual type of
ability being considered) that there is a path in the system on which p always holds;
(ii) in the “objective” semantics the set out(q, sAgt) always consists of exactly one
path; (iii) for every path λ starting from q, there is an ioR-strategy sAgt such that
out(q, sAgt) = {λ}. From these, it is easy to see that Φ4 is valid in ATLioR.

Second, we consider model M6 in Figure 12.10 Let us take p ≡ ¬angry ∧
¬suspicious. Then, we have M6, q0 |=ior ¬〈〈∅〉〉3¬p but also M6, q0 6|=ior 〈〈Agt〉〉2p,
which demonstrates that Φ4 is not valid in ATLior. �

Theorem 5 Val(ATLior) ( Val(ATLioR), and similarly for ATL+ and ATL∗.

10 The example depicts some simple traps that await a married man if he happens to be absent-minded.
If he doesn’t kiss his wife in the morning, he is likely to make her angry. However, if he kisses her more
than once, she might get suspicious. It is easy to see that the absent-minded (i.e., memoryless) husband
does not have a strategy to survive safely through the morning, though a safe path through the model does
exist (λ = q0q1q1q1 . . . ).
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Fig. 12 Model M6 with Agt = {a}: dangers of marital life

5.2.2 Imperfect Information: Subjective Ability

Proposition 13 Val(ATL∗isr) ⊆ Val(ATL∗isR).

Proof. Analogous to Proposition 11. �

Proposition 14 Val(ATLisR) 6⊆ Val(ATLisr).

Proof. We take the formula Φ5 which is a consequence of the fixpoint equivalence for
〈〈a〉〉3p:

Φ5 ≡ 〈〈a〉〉 g〈〈a〉〉3p→ 〈〈a〉〉3p.

The formula states that if a has an opening move and a follow-up strategy to achieve
p eventually, then these can be integrated into a single strategy achieving p already
from the initial state. It is easy to see that Φ5 is valid in ATLisR, and that the single
strategy is just a concatenation of the two strategies that we get on the left hand side
of the implication. On the other hand, for the “poor duck model” M1 and p ≡ shot,
we get that M1, q0 |=isr 〈〈a〉〉 g〈〈a〉〉3p but also M1, q0 6|=isr 〈〈a〉〉3p, so Φ5 is not
valid in ATLisr. �

Theorem 6 Val(ATLisr) ( Val(ATLisR), and similarly for ATL+ and ATL∗.

5.3 Perfect vs. Imperfect Information under Memoryless Play (Ir vs. ir)

We continue by comparing perfect and imperfect information scenarios. That is, in
the first class (I ), agents recognize the current global state of the system by defini-
tion. In the latter (is/io), uncertainty of agents about states constrains their choices.
Firstly, we observe that perfect information can be seen as a special case of imperfect
information.

Proposition 15 Val(ATL∗isr) ⊆ Val(ATL∗Ir) and Val(ATL∗ior) ⊆ Val(ATL∗Ir).
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Proof. Since perfect information of agents can be explicitly represented in iCGS by
fixing all relations∼a as the minimal reflexive relations (q ∼a q′ iff q = q′), we have
that ϕ ∈ Sat(ATL∗Ir) implies ϕ ∈ Sat(ATL∗isr) and ϕ ∈ Sat(ATL∗ior). Thus, dually,
Val(ATL∗isr) ⊆ Val(ATL∗Ir) and Val(ATL∗ior) ⊆ Val(ATL∗Ir). �

Proposition 16 Val(ATLIr) 6⊆ Val(ATLisr).

Proof. We show this by presenting a validity for ATLIr which is not valid in ATLisr.
Consider the formula that captures the right-to-left direction in the fixpoint charac-
terization of 〈〈A〉〉3ϕ for single-agent teams and atomic propositions:

Φ1 ≡ (p ∨ 〈〈a〉〉 g〈〈a〉〉3p)→ 〈〈a〉〉3p

Φ1 is Ir-valid (cf. Section 2.5). To see its invalidity in the isr-semantics, consider
model M1 from Figure 5 on page 22. We recall that the story behind the model is
as follows. A man wants to shoot down a yellow rubber duck in a shooting gallery.
The man knows that the duck is in one of the two cells in front of him, but he does
not know in which one. Moreover, this has been a long party, and he is very tired,
so he is only capable of using memoryless strategies at the moment. Does he have a
memoryless strategy which he knows will achieve the goal? No. He can either decide
to shoot to the left, or to the right, or reach out to the cells and look what is in (note
also that the cells close in the moment after being opened). In each of these cases the
man risks that he will fail (at least from his subjective point of view). Can he identify
an opening strategy that will guarantee his knowing how to shoot the duck in the next
moment? Yes. The opening strategy is to look; if the system proceeds to q4 then the
second strategy is to shoot to the left, otherwise the second strategy is to shoot to the
right.

Indeed, for p ≡ shot, we get M1, q0 |=isr p ∨ 〈〈a〉〉 g〈〈a〉〉3p and M1, q0 6|=isr

〈〈a〉〉3p, which formally concludes our proof. �

Proposition 17 Val(ATLIr) 6⊆ Val(ATLior).

Proof. It is sufficient to show that Φ1 ≡ (p ∨ 〈〈a〉〉 g〈〈a〉〉3p) → 〈〈a〉〉3p is invalid
in the ior-semantics. Take model M2 in Figure 13 and p ≡ shot. Now we have that
M2, q

′
0 |=ior p ∨ 〈〈a〉〉 g〈〈a〉〉3p because a has a uniform strategy that objectively

achieves 3p in q0 (sa(q) = shootL for every q) and another uniform strategy in q1
(s′a(q) = shootR for every q). However, sa and s′a cannot be merged into a single
uniform strategy, and indeed M2, q

′
0 6|=ior 〈〈a〉〉3p, which concludes the proof. �

Note that, for ATLior, formula Φ1 is valid in single-agent models, so we really
needed to add another agent to the picture.

The following theorems are straightforward consequences.

Theorem 7 Val(ATLisr) ( Val(ATLIr), Val(ATL+
isr) ( Val(ATL+

Ir ), and
Val(ATL∗isr) ( Val(ATL∗Ir).

Theorem 8 Val(ATLior) ( Val(ATLIr), and similarly for ATL+ and ATL∗.

By Proposition 1 and Theorems 4, 7, and 8, we get the following corollary:

Corollary 1 Val(ATLisr) ( Val(ATLIR) and Val(ATLior) ( Val(ATLIR), and sim-
ilarly for ATL+ and ATL∗.
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Fig. 13 Modified “poor duck” modelM2 with two agents a, b. This time, we explicitly represent the agent
(b) who puts the duck in one of the cells.

5.4 Perfect vs. Imperfect Information under Perfect Recall Play (IR vs. iR)

First, we observe that for ATLioR vs. ATLIR we can employ the same reasoning as
for for ATLior vs. ATLIr. Abilities under perfect information can be still seen as a
special case of imperfect information abilities, and we can use the same model M2 to
invalidate the same formula Φ1 in ATLioR. Thus, analogously to Theorem 8 we get:

Theorem 9 Val(ATLioR) ( Val(ATLIR), and similarly for ATL+ and ATL∗.

By the same reasoning as above, Val(ATLisR) ⊆ Val(ATLIR). To settle the other
direction, we need to use another counterexample, though.

Proposition 18 Val(ATLIR) 6⊆ Val(ATLisR).

Proof. This time we consider the other direction of the fixpoint characterization for
〈〈a〉〉3p:

Φ2 ≡ 〈〈a〉〉3p→ (p ∨ 〈〈a〉〉 g〈〈a〉〉3p).

Φ2 is IR-valid, but it is not valid in isR. Consider a modification of the “poor duck
model” in Figure 14 (the party goes on, and the man is not even able to reach out
and look anymore; the cells are open initially but they will close in a moment). Take
p ≡ shot. We have that M3, q4 |=isR 〈〈a〉〉3p, but M3, q4 6|=isR p ∨ 〈〈a〉〉 g〈〈a〉〉3p,
which concludes the proof. �

Theorem 10 Val(ATLisR) ( Val(ATLIR), and similarly for ATL+ and ATL∗.
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Fig. 14 Variant of “poor duck” after a particularly long party (model M3)

5.5 Mixed Setting: Information vs. Memory (Ir vs. iR)

In this section we compare abilities if both dimensions change. For ATL we already
know the complete picture because ATLIr and ATLIR are the same logics, cf. Fig-
ure 10(b). For ATL∗ it remains to compare ATL∗Ir, ATL∗ioR, and ATL∗isr.

To facilitate proofs, we define an additional temporal operator N (“now”) as Nϕ ≡
ϕU ϕ. Note that M, λ |= Nϕ iff M, λ |= ϕ in the semantics of CTL∗ and any
ATL-semantics that we have discussed in this paper. Moreover, we note that the
formula 〈〈A〉〉Nϕ expressesEAϕ (everybody inA knows that ϕ) if 〈〈A〉〉 is interpreted
according to the subjective semantics for imperfect information (i.e., according to
|=isR and |=isr ).

Theorem 11 The sets Val(ATL∗isR) and Val(ATL∗Ir) are incomparable, and similarly
for ATL+.

Proof. We prove incomparability for ATL+. From this, incomparability for ATL∗
follows immediately.

1. Val(ATL∗Ir) 6⊆ Val(ATL∗isR). Suppose that Val(ATL∗Ir) ⊆ Val(ATL∗isR). This
implies that Val(ATLIr) ⊆ Val(ATLisR) and by Theorem 4 Val(ATLIR) ⊆
Val(ATLisR). But this contradicts Theorem 10.

2. Val(ATL∗isR) 6⊆ Val(ATL∗Ir). For this case we consider the ATL+-formula

Φ6 = 〈〈Agt〉〉3〈〈Agt〉〉N(p1 ∧ 〈〈Agt〉〉3p2)→ 〈〈Agt〉〉(3p1 ∧3p2)

which is a validity of ATL+
isR but not of ATL+

Ir . The latter fact can be shown
by the same counterexample as used in the proof of Proposition 10 (we have
M5, q0 6|=Ir

Φ6).
It remains to show that Φ6 ∈ Val(ATL+

isR). Suppose that
M, q |=isR 〈〈Agt〉〉3〈〈Agt〉〉N(p1 ∧ 〈〈Agt〉〉3p2). That is, there is an iR-strategy
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sAgt such that for all λ ∈ out is(q, sAgt) there is an i ≥ 0 and an iR-strategy s′Agt
such that for all λ′ ∈ out is(λ[i], s′Agt) we have that λ′[0] |= p1 and there is an iR-
strategy s′′Agt such that for all λ′′ ∈ out is(λ′[0], s′′Agt) it holds that M, λ′′ |= 3p2.
Because we have that {q′ | q′ ∼Agt λ[i]} = {q′ | q′ ∼Agt λ′[0]}, we can take
s′Agt as s′′Agt. Then, we have that M, q |=isR 〈〈Agt〉〉3〈〈Agt〉〉N(p1 ∧ 〈〈Agt〉〉3p2)

iff there is an iR-strategy sAgt such that for all λ ∈ out is(q, sAgt) there is an
i ≥ 0 and an iR-strategy s′Agt such that for all λ′ ∈ out is(λ[i], s′Agt) we have that
λ′[0] |= p1 and M, λ′ |= 3p2.
Now, it is easy to see that we can combine sAgt and each s′Agt to a single strategy
ŝAgt such that for all λ ∈ out is(q, ŝAgt) it holds that M, λ |= 3p1 ∧ 3p2. This
shows that M, q |= 〈〈Agt〉〉(3p1 ∧3p2).

�

Apart from minor modifications, the next theorem, considering objective ability,
is proven along the same lines.

Theorem 12 The sets Val(ATL∗ioR) and Val(ATL∗Ir) are incomparable, and similarly
for ATL+.

Proof. Again, we prove incomparability for ATL+. From this, incomparability for
ATL∗ follows immediately.

1. Val(ATL∗Ir) 6⊆ Val(ATL∗ioR). Suppose that Val(ATL∗Ir) ⊆ Val(ATL∗ioR). This
implies that Val(ATLIr) ⊆ Val(ATLioR) and by Theorem 4 Val(ATLIR) ⊆
Val(ATLioR). But this contradicts Theorem 9.

2. Val(ATL∗ioR) 6⊆ Val(ATL∗Ir). For this case we consider the ATL∗-formula

ϕ = 〈〈Agt〉〉3(p1 ∧ 〈〈Agt〉〉3p2)→ 〈〈Agt〉〉(3p1 ∧3p2)

which is a validity of ATL∗ioR but not of ATL∗Ir. The latter is shown by the same
counterexample as used in the proof of Proposition 10 (we have M5, q0 6|=Ir

ϕ).
Finally, it remains to show that ϕ ∈ Val(ATL∗ioR). This part is proven following
the same idea as in the proof of Theorem 11. We observe that every strategy sAgt
of the grand coalition generates a unique path wrt. objective ability (because, in
the objective semantics, possible paths starting from epistemic alternatives are
not considered). This also means that uniformity of a strategy does not matter:
there is no need to ever consider epistemic alternatives along a path. Hence, the
two strategies witnessing 〈〈Agt〉〉3(p1∧〈〈Agt〉〉3p2) can be combined to a single
strategy witnessing 〈〈Agt〉〉(3p1 ∧3p2).

�

5.6 Between Subjective and Objective Ability for Imperfect Information (is vs. io)

Finally, we compare validity sets for the semantic variants of ATL that differ on the
outcome paths which are taken into account, i.e., whether only the paths representing
the “objectively” possible courses of action are considered, or all the executions that
are “subjectively” possible from the agents’ perspective.
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Proposition 19 Formula Φ2 ≡ 〈〈a〉〉3p→ p∨ 〈〈a〉〉 g〈〈a〉〉3p is valid in ATLioR and
ATLior, but invalid in ATLisR and ATLisr.

Proof. We first prove validity of Φ2 in ATLior, which implies also validity in ATLioR

by Proposition 11. Suppose that M, q |=ior 〈〈a〉〉3p, then there must be an ir-strategy
sA that enforces 3p for every execution starting from q. But then, if p is not the case
right at the beginning, sA must lead to a next state from which it enforces 3p.

For the second part, invalidity of Φ2 in ATLisR was already proved in Proposi-
tion 18. Thus, by Proposition 13, Φ2 is not valid in ATLisr, too. �

In the next result we make use of the operator N introduced in Section 5.5.

Proposition 20 Formula

Φ8 ≡ 〈〈a〉〉N〈〈c〉〉 g〈〈a〉〉 gp→ 〈〈a, c〉〉3p

is valid in ATLisR and ATLisr, but invalid in ATLioR and ATLior.

Proof. Analogously to Proposition 19, we prove the validity of Φ8 in ATLisr, and its
invalidity in ATLioR.

First, let M, q |=isr 〈〈a〉〉N〈〈c〉〉 g〈〈a〉〉 gp. Then, for every state q′ ∈ [q]∼a , c
has an ir-strategy sq

′

c that enforces g〈〈a〉〉 gp from [q′]∼c
. By combining all these

strategies into an ir-strategy sc (we can do it since the startegies sq
′

c are success-
ful for whole indistinguishability classes of c), we have that sc enforces g〈〈a〉〉 gp
from every state in [q]∼{a,c} , regardless of what the other players do (in particular,
regardless of what a does). But then, for every execution λ of sc from [q]∼{a,c} ,
a will have a choice to enforce gp from [λ[1]]∼a

. Again, collecting these choices
together yields an ir-strategy sa (we can fix the remaining choices arbitrarily). By
taking s{a,c} = (sa, sc), we get a strategy for {a, c} that enforces that p will be true
in two steps, from every state in [q]∼{a,c} . Hence, also M, q |=isr 〈〈a, c〉〉3p.

For the invalidity, consider the modified poor duck model M2 from Figure 13
augmented with additional agent c that has no choice (i.e., at each state, it has only a
single irrelevant action wait available). Let us denote the new iCGS by M ′3, and
let p ≡ shot. It is easy to see that M ′2, q

′
0 |=ioR 〈〈c〉〉 g〈〈a〉〉 gp, and hence also

M ′2, q
′
0 |=ioR 〈〈a〉〉N〈〈c〉〉 g〈〈a〉〉 gp. On the other hand, M ′2, q

′
0 6|=ioR 〈〈a, c〉〉3p, which

concludes the proof. �

The following is an immediate consequence.

Theorem 13 For every y, z ∈ {R, r}, the sets Val(ATLisy) and Val(ATLioz) are
incomparable, and similarly for ATL+ and ATL∗

6 Conclusions

In this paper, we compare validity sets for different semantic variants of alternating-
time temporal logic. In other words, we compare the general properties of games
induced by different notions of ability. It is clear that changing the notions of strategy
and success in a game leads to a different game. The issue considered here is whether,
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given a class of games, such a change leads to a different class of games, too. And, if
so, what is the precise relationship between the two classes.

A summary of the results is presented in Figure 10 on page 30. The first and most
important conclusion is that almost all the semantic variants discussed here are indeed
different on the level of general properties they induce; before our study, it was by no
means obvious. Moreover, our results show a very strong pattern: perfect information
is a special case of imperfect information, perfect recall games are special case of
memoryless games, and properties of objective and subjective abilities of agents are
incomparable.

The relationships seem very natural, but they were surprisingly nontrivial to prove.
This is best witnessed by Section 4 which comprises a third part of the paper only
to construct appropriate tree-like unfoldings, and prove their equivalence to the orig-
inal models. While embedding of perfect information in imperfect information is
straightforward, the same cannot be said about embedding perfect recall in memory-
less semantics – except when we disallow nested modalities. Consider e.g. the truth
of formula 〈〈a〉〉2〈〈a, b〉〉3p in a pointed iCGS (M, q). Let sa be a’s strategy that
enforces 〈〈a, b〉〉3p to be always the case (suppose that such a strategy exists). After
a history h, agent a has different information when executing sa (because the agent
has collected observations along h from the root until now) than when we evalu-
ate 〈〈a, b〉〉3p in the last state of h (here, the collecting of observations starts anew).
In consequence, the “straightforward” unfolding of (M, q) endows agents with too
much information when nested strategic formulas are evaluated, and the correctness
of the construction is not automatic. For objective abilities, we prove that the standard
unfolding still works because path formulae of ATL∗ (that can be seen as “winning
conditions” in the corresponding game) do not discern between the two epistemic
positions. For subjective abilities, the unfolding does not work, but it can be recov-
ered by a technical construction with “hanging” subtrees added to the basic tree. This
construction is among the main contributions of this paper.

Technical subtleties aside, the most interesting contribution lies possibly in our
non-inclusion results. First, they show that the language of ATL is sufficiently ex-
pressive to distinguish between the main notions of ability. Moreover, non-inclusion
is demonstrated on formulae encoding intuitive and well known properties, like fix-
point characterizations of strategic/temporal modalities and the duality between nec-
essary and obtainable outcomes. It is important to see in which semantics the formu-
lae hold, and in which they do not hold. Finally, although the proofs of non-inclusion
are very comprehensive (since they are based on counterexamples), finding the coun-
terexamples required expertise and was not straightforward either.

Another interesting outcome of the study is that the type of information has
strictly more impact on validities than the type of recall in the language of ATL
but not in ATL∗. In particular the validity sets of ATL∗Ir and ATL∗iR are incomparable.
This suggests that ATL∗ allows to specify significantly subtler properties of strategic
play than the more restricted language of ATL.
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validity of fixpoint properties in various semantics of ATL, and anonymous reviewers
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A Proofs

A.1 Proofs of Section 4.2

The following Lemma is obvious by the definition of ioR-tree unfoldings. It states that that nodes group
indistinguishable in the tree unfolding are also group indistinguishable in the model if interpreted as his-
tories.

Lemma 1 Let M be an iCGS, h1 and h2 two nodes in its ioR-tree unfolding, and A ⊆ Agt a group of
agents. If h1 ∼To(M,q)

A h2 then h1 ≈M
A h2.

Moreover, we have that all histories indistinguishable in the model are also indistinguishable in the
tree if only states reachable from the current state are considered.

Lemma 2 Let M be an iCGS,A ⊆ Agt and h a node in To(M, q). Then, for all h1, h2 ∈ ΛM(last(h))
we have that

if h1 ≈M
A h2 then h(h1[1,∞]) ∼To(M,q)

A h(h2[1,∞]).

Theorem 2 ( page 21). For every iCGS M, state q in M, and ATL∗-formula ϕ we have:

M, q |=ioR ϕ iff To(M, q), q |=ioR ϕ iff To(M, q), q |=ior ϕ.

Proof. We show that, for every node h in To(M, q), it holds that M, last(h) |=ioR ϕ iff To(M, q), h |=ior
ϕ. Then, the claim follows by Propositions 4 and 5 and for h = q. The proof is done by induction on the
structure of ϕ.
Base cases:
Propositional case: Straightforward.
Case: ϕ ≡ 〈〈A〉〉γ where γ contains no nested strategic modalities.

“⇒”: Suppose that M, last(h) |=ioR 〈〈A〉〉γ. So, there is an ioR-strategy sA such that

(?) ∀λ ∈ outM(last(h), sA) : M, λ |=ioR γ.

We construct the memoryless strategy s′A in To(M, q) as follows: s′a(ĥh
′) = sa(last(h)h′) for

every a ∈ A and ĥ such that h ∼To(M,q)
A ĥ. For all other histories h′′ (which do not have the

form ĥh′) we define s′a(h
′′) arbitrarily but in a uniform way. It is easy to see that s′A is uniform:

For two histories h1 = ĥ′h′ and h2 = ĥ′′h′′ with ĥ′ ∼To(M,q)
A h and ĥ′′ ∼To(M,q)

A h and

h1 ∼To(M,q)
A h2 we have s′A(h1) = s′A(h2); for, h1 ∼To(M,q)

A h2 implies h1 ≈M
A h2 (by

Lemma 1) and thus sA(last(h)h′) = sA(last(h)h′′).
By construction of s′A we have that

last(h)q1q2 · · · ∈ outM(last(h), sA) iff (h)(hq1)(hq1q2) · · · ∈ outTo(M,q)(h, s
′
A).

Since the valuation of propositions does only depend on the final state of a history and by (?) we have
To(M, q), h |=ior 〈〈A〉〉γ.

⇐: Suppose we have To(M, q), h |=ior 〈〈A〉〉γ. So there is an ior-strategy sA such that

(?) ∀λ ∈ outTo(M,q)(h, sA) : To(M, q), λ |=ior γ.

We construct a witnessing ioR-strategy s′A in M as follows: s′a(ĥ) = sa(hh′) for every a ∈ A

and ĥ such that last(h)h′ ≈M
a ĥ and last(h)h′ ∈ Λfin

M (last(h)). We define s′a arbitrarily for all
other histories with the condition to assign the same actions to indistinguishable histories in M. The
definition of s′a does only take into account the subtree starting at h. Then, by Lemma 2 we have that
strategy s′A is uniform by construction. Note, that it may differ from sA but only for histories which
are not realizable given that the initial state is last(h).
By construction of s′A, we also have
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Fig. 15 General setting of the proof of Proposition 7.

(h)(hq1)(hq1q2) · · · ∈ outTo(M,q)(h, sA) iff last(h)q1q2 · · · ∈ outM(last(h), s′A).

Since the valuation of propositions does only depend on the final state of a history and by (?) we have
M, last(h) |=ioR 〈〈A〉〉γ.

Induction step:

Case: ϕ ≡ ψ1 ∧ ψ2. Straightforward.
Case: ϕ ≡ ¬ψ. M, last(h) |=ioR ¬ψ iff not M, last(h) |=ioR ψ iff (by induction hypothesis) not

To(M, q), h |=ioR ψ iff To(M, q), h |=ioR ¬ψ.
Case: ϕ ≡ 〈〈A〉〉γ. By induction hypothesis we have for each history h in To(M, q) and each strict state-

subformula ϕ′ of γ that M, last(h) |=ioR ϕ′ iff To(M, q), h |=ior ϕ′. For any maximal strict
subformula ϕ′ of ϕ we label all states h in To(M, q) and states last(h) in M with a new proposition
pϕ′ iff ϕ′ holds in this very state. Then, we replace each ϕ′ in ϕ with proposition pϕ′ . This yields a
formula without nested modalities and the claim follows by induction.

�

A.2 Proofs of Section 4.3

In this section we give all details needed to prove Theorem 3. The structure of the proof is shown in
Figure 9 on page 28.

The following lemma is essential to show that truth in isR-pando-like models is insensitive to the type
of available strategies (memoryless vs. perfect recall). The lemma is needed to show that a uniform perfect
recall strategy in the pando-like model gives rise to a uniform memoryless strategy. Therefore, we have to
show that two states which are indistinguishable in the model give rise to indistinguishable histories.

Lemma 3 Let M be an isR-pando like iCGS and q, q1, q̂1, q2, q̂2 ∈ St where qi is reachable from q̂i,
i.e. ρ(q̂i, qi) 6= ε, for i = 1, 2. Moreover, let q̂1 ∼M

b q ∼M
c q̂2 for some b, c ∈ A and q1 ∼M

a q2. Then,
we have that ρ(q̂1, q1) ≈M

a ρ(q̂2, q2).

Proof. The setting is illustrated in Figure 15. In the following we consider all possibilities how q, q̂1, q̂2,
q1, and q2 can be located. We recall that ρMk

(q′) = q′ means that q′ is the root node of model Mk . We
assume that k, l,m ∈ I where I is the index set from Definition 16.

Case 1: q1∼̂aq2. Let q1 ∈Mk and q2 ∈Ml, k 6= l.
Case 1.1: ρMk

(q1) = q1. That is, q1 is the root node of Mk . We have q̂1 = q1 ∼M
b q. Then, by

Definition 16.5 |ρ(q̂2)| = |ρ(q2)| which implies q̂2 = q2. Hence, we have ρMk
(q̂1, q1) =

q1 ≈M
a ρMl

(q̂2, q2) = q2 and are done.
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Case 1.2 ρMk
(q2) = q2. Analogously to Case 1.1.

Case 1.3 ρMk
(q1)≈̂M

a ρMl
(q2) and both q1 and q2 are not root nodes.

Case 1.3.1 q̂1∼̂M
b q. Let q ∈ Stm with m 6= k.

Case 1.3.1.1 ρMk
(q̂1) = q̂1. Then, q̂1∼̂M

a q
′ where q′ ∈ St l is the root node of Ml. But

then, by Definition 16.5 we have |ρ(q′)| = |ρ(q̂2)| and thus ρMl
(q̂2) = q̂2. This

proves that ρMk
(q̂1, q1) ≈M

a ρMl
(q̂2, q2).

Case 1.3.1.2 ρMm (q) = q. Again, by Definition 16.5 following the same reasoning as in
Case 1.3.1.1 we obtain ρMl

(q̂2) = q̂2. Showing that ρMk
(q̂1, q1) ≈M

a ρMl
(q̂2, q2).

Case 1.3.1.3 ρMk
(q̂1)≈̂M

a ρMm (q) and neither q̂1 nor q are root nodes. Then, we either
have that l = m and ρMl

(q̂2)≈M
a ρMl

(q) which implies that ρMk
(q̂1, q1)≈̂M

a
ρMl

(q̂2, q2). Or, l 6= m and we have to distinguish again two cases. If q̂2 is the
root node; then, it is connected with the root q′ ∈ Stk of Mk by ∼M

a . We have
q′ ∼M

a q̂2 ∼M
c q ∼M

b q̂1 and by Definition 16.5 it must be the case that |ρ(q′)| =
|ρ(q̂1)|. Contradiction.
Hence, we can safely assume that q̂2 is not a root. Then, ρMl

(q̂2)≈M
c ρMm (q) ≈M

b
ρMk

(q̂1). So, all these states are on the same height level which implies that
ρMk

(q̂1, q1) ≈M
a ρMl

(q̂2, q2).
Case 1.3.2 q̂2∼̂M

a q. Analogously to Case 1.3.1
Case 1.3.3 q̂1 ∼Mk

a q or q̂2 ∼Ml
a q. In each of these cases it means that either q 6∈ Stk or

q 6∈ St l as k 6= l. Case 1.3.1 or Case 1.3.2 applies.

Case 2: q1 ∼Mk
a q2. Then, by definition k = l and ρMk

(q1) ≈M
a ρMk

(q2).
Case 2.1: q ∈ Stk . We have |ρMk

(q̂1)| = |ρMk
(q)| = |ρMk

(q̂2)| which follows from the as-

sumption q̂1 ∼Mk
b q ∼Mk

c q̂2; hence also, ρMk
(q̂1, q1)≈̂M

a ρMk
(q̂2, q2).

Case 2.2: q ∈ Stm, m 6= k. Then, we have q̂1∼̂M
b q∼̂

M
c q̂2. Again we have to distinguish the dif-

ferent cases how q is connected to q̂1 and q̂2 respectively.
Case 2.1.1 ρMm (q) = q. That is, we assume that q is a root node. By Definition 16.5 we have

|ρ(q̂1)| = |ρ(q̂2)| and ρ(q̂1, q1) ≈M
a ρ(q̂2, q2) follows.

Case 2.1.2 ρMm (q) 6= q. We have ρMk
(q̂1)≈̂M

b ρMl
(q) and ρMk

(q̂2)≈̂M
c ρMl

(q) which im-
plies |ρMk

(q̂1)| = |ρMm (q)| = |ρMk
(q̂2)| and hence ρMk

(q̂1, q1) ≈M
a ρMk

(q̂2, q2).�

The next lemma analyses the structure of two indistinguishable nodes from subsequent tree levels.

Lemma 4 Let M be an iCGS, q a state in it, h1 ∈ ∆i
M(q), h2 ∈ ∆i+1

M (q), and h1 ∼Ts(M,q)
a h2 for

some i ∈ N0. Then, we have that lastr(h1) ∼M
a rel(h2).

Proof. By definition, we have that ref (h2) ∼Ts(M,q)
a h1 and lastr(ref (h2)) ∼M

a rel(h2). Because
ref (h2) ∈ ∆i

M(q) we also have rel(h1) ≈M
a rel(ref (h2)), and hence lastr(h1) ∼M

a lastr(ref (h2)).
The claim follows because lastr(ref (h2)) ∼M

a rel(h2) and by the transitivity of ∼M
a . �

The next lemma states that nodes which are indistinguishable for a group of agents must be located
on subsequent or the same level of the pando unfolding; moreover, it characterizes the structure of these
nodes.

Lemma 5 Let M be an iCGS, q a state in it, and A ⊆ Agt be a group of agents. Then, for all h ∈
StTs(M,q) there is an i ∈ N0 such that for all h′ ∈ StTs(M,q) with h(∼Ts(M,q)

A )∗h′ we have that

h, h′ ∈ ∆i
M(q)∪∆i+1

M (q); moreover, if h′ ∈ ∆i+1
M (q) h(∼Ts(M,q)

A )∗h′ and there is an h′′ ∈ ∆i
M(q)

with h(∼Ts(M,q)
A )∗h′′ then rel(h′) ∈ StM and jump(h′) ∈ A.

Proof. We write Ts for Ts(M, q) and ∆i for ∆i
M(q) and so on. We proceed by induction on the length

of the epistemic path h′ = h1 ∼a1 · · · ∼al+1 hl+1. We show the following: (i) if hj ∈ ∆i for all
j = 1, . . . , l then hl+1 ∈ ∆i−1 ∪ ∆i ∪ ∆i+1; if this is not the case then (ii) if hj ∈ ∆i ∪ ∆i+1

for all j = 1, . . . , l then hl+1 ∈ ∆i ∪ ∆i+1 and for each hj ∈ ∆i+1 we have that rel(hj) ∈ St ,
jump(hj) ∈ A, and ref (hj) ∈ ∆i.
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Base case: The case for h ∼a h′ is clear by definition.
Induction step: Suppose we have h′ = h1 ∼a1 · · · ∼al hl satisfying the assumption and assume that
hl ∼al+1 hl+1. Firstly, assume that case (i) applies; that is, that all hj ∈ ∆i for j = 1, . . . , l. By
definition hl+1 ∈ ∆i−1 ∪∆i ∪∆i+1. Moreover, if hl+1 ∈ ∆i+1 then it must have the required form
h′′âq′ by Definition 17 (c).

We consider case (ii). Firstly, suppose that hl ∈ ∆i+1 and hl = h′âlq
′. We consider hl ∼al+1

hl+1. By definition hl+1 ∈ ∆i ∪ ∆i+1 ∪ ∆i+2. If hl+1 ∈ ∆i+1 it also has the required form. For
the sake of contradiction, suppose that hl+1 ∈ ∆i+2. Then, hl+1 = h′′âl+1q

′′ for some h′′ ∈ ∆i+1

with h′′ ∼al+1 hl. In this case, h′′ does also have the form h′′ = h′′′âlq
′′′ and therewith hl+1 =

h′′′âlq
′′′âl+1q

′′ contradicting hl+1 ∈ ∆i+2 by definition of the sets ∆j .
Secondly, if hl ∈ ∆i we have that hl+1 ∈ ∆i−1∆i ∪∆i+1 and that hl+1 has the required form

if hl+1 ∈ ∆i+1 following the very same reasoning as in case (i). Moreover, it cannot be the case that
hl+1 ∈ ∆i−1. To see this, we observe that there is some hu with 1 ≤ u < l + 1, hu ∈ ∆i+1 and
hl+1(∼Ts

A )∗hu. Now the the reasoning of the previous case can be applied to obtain a contradiction. �

The next lemma states that the relevant parts (i.e. histories) of two states of the pando unfolding are
group indistinguishable in the model if the states are group indistinguishable in the pando unfolding and
are located within the same tree (i.e. share the same root node).

Lemma 6 Let h1(∼Ts
A )∗h2. If there is an i ∈ N0 with h1, h2 ∈ ∆i then rel(h1)(≈M

A )∗rel(h2).

Proof. The poof is done by induction on the number of epistemic steps between h1 and h2. More precisely,
we show that for all h′ with h1(∼Ts

A )∗h′ we have that

(i) rel(h1)(≈M
A )∗rel(h′) if h′ ∈ ∆i;

(ii) ref (h′)(∼Ts
A )∗h1 and lastr(h1)(∼M

A )∗lastr(ref (h′)) if h′ ∈ ∆i+1;
(iii) and rel(h1)(∼M

A )∗lastr(h′) if h′ ∈ ∆i−1 (and i > 0).

The base cases are clear by definition. We assume that h1(∼Ts
A )∗h′, i > 0 and we show that h2 with

h1(∼Ts
A )∗h′ ∼Ts

a h2 for a ∈ A satisfies the property of the lemma.

Case: h′ ∈ ∆i and h2 ∈ ∆i. By definition rel(h′) ≈M
a rel(h2) and by induction rel(h1)(≈M

A )∗rel(h′);
hence, rel(h1)(≈M

A )∗rel(h2).
Case: h′ ∈ ∆i and h2 ∈ ∆i+1. By induction, rel(h1)(≈M

A )∗rel(h′) and in particular, lastr(h1) ∼∗A
lastr(h′). By Lemma 4 lastr(h′) ∼M

a rel(h2). This shows that, lastr(h1)(∼M
A )∗rel(h2) ∼M

a
lastr(ref (h2)).

Case: h′ ∈ ∆i and h2 ∈ ∆i−1. By definition h2 ∼Ts
A ref (h′) and rel(h′) ∼M

A lastr(h2); hence,
rel(h′) ∈ StM. Thus, by induction rel(h1)(∼M

A )∗rel(h′) and by Lemma 4 rel(h′) ∼M
a lastr(h2).

This shows that rel(h1)(∼M
A )∗lastr(h2).

Case: h′ ∈ ∆i−1 and h2 ∈ ∆i−1. Follows immediately.
Case: h′ ∈ ∆i−1 and h2 ∈ ∆i. We have rel(h1)(∼M

A )∗lastr(h′). By Lemma 4 rel(h2) ∼M
a lastr(h′)

and hence rel(h1)(∼M
A )∗rel(h2). The claim follows as rel(h1), rel(h2) ∈ StM.

Cases where h′ ∈ ∆j and h2 ∈ ∆k with |j − k| > 1 are not possible due to Lemma 5. �

Lemma 7 For all q in M and all i, j ∈ N0 with i 6= j we have that ∆i
M(q) ∩∆j

M(q) = ∅.

Lemma 8 Let M be an iCGS, q a state in it, and a ∈ Agt. Every relation ∼Ts(M,q)
a is an equivalence

relation.

Proof. We write Ts for Ts(M, q). Reflexivity and symmetry of epistemic relations in Ts are clear from
the definition of isR-pando unfoldings, but we need to prove transitivity. Suppose that h1 ∼Ts

a h2 and
h2 ∼Ts

a h3. We have to show that h1 ∼Ts
a h3. The proof is done by induction on the level ∆i. The base

case for ∆0 is clear from the transitivity of the standard indistinguishability relation ≈M
a . By Lemma 5

(and the symmetry of ∼Ts ) it is sufficient to consider the following cases (we assume that i > 0):

h1, h2, h3 ∈ ∆i: Follows by the transitivity of ≈M
a (induction hypothesis).
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h1, h2 ∈ ∆i, h3 ∈ ∆i+1: From h1 ∼Ts
a h2 it follows that rel(h1) ≈M

a rel(h2); and from h2 ∼Ts
a

h3 that ref (h3) ∼Ts
a h2 and lastr(ref (h3)) ∼M

a rel(h3). Furthermore, because ref (h3) ∈ ∆i

we can deduce from the transitivity of ∼Ts
a (and by induction) that ref (h3) ∼Ts

a h1 and hence
h3 ∼Ts

a h1 by definition.
h1 ∈ ∆i, h2, h3 ∈ ∆i+1: We have that ref (h2) ∼Ts

a h1 and lastr(ref (h2)) ∼Ts
a rel(h2) and

jump(h2) = a. Then, we also have that rel(h2) ≈Ts
a rel(h3) and jump(h3) = jump(h2) = a

and ref (h2) ∼Ts
a ref (h3) proving that also h1 ∼Ts

a h3 by induction.
h1, h3 ∈ ∆i, h2 ∈ ∆i+1: We have that ref (h2) ∼Ts

a h1 and lastr(ref (h2)) ∼Ts
a rel(h2) and

jump(h2) = a and ref (h2) ∼Ts
a h3 and thus h1 ∼Ts

a h3 (by induction).
h1, h3 ∈ ∆i+1, h2 ∈ ∆i: We have that ref (h1) ∼Ts

a h2 and lastr(ref (h1)) ∼Ts
a rel(h1) and

jump(h1) = a and ref (h3) ∼Ts
a h2 lastr(ref (h3)) ∼Ts

a rel(h3) and jump(h3) = a. But
then by induction ref (h1) ∼Ts

a ref (h3) and rel(h1) ∼M
a rel(h3) which shows that h1 ∼Ts

a h3.

�

Proposition 8 ( page 29). The isR-pando unfolding of a pointed iCGS is isR-pando-like.

Proof. Let M be an iCGS and Ts its isR-pando unfolding. For each h ∈ St ′ with |rel(h)| = 1 we define
Sth as the set of states/histories in St ′ reachable from h, i.e. Sth = {h′ ∈ St ′ | ρTs (h, h

′) 6= ε}.
Let Mh denote the submodel of Ts which does only consist of states Sth and in which the domain of all
elements is restricted to Sth. Moreover, we take I = {h ∈ St | |rel(h)| = 1}.
Claim: We have that St ′ =

⊎
h∈I Sth and each Mh is ioR-tree-like.

Proof of claim: Clearly, all sets Sth are mutually disjoint and each h ∈ St has to occur in some Sth. It
is also obvious that each Mh has tree-structure. Now suppose h1, h2 ∈ Sth with h1 ∼Ts

a h2; then, by
definition also h1 ≈M

a h2. Q.e.d.
We proceed with the main proof and define ∼̂a as the subset of ∼Ts

a which exists between sets
Sth and Sth′ with h 6= h′. From Lemma 8 it follows that ∼Ts

a is transitive and that ∼̂a is symmetric.
Moreover, by definition ∼̂a ∩ (Sth × Sth) = ∅ for all h ∈ St ′.

The fourth condition of Definition 16 is obvious from the definition of the isR-pando unfolding. It
remains to show the fifth condition of Definition 16. Suppose h1, h′1 ∈ St h̄1

and h1(∼Agt)
∗h′1. Then,

also h1, h′1 ∈ ∆i for some i. From Lemma 6 we obtain that rel(h1)(≈M
Agt)

∗rel(h′1), i.e. that both nodes
reside on the same level.

�

The following two lemmata are needed to prove Theorem 3. The first lemma states that the set of
epistemic alternatives to any state is the same in the model and in the pando unfolding.

Lemma 9 Let M be an iCGS and q0 a state in it. Then, the following property holds: For all A ⊆
Agt and all nodes h in Ts(M, q0) we have that {q | lastr(h) ∼M

A q, q ∈ StM} = {lastr(h′) |
h′ ∼Ts(M,q0)

A h, h′ ∈ StTs(M,q0)}.

Proof. “⊆”: Suppose h = h′q′ ∈ ∆i
M(q0) and q′ ∼M

A q and h′ 6= ε (the case for h′ = ε is clear). Then,
there is some a ∈ A with q′ ∼M

a q and thus h′′ := ĥâq ∈ ∆i+1
M (q0) ⊆ StTs(M,q0) with ĥ ∼Ts

a h by

definition of the ∆j
M’s. By Definition 17 also h′′ ∼Ts(M,q0)

A h. The claim follows as lastr(h′′) = q.

“⊇”: Suppose h′ ∼Ts(M,q0)
A h and h′ ∈ StTs(M,q0). The claim is clear if h, h′ ∈ ∆i

M(q0).
According to Definition 17 the remaining case is when h ∈ ∆i

M(q) and h′ ∈ ∆i+1
M (q), or the roles of h

and h′ switched. Then, h′ = ĥâq, ĥ ∼Ts
a h for some a ∈ Agt and lastr(ĥ) ∼M

a q. The claim follows
as lastr(h′) = q and lastr(h) ∼M

A q.
�

The next lemma is needed to show that the witnessing strategy which we shall construct in the invari-
ance Theorem 3 is uniform.

Lemma 10 Let M be an iCGS, q a state in it, Ts = Ts(M, q), h, ĥ1, ĥ2 ∈ StTs , A ⊆ Agt, and
a ∈ Agt. If ĥ1 ∼Ts

A h ∼Ts
A ĥ2 and h1 = ĥ1hF1 ∼a ĥ2hF2 = h2 with hF1 , h

F
2 ∈ Λfin; then,

(rel(h1) ≈M
a rel(h2), ρ(ĥ1, h1) ≈M

a ρ(ĥ2, h2) and |hF1 | = |hF2 |), or hF1 = hF2 = ε.
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ĥ h

{q | q ⇠M
A lastr(h)}

⇠Ts

A ⇠Ts

A

ĥ ĥ

ĥ

hF hFhF

Fig. 16 Setting of the proof of Theorem 3.

Proof. Suppose ĥ1 ∼Ts
b h ∼Ts

c ĥ2 with b, c ∈ A. From Lemma 3 we obtain ρ(ĥ1, h1) ≈M
a ρ(ĥ2, h2)

by taking q̂i = ĥi and qi = hi and q = h for i = 1, 2.
To prove the lemma, we firstly assume that h1, h2 ∈ ∆i for some i ∈ N0. Then, by definition

rel(h1) ≈M
a rel(h2) and the claim follows.

Secondly, suppose w.l.o.g. h1 ∈ ∆i and h2 ∈ ∆i+1 for some i ∈ N0. In this case rel(h2) ∈ St

and thus hF2 = ε and ρ(ĥ2, h2) = rel(h2) ≈M
a ρ(ĥ1, h1). The latter implies that |ρ(ĥ1, h1)| = 1 and

hence hF1 = ε. �

Theorem 3 ( page 29). For every iCGS M, state q in M, and ATL∗-formula ϕ, it holds that

M, q |=isR ϕ iff Ts(M, q), q |=isR ϕ iff Ts(M, q), q |=isr ϕ.

Proof. We show that for every node h in Ts := Ts(M, q) it holds that M, lastr(h) |=isR ϕ iff Ts(M, q), h |=isr
ϕ. Then, the claim follows from Propositions 7 and 8 for h = q. The proof is done by induction on the
structure of ϕ and is similar to the proof given for Theorem 2.
Base cases:

Propositional case: Straightforward.
Case: ϕ ≡ 〈〈A〉〉γ where γ contains no nested strategic modalities.

“⇒”: Suppose we have M, lastr(h) |=isR 〈〈A〉〉γ and let sA be an iR-strategy with

(?) ∀λ ∈ outisM(lastr(h), sA) : M, λ |=isR γ.

We construct the ir-strategy s′A in Ts(M, q) as follows: for all ĥ ∈ StTs with h ∼Ts
A ĥ and all

hF ∈ Λfin
M (lastr(ĥ)) we set

s′a(ĥ(h
F [1,∞])) := sa(h

F ).

We note that we have to exclude the first state in hF because it is already contained in ĥ. For all other
histories h′′ (which do not have the prescribed form) we define s′a(h

′′) arbitrarily but in a uniform
way. The setting is illustrated in Figure 16.

Clearly, we have that each ĥ(hF [1,∞]) is a valid state in Ts and by Lemma 10, s′a is well-defined:
Suppose, there are h1 = ĥ1hF1 and h2 = ĥ2hF2 with h1 = h2. Then, also h1 ∼Ts

a h2 and by
Lemma 10 hF1 = hF2 which shows that s′a(h1) = s′a(h2).

In the following we show that s′a is uniform. Let h1 and h2 be two histories with h1 ∼Ts
a h2.

1. Assume that both nodes have the form from above, i.e. h1 = ĥ1hF1 , h1 = ĥ1hF1 and h1 ∼Ts
A

h ∼Ts
A h2. Then, uniformity follows from Lemma 10.

2. Choices for two histories h1 and h2 where at least one does not have the required form can be
defined in a uniform way by definition because ∼Ts

a is an equivalence relation.
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Finally, we show that the sets of outcome paths are isomorphic wrt. both strategies. By Lemma 9 we
have that for all states q0 in M the following holds q0 ∼M

A lastr(h) iff there is a history h′ with
h′ ∼Ts

A h and lastr(h′) = q0. We denote one of these histories h′ by h(q0). Then, by construction
of s′A we have that

q0q1q2 · · · ∈ outisM(last(h), sA) iff (h′)(h′q1)(h′q1q2) · · · ∈ outisTs(M,q)
(h, s′A) for some

h′ = h(q0).

Since the valuation of propositions does only depend on the final state of a history and by (?) we have
Ts(M, q), h |=isr 〈〈A〉〉γ.

⇐: For the other direction, suppose we have Ts(M, q), h |=isr 〈〈A〉〉γ. So, there is an ir-strategy sA
such that

(?) ∀λ ∈ outis
Ts(M,q)

(h, sA) : Ts(M, q), λ |=isr γ.

We construct a witnessing iR-strategy s′A in M as follows: s′a(h
F ) = sa(ĥâhF ) for every a ∈ A,

ĥ ∼Ts
A h for hF ∈ Λfin(q′) with q′ ∼M

A lastr(h) and arbitrary but in a uniform way for all
other histories. It is easy to verify that each strategy s′a is uniform and well-defined. Moreover, s′A
yields an equivalent (apart from the notational differences) set of outcome paths as above. We have
M, lastr(h) |=isR 〈〈A〉〉γ.

Induction step:

Case: ϕ ≡ ψ1 ∧ ψ2. Straightforward.
Case: ϕ ≡ ¬ψ. M, lastr(h) |=isR ¬ψ iff not M, lastr(h) |=isR ψ iff (by induction hypothesis) not

Ts(M, q), h |=isR ψ iff Ts(M, q), h |=isR ¬ψ.
Case: ϕ ≡ 〈〈A〉〉γ. By induction hypothesis we have for each history h in Ts(M, q) and each strict state-

subformula ϕ′ of γ that M, lastr(h) |=isR ϕ
′ iff Ts(M, q), h |=isr ϕ

′. For any maximal strict state-
subformula ϕ′ we label all states h in Ts(M, q) and states lastr(h) in M with a new proposition
pϕ′ iff ϕ′ holds in this very state. Then, we replace each ϕ′ in ϕ with proposition pϕ′ and the claim
follows by induction.

�
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