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Abstract. ATL+ is a variant of alternating-time temporal
logic that does not have the expressive power of full ATL∗,
but still allows for expressing some natural properties of
agents. It has been believed that verification with ATL+ is
∆P

3 -complete for both memoryless agents and players who
can memorize the whole history of the game. In this pa-
per, we show that the latter result is not correct. That is,
we prove that model checking ATL+ for agents that use
strategies with memory is in fact PSPACE-complete. On
a more optimistic note, we show that fairness constraints can
be added to ATL+ without further increasing the complex-
ity of model checking, which makes ATL+ an attractive al-
ternative to the full language of ATL∗.
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1. Introduction

The alternating-time temporal logic ATL∗ and its
less expressive version ATL [1,3] have been studied
extensively in previous years. Much research was fo-
cused on the way such logics can be used for the ver-
ification of multi-agent systems, model checking be-
ing the most important method in this respect. Con-
sequently, the computational complexity of model
checking turned out essential to evaluate and compare
the practical usability of different variants of strategic
logics. It is known that the model checking problem
of full ATL∗ is 2EXPTIME-complete, and only
P-complete for ATL, if perfect recall strategies are
used [3], i.e., if players can memorize the whole his-
tory of the game. Hence, the latter variant of the logic
is more attractive computationally. However, there is
also a price to pay in terms of expressiveness. The sim-

ple property that an agent can make p true infinitely
often can, for instance, be expressed in ATL∗ but not
in ATL.

A tradeoff is offered by ATL+, a variant of the
alternating-time temporal logic that does not have the
expressive power of full ATL∗, but still allows for ex-
pressing some natural properties of agents. For exam-
ple, we can use the formula 〈〈robot〉〉(3cleanRoom ∧
3packageDelivered) to demand that the robot can
clean the room and deliver the package, without speci-
fying in which order the tasks should be accomplished.

Verification with ATL+ has been believed to be
∆P

3 -complete for both memoryless and perfect-recall
strategies [17]. In this paper, we show that the latter
result is wrong. That is, we prove that model checking
ATL+ for agents that use strategies with full mem-
ory is in fact PSPACE-complete. Since the ∆P

3 -
completeness for the memoryless semantics still holds,
we get that memory makes verification harder already
for ATL+, and not just for ATL∗ as it was believed.
We also show that fairness conditions can be added to
ATL+ without further increasing the complexity.

The rest of this paper is structured as follows. In
Section 2 we introduce the relevant logics and their
models, and discuss the variant ATL+ in more detail.
In Section 3 we correct the existing “results” on the
model checking complexity of ATL+ for agents with
perfect information and perfect recall. In Section 4 we
study EATL+ (i.e., ATL+ augmented with the tem-
poral operator 3

∞
for “infinitely often”). Finally, we ar-

gue why we consider the results significant and present
some conclusions in Sections 5 and 6, respectively.

This article is an extended and revised version of the
conference papers [5,6].

2. ATL+ and the Matter of Recall

We begin by introducing the strategic logics that will
be discussed in this paper. The alternating-time tempo-
ral logic ATL∗ [1,3] is a temporal logic that incorpo-
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rates some basic game-theoretical notions. Essentially,
ATL∗ generalizes the branching time logic CTL∗ [7]
by replacing the path quantifiers E,A with cooperation
modalities 〈〈A〉〉. Informally, 〈〈A〉〉γ expresses that the
group of agents A has a collective strategy to enforce
temporal property γ. ATL∗ formulae include tempo-
ral operators: g(“in the next state”) and U (“until”).
Additional operators 3 (“now or sometime in the fu-
ture”) and 2 (“always from now on”) can be defined as
3γ ≡ >U γ and 2γ ≡ ¬3¬γ. It should be noted that
the path quantifiers A,E of CTL∗ can be expressed in
ATL∗ with 〈〈∅〉〉, 〈〈Agt〉〉 respectively.

2.1. Syntax and Variants

In the rest of the paper we assume that Π is
a nonempty set of proposition symbols and Agt a
nonempty and finite set of agents. Alternating-time
temporal logic comes in several variants, of which
ATL∗ is the broadest. Formally, the language of
ATL∗ is given by formulae ϕ generated by the gram-
mar below, where A ⊆ Agt is a set of agents, and
p ∈ Π is an atomic proposition:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ,
γ ::= ϕ | ¬γ | γ ∧ γ | gγ | γ U γ.

Formulae ϕ are called state formulae, and γ path for-
mulae of ATL∗.

The best known variant of the alternating time tem-
poral logics is ATL (sometimes called “ATL with-
out star” or “vanilla” ATL) in which every occur-
rence of a cooperation modality is immediately fol-
lowed by exactly one temporal operator.1 In this paper,
however, we study the model checking problem for
ATL+, a variant that sits between ATL∗ and ATL.
The language of ATL+ includes only formulae where
each temporal operator is followed by a state formula,
and allows cooperation modalities to be followed by
a Boolean combination of path subformulae; i.e. path
formulae are defined by γ ::= ¬γ | γ ∧ γ | gϕ |
ϕU ϕ.

Formally, ATL+ formulae are defined by the fol-
lowing grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ,
γ ::= ¬γ | γ ∧ γ | gϕ | ϕU ϕ.

1In that case, the language is augmented explicitly with the “al-
ways” operator 2 [1,3] or, more generally, the “weak until” operator
W [12], because otherwise maintenance/safety properties cannot be
expressed.
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Fig. 1. Two robots and a carriage: a schematic view

Example 1 The ATL formula 〈〈jamesbond〉〉3win
says that James Bond can eventually win, no mat-
ter how the other agents act. On the other hand,
〈〈jamesbond〉〉2(assigned → 3accomplished) is
an ATL∗ formula which clearly belongs to nei-
ther ATL nor ATL+ and deems agent 007 to be
able to accomplish all his future missions. Finally,
〈〈jamesbond〉〉(2¬crash ∧ 3land) (James Bond can
prevent the space ship from crashing and make it even-
tually land) is a formula of ATL+ but not of ATL.

2.2. Semantics

The semantics of ATL∗ is defined over a variant of
transition systems where transitions are labeled with
combinations of actions, one per agent. Formally, a
concurrent game structure (CGS) is a tuple M =
〈Agt, St,Π, π, Act, d, o〉 which includes a nonempty
finite set of all agents Agt = {1, . . . , k}, a nonempty
set of states St, a set of atomic propositions Π and their
valuation π : Π → 2St, and a nonempty finite set of
(atomic) actions Act. Function d : Agt × St → 2Act

defines nonempty sets of actions available to agents at
each state, and o is a (deterministic) transition function
that assigns the outcome state q′ = o(q, α1, . . . , αk)
to state q and a tuple of actions 〈α1, . . . , αk〉 for αi ∈
d(i, q) and 1 ≤ i ≤ k, that can be executed by Agt
in q. Thus, we assume that all the agents execute their
actions synchronously; the combination of the actions,
together with the current state, determines the next
transition of the system.

In the rest of the paper, we will write di(q) instead of
d(i, q), and we will denote the set of collective choice
of group A at state q by dA(q) =

∏
i∈A di(q). A path

λ = q0q1q2 . . . is an infinite sequence of states such
that there is a transition between each qi, qi+1. We use
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Fig. 2. Two robots and a carriage: concurrent game structure M1

that models the scenario

λ[i] to denote the ith position on path λ (starting from
i = 0) and λ[i,∞] to denote the subpath of λ starting
from i.

Example 2 (Robots and Carriage) Consider the sce-
nario depicted in Figures 1 and 2. Two robots push
a carriage from opposite sides. As a result, the car-
riage can move clockwise or anticlockwise, or it can
remain in the same place. We assume that each robot
can either push (action push) or refrain from push-
ing (action wait). Moreover, they both use the same
force when pushing. Thus, if the robots push simulta-
neously or wait simultaneously, the carriage does not
move. When only one of the robots is pushing, the car-
riage moves accordingly. Finally, when the carriage is
in position 0, robot 1 may try to retire it to a halting
position. The halting is successful if the other robot is
not pushing at the same time.

To make our model of the domain discrete, we iden-
tify 4 different positions of the carriage, and associate
them with states q0, q1, q2, and qh. We label the states
with propositions pos0, pos1, pos2, halt, respectively,
to allow for referring to the current position of the car-
riage in the object language.

A strategy of agent a is a plan that specifies what a
is going to do in each situation. It makes sense, from
a conceptual and computational point of view, to dis-
tinguish between two types of strategies: an agent may
base his decision on the current state or on the whole
history of events that have happened. Also, the agent
may have complete or incomplete knowledge about the
current global state of the system throughout the game.
To distinguish between those cases, we use the taxon-
omy and notation introduced in [17]: ATLxy where
x = i (resp. I) stands for imperfect (resp. perfect) in-
formation and y = r (resp. R) for imperfect (resp.
perfect) recall. Here we are mainly interested in the
perfect-information+prefect-recall setting.

A perfect-information-perfect-recall strategy (IR-
strategy) for agent a is a function sa : St+ → Act
such that sa(q0q1 . . . qn) ∈ da(qn) for any finite
history q0q1 . . . qn. A perfect-information-memoryless
strategy (Ir-strategy) is a function sa : St→ Act such
that sa(q) ∈ da(q) for each q. We do not consider
the model checking problem for imperfect information
games in this paper, so we will omit definitions of ir-
and iR-strategies here.

A collective strategy for a group of agents A =
{a1, . . . , ar} ⊆ Agt is simply a tuple of individual
strategies sA = 〈sa1

, . . . , sar 〉. By sA|a, we denote
agent a’s part sa of the collective strategy sA, for
a ∈ A. Function out(q, sA) returns the set of all paths
that may occur when agents A execute strategy sA
from state q onward. For an IR-strategy we have:

out(q, sA) = {λ = q0q1q2 . . . | q0 = q and for
each i = 1, 2, . . . there exists a tuple of agents’
decisions 〈αi−1

a1
, . . . , αi−1

ak
〉 such that αi−1

a ∈
da(qi−1) for every a ∈ Agt, and αi−1

a =
sA|a(q0q1 . . . qi−1) for every a ∈ A, and
o(qi−1, α

i−1
a1

, . . . , αi−1
ak

) = qi}.
The definition for memoryless strategies is analogous.

Let M be a CGS, q a state, and λ a path in M . The
semantics of ATL∗xy is defined as follows [3,17]:

M, q |= p iff q ∈ π(p), for p ∈ Π;
M, q |= ¬ϕ iff M, q 6|= ϕ;
M, q |= ϕ1 ∧ ϕ2 iff M, q |= ϕ1 and M, q |= ϕ2;
M, q |= 〈〈A〉〉γ iff there is an xy-strategy sA for

agents A such that for each path λ ∈ out(sA, q)
we have M,λ |= γ.

M,λ |= ϕ iff M,λ[0] |= ϕ;
M,λ |= ¬γ iff M,λ 6|= γ;
M,λ |= γ1 ∧ γ2 iff M,λ |= γ1 and M,λ |= γ2;
M,λ |= gγ iff M,λ[1,∞] |= γ; and
M,λ |= γ1 U γ2 iff there is an i ∈ N0 such that

M,λ[i,∞] |= γ2 and M,λ[j,∞] |= γ1 for all
0 ≤ j < i.

Example 3 (Robots and Carriage, ctd.) Since the out-
come of each robot’s action depends on the current ac-
tion of the other robot, no agent can make sure that the
carriage moves to any particular position. So, we have
for example that M1, q0 |= ¬〈〈1〉〉3pos1. On the other
hand, the robots can cooperate to move the carriage.
For instance, it holds that M1, q0 |= 〈〈1, 2〉〉3pos1 (ex-
ample strategy: robot 1 always pushes and robot 2 al-
ways waits).

In fact, the same strategy can be used to express that
the robots can make the carriage visit every “active”
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position, which is captured by the following ATL+

satisfaction: M1, q0 |= 〈〈1, 2〉〉(3pos0 ∧ 3pos1 ∧
3pos2). Note that all the above properties hold for
both memoryless agents and agents with perfect recall.

2.3. Importance of ATL+

It is well known that the memoryless and perfect-
recall semantics for ATL formulae coincide [3,17].
That is, M, q |= ϕ in ATLIR iff it holds in ATLIr.
The same is not true for ATL∗, and in fact, already
for ATL+. For example, formula 〈〈1, 2〉〉(3pos1 ∧
3halt) holds in M1, q0 in the set of perfect-recall
strategies but not in the set of memoryless strategies.
In consequence, ATL+ can be seen as the minimal
well-known syntactic variant of the alternating-time
logic that distinguishes between the memoryless and
perfect-recall semantics.

Moreover, note that the IR- and Ir-semantics yield
different validities for ATL+. For example, formula
〈〈A〉〉(3p1 ∧3p2)↔ 〈〈A〉〉3

(
(p1 ∧ 〈〈A〉〉3p2)∨ (p2 ∧

〈〈A〉〉3p1)
)

is valid in the perfect-recall semantics (IR),
but not in the memoryless variant (Ir). Since “vanilla”
ATLIR and ATLIr have the same validities, ATL+

can be also seen as the minimal variant of the alternat-
ing time logics for which the IR- and Ir-semantics give
rise to different logics in the traditional sense (as sets
of valid sentences).

In conceptual terms, we can use ATL+ to spec-
ify a set of goals that should be achieved with-
out saying in which order they should be accom-
plished, like in the formula 〈〈robot〉〉(3cleanRoom ∧
3packageDelivered). Moreover, ATL+ allows for
reasoning about what can be achieved under certain
assumptions about the agents’ behavior, as Exam-
ple 4 shows. This kind of properties has been espe-
cially studied in deontic logic and normative systems
(e.g., [14,15,20,18]), but also in reasoning about plau-
sible behavior of agents [4].

Example 4 Consider a class of systems, each repre-
sented by a concurrent game structure M and a col-
lection of behavioral constraint sets Ba, one per agent
a ∈ Agt. Like in [18], we take every behavioral
constraint from Ba to be a pair (q, α), with the un-
derlying interpretation that action α is forbidden for
agent a in state q (for instance, by a social norm or
law). Such representations can be reconstructed into
a single CGS M ′ by adding special propositions Va,
a ∈ Agt, with the intuitive meaning “agent a has com-
mitted a violation with its last action”. If necessary,

several copies of an original state q from M can be
created, with different configurations of the Va labels.
Note that M ′ is only linearly larger than M wrt the
number of original transitions in M .

Now, property “a can enforce property γ while com-
plying with social norms” can be captured in M ′ by
the ATL+ formula 〈〈a〉〉((2¬Va)∧γ). A similar prop-
erty, “b can enforce γ provided that a complies with
norms” can be expressed with 〈〈b〉〉((2¬Va)→ γ).

2.4. Expressivity and Complexity of Model Checking

ATL+ is more expressive than ATL, which fol-
lows from the fact that the “weak until” operator
is expressible in ATL+ (as ϕW ψ ≡ ϕU ψ ∨
2(¬ψ)), but not in the original version of ATL [12].
Still, many formulae of ATL+ have their equiva-
lent counterparts in ATL. For instance, the ATL+

formula 〈〈jamesbond〉〉(2¬crash ∧ 3land) from Ex-
ample 1 can be equivalently rephrased in ATL as
〈〈jamesbond〉〉(¬crash)U (land∧〈〈jamesbond〉〉2¬crash).

In particular, we have that ATL+
IR formulae can be

equivalently translated into ATLIR with the “weak
until” operator [10]. We observe that in some cases
the translation results in an exponential blowup of the
length of the formula. Thus, ATL+

IR has the same ex-
pressive power as “vanilla” ATLIR with “weak un-
til”, but it seems to allow for exponentially more suc-
cinct and intuitive specifications of some properties (in
a similar way to CTL+ vs. CTL, cf. [19]).

Regarding the complexity of verification for strate-
gic logics, the following patterns can be observed (al-
beit not without exceptions):

– Model checking more expressive logics is usu-
ally harder than the less expressive ones (exam-
ple: ATL∗ vs. ATL);

– Model checking more succinct logics is usu-
ally harder than the less succinct ones (example:
ATL+ vs. ATL with “weak until”);

– Model checking more expressive models is usu-
ally harder than the less expressive ones (exam-
ple: imperfect information vs. perfect information
agents);

– Model checking more succinct models is usu-
ally harder than the less succinct ones (example:
agents with perfect recall vs. memoryless agents).

Indeed, for the memoryless semantics (Ir), model
checking of ATLIr can be done in linear time wrt
the number of transitions in the model and the length



N. Bulling, W. Jamroga / Verifying Agents with Memory is Harder Than It Seemed 5

of the formula [3],2 while model checking of ATL+
Ir

is ∆P
3 -complete,3 and model checking of ATL∗Ir is

PSPACE-complete. Moreover, for the perfect recall
semantics (IR), model checking of ATLIR is still lin-
ear (it is the same logic after all) while verification of
ATL∗IR is complete in double exponential time [3].

What about model checking ATL+
IR? In [17], it is

claimed to be ∆P
3 -complete, so apparently no price is

paid for assuming agents’ memory in this case. Un-
fortunately, the claim is wrong. We show in Section 3
that the problem becomes PSPACE-complete in the
IR-setting. Note that the results in [12] on the verifi-
cation of ATL+

IR in various non-standard settings are
also incorrect since they crucially depend on the claim
from [17]; we will correct them in Section 3.3.

3. Model Checking ATL+
IR

In an excellent study [17], Schobbens claims that
model checking ATL+ is ∆P

3 -complete wrt to the
number of transitions in the model and the length of
the formula, for both perfect-recall and memoryless se-
mantics. For memoryless agents, the upper bound can
be shown by the following algorithm. Given a formula
〈〈A〉〉γ with no nested cooperation modalities, we can
guess a memoryless strategy of A, “trim” the model
accordingly, model-check the CTL+ formula E¬γ in
the resulting model, and revert the result. Note that
a memoryless strategy can be guessed in polynomi-
ally many steps, and the trimming process requires
only polynomially many steps too. For nested cooper-
ation modalities, we repeat the procedure recursively
(bottom-up). Since model checking of the CTL+ for-
mula E¬γ can be done in nondeterministic polynomial
time [13], we get that the overall procedure runs in
time

(
PNP

)NP
= P(NPNP) = ∆P

3 [17].
For agents with perfect recall, a similar argument

seems correct. Every formula of ATL+
IR can be trans-

lated to an equivalent formula of ATLIR with weak
until [10], and for ATL (also with weak until) it does
not make a difference whether the perfect-recall or
memoryless semantics is used, so memoryless strate-

2It is important to add that the “weak until” operator W does not
increase the complexity [12].

3∆P
3 = PΣP

2 is the class of problems that can be solved by a
deterministic Turing machine that makes adaptive queries to an ora-
cle of type ΣP

2 = NPNP. That is, the oracle is a nondeterministic
TM that can query another oracle (a nondeterministic TM itself). All
the three machines are required to run in polynomial time.

gies can be used instead. Hence, it is enough to guess
a memoryless strategy, trim the model etc. Unfortu-
nately, this line of reasoning is wrong because the re-
sult of the translation (the ATLIR formula) may in-
clude exponentially many cooperation modalities (in-
stead of one in the original ATL+

IR formula). For
example, formula 〈〈A〉〉(3p1 ∧ 3p2) is translated to
〈〈A〉〉3

(
(p1∧〈〈A〉〉3p2)∨(p2∧〈〈A〉〉3p1)

)
; for a longer

list of achievement goals (3p1 ∧ · · · ∧ 3pn), every
permutation must be explicitly enumerated. Thus, we
may need to guess exponentially many polynomial-
size strategies, which clearly cannot be done in poly-
nomial time.

There seems to be an intuitive way of recovering
from the problem. Note that, in an actual execution,
only a polynomial number of these strategies will be
used. So, we can try to first guess a sequence of goals
(in the right order) for which strategies will be needed,
then the strategies themselves, fix those strategies in
the model (cloning the model into as many copies as
we need) and check the corresponding CTL+ formula
in it. Unfortunately, this is also wrong: for different ex-
ecution paths, we may need different ordering of the
goals (and hence strategies). And we have to consider
exponentially many paths in the worst case.

So, what is the complexity of model checking
ATL+

IR in the end? The problem turns out to be harder
than ∆P

3 , namely PSPACE-complete.

3.1. Lower Bound

We prove the PSPACE-hardness by a reduction of
Quantified Boolean Satisfiability (QSAT), a canonical
PSPACE-complete problem.

Definition 1 (QSAT [16])
Input: A Boolean formula Φ in negation normal form
(i.e., negations occur only at literals) with n proposi-
tional variables x1, . . . , xn.
Output: True if ∃x1∀x2 . . . Qnxn Φ holds, and false
otherwise (where Qn = ∀ if n is even, and Qn = ∃ if
n is odd).

Given an instance of QSAT we construct a turn-
based4 concurrent game structureM with two players:
the verifier v and the refuter r. The structure consists
of the following sections:

4A model is turn-based if for each state there is a single agent that
controls the subsequent transition, and the other agents have no real
choice there (which can be modeled by assuming dq(a) = {wait}
for every agent a except the “owner” of q).
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Fig. 5. CGS for QSAT: sections of literals

– Value choice section: a sequence of states qi, one
per variable xi, where the values of xi’s will be
“declared”, see Figure 3. States qi with odd i are
controlled by v, states with even i are controlled
by r. The owner of a state can choose between
two possible valuations (>,⊥). Choosing> leads
to a state where proposition xi holds; choosing ⊥
leads to a state labeled by proposition notxi.

– Formula structure section: corresponds to the
parse tree of Φ, see Figure 4. For every subfor-

mula Ψ of Φ, there is a state qΨ with two choices:
L leading to state qL(Ψ) and R leading to qR(Ψ),
where L(Ψ) is the left hand side subformula of Ψ
and R(Ψ) is the right hand side subformula of Ψ.
The verifier controls qΨ if the outermost connec-
tive in Ψ is a disjunction; the refuter controls the
state if it is a conjunction. Note that each leaf state
in the tree is named according to a literal li from
Φ, that is, either with a variable xi or its negation
¬xi.

– Sections of literals: for every literal l in Φ, we
have a single state ql, controlled by the owner of
the Boolean variable xi in l. Like in the value
choice section, the agent chooses a value (> or⊥)
for the variable (not for the literal!) which leads to
a new state labeled with the proposition xi (for ac-
tion >) or notxi (for ⊥). Finally, the system pro-
ceeds to the winning state q> (labeled with the
proposition yes) if the valuation of xi makes the
literal l true, and to the losing state q⊥ otherwise
– see Figure 5 for details, and Figure 6 for an ex-
ample of the whole construction.
Note that, if the values of variables xi are as-
signed uniformly at states ql (that is, the actions
executed at ql form a valuation of x1, . . . , xn),
then the formula structure section together with
the sections of literals implement the game theo-
retical semantics [11] of formula Φ given the val-
uation.

Note that the value of variable xi can be declared
twice during an execution of the model(first in the
value choice section, and then in the section of lit-
erals). The following “consistency” macro: Consi ≡
2¬xi ∨ 2¬notxi expresses that the value of xi cannot
be declared both > and ⊥ during a single execution.
Now, for the IR-semantics, we have that:

Lemma 1 ∃x1∀x2 . . . Qnxn Φ iff

M, q1 |= 〈〈v〉〉
( ∧
i∈Odd

Consi∧(
∧

i∈Even
Consi → 3yes)

)
.

Proof. The informal idea is as follows. The ATL+ for-
mula specifies that v can consistently assign values to
“his” variables, so that if r consistently assigns values
to “his” variables (in any way), formula Φ will always
evaluate to >, which is exactly the meaning of QSAT.
The way a player assigns a value to variable xi may de-
pend on what has been assigned to x1, . . . , xi−1. Note
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q1

q1>

x1

q1⊥

notx1
q2

q2>

x2

q2⊥

notx2

qφ1

qφ2

qφ3

qx1

qx2

q¬x1

qx1>

x1

qx1⊥

notx1

qx2>

x2

qx2⊥

notx2

qx3⊥

notx1

qx3>

x1

q>

yes

q⊥

>

⊥

>

⊥

L

R

L

R

L

R

>

⊥

>

⊥

>

⊥

Fig. 6. Concurrent game structure for the QSAT in-
stance ∃x1∀x2(x1 ∧ x2) ∨ (x2 ∧ ¬x1). The follow-
ing shorthands are used in the formula structure section:
φ1 ≡ (x1 ∧ x2) ∨ (x2 ∧ ¬x1), φ2 ≡ x1 ∧ x2, φ3 ≡ x2 ∧ ¬x1.
“White” states are owned by the verifier; “grey” states are owned by
the refuter.

that this is the reason why perfect recall is necessary to
obtain the reduction.

The statement can be formally proved in the follow-
ing way. We consider wlog only QSAT instances with
even alternations of quantifiers (the case for odd n is
done analogously). Firstly, note that a QSAT instance
ϕ = ∃x1∀x2 . . . ∀xnΦ(x1, . . . , xn) evaluates to true
iff there is a (partial) function f : {>,⊥}∗ → {>,⊥}
such that for all valuations vi of all xi with i ≤ n and
i even the following formula is valid:

Φ(f(ε), v2, f(v1v2), v3, . . . , f(v1 . . . vn−1), vn)

where v1 := f(ε), v3 := f(v1v2),. . . , vn−1 :=
f(v1 . . . vn−2). It is easy to see that if such a func-
tion exists then it provides a satisfying valuation for
the existential quantifiers in the QSAT instance. Con-
versely, non-existence of such a function contradicts
the existence of such a valuation. We say that f wit-
nesses ϕ. Given a word w = w1 . . . wm ∈ {>,⊥}m

of lengthm ≥ 2i, we use f2i+1(w) to denote the value
f(w1 . . . w2i) and f2i(w) to denote w2i. Intuitively,
fi(w) returns the assignment vi of xi given the choices
made before.

“⇒“: Let f be a witness for ϕ. We define the fol-
lowing strategy sv for v for histories h of the form
q1q

1q2q
2 . . . of length at most 2n and each qi ∈

{qi>, qi⊥}. For states in which only one action is ap-
plicable we suppose that is it chosen by default. That
is, h is a finite path through the value choice section
of length at most 2n. Moreover, we define mapping
δ : St∗ → {>,⊥}∗ to map each sequence of states to
a word over {>,⊥} as follows: δ(ε) = ε, δ(qi>) = >,
δ(qi⊥) = ⊥, and δ(q) = ε for all other states; finally,
δ(qh) = δ(q)δ(h). Then, we define

sv(hq) :=

{
f(δ(h)) for q = q2i+1

nop for q ∈ {q2i+1>, q2i+1⊥}

In each subformula state qψ “owned” by v, the verifier
chooses action L (resp. R) if L(ψ) (resp. R(ψ)) eval-
uates to true given f and h (we write ψ(f, h) = > for
ψ(f1(δ(h)), . . . , fn(δ(h))) is true):

sv(hqψ) :=

{
L if L(ψ)(f, h) = >
R else

Analogously, the action for literal states is chosen

sv(hql) :=


> if l = xi, fi(δ(h)) = >)∨

(l = ¬xi, fi(δ(h)) = ⊥))

⊥ else.

It remains to show that sv is a winning strategy of
v. Firstly, it is easily seen that

∧
i∈Odd Consi holds

for any path of the outcome out(q1, sv); assuming the
contrary contradicts the definition of f . Finally, assum-
ing that there is a counter-strategy of the refuter such
that state q⊥ is reached and

∧
i∈Even Consi also con-

tradicts that f witnesses ϕ (this can be shown by struc-
tural induction on Φ).

“⇐”: Let sv be a winning strategy for v. We define
function f in the obvious way, i.e., f(ε) := sv(q1),
f(f(ε)>) := sv(q1q(1f(ε))q2q2>q3), f(f(ε)⊥) :=
sv(q1q(1f(ε))q2q2⊥q3), etc. We prove that f is a wit-
ness for ϕ.

First, let us observe that for every path in out(q1, sv),
it must hold that 2¬xi ∨ 2¬notxi. In consequence,
sv(q1 . . . qxi) = sv(q1 . . . q¬xi) = sv(q1 . . . qi) for all
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histories leading to a literal state ql ∈ {qxi , q¬xi}.5
That is, the formula structure section and the sections
of literals define the game semantics of Φ with the val-
uation of x1, . . . , xn given uniformly by the f above.
Moreover, every path in out(q1, sv) must lead to a
state where yes holds (i.e., to q>), which means that Φ
evaluates to > given f , and thus f is a witness for ϕ.�

We observe that the construction results in a model
with O(|Φ|) states and transitions, and it can be con-
structed in O(|Φ|) steps, so we get the following result
where the size of a CGS is defined as the number of
its transitions (m) plus the number of states (n). Note,
that O(n+m) = O(m).

Theorem 2 Model checking ATL+ with the perfect-
recall semantics is PSPACE-hard with respect to the
size of the model and the length of the formula. It is
PSPACE-hard even for turn-based models with two
agents and “flat” ATL+ formulae, i.e., ones that in-
clude no nested cooperation modalities.

3.2. Upper Bound

In this section we show that model checking ATL+
IR

can be done in polynomial space. Our proof has been
inspired by the construction in [13], proposed for
CTL+. We begin by introducing some notation.

We say that sA is a strategy for (M, q, γ) if for all
λ ∈ outM (q, sA) it holds that M,λ |= γ. An ATL+-
path formula γ is called atomic if it has the form gϕ1

or ϕ1 U ϕ2 where ϕ1, ϕ2 ∈ ATL+. For ϕ ∈ ATL+

we denote the set of all atomic path subformulae of ϕ
by APF(ϕ). And, as before, we call an ATL+-path
formula γ flat if it does not contain any more coopera-
tion modalities.

Now we can define the notion of witness position
which is a specific position on a path that “makes” a
path formula true or false.

Definition 2 (Witness position) Let γ be a flat atomic
path formula, and let λ be a path. The witness position
witpos(λ, γ) of γ wrt λ is defined as follows:
(1) if γ = gϕ then witpos(λ, γ) = 1;
(2) if γ = ϕ1 U ϕ2 and

– λ |= γ then witpos(λ, γ) = min{i ≥ 0 | λ[i] |=
ϕ2}

5Technically, that is true only for the literal states reachable in
out(q1, sv), but since the unreachable states are irrelevant, we can
fix sv(q1 . . . ql) := sv(q1 . . . qi) for unreachable ql’s too.

– λ 6|= γ and λ |= 3ϕ2 then witpos(λ, γ) =
min{i ≥ 0 | λ[i] |= ¬ϕ1}

– λ 6|= γ and λ 6|= 3ϕ2 then witpos(λ, γ) = −1.

Moreover, for a flat (not necessarily atomic) ATL+

path formula γ, we define the set of witness positions of
γ wrt λ as wit(λ, γ) = (

⋃
γ′∈APF(γ){witpos(λ, γ′)})∩

N0.

For instance, if formula 2¬p is true on λ then
witpos(λ,2¬p) = −1 since the formula is an ab-
breviation for ¬(>U p), and for this formula we
have that witpos(λ,2¬p) = −1 and consequently,
wit(λ,2¬p) = ∅. In the following we assume that γ
is flat.

In the next lemma we show that if there is a strat-
egy that enforces a (flat) path formula γ then the wit-
nesses of all atomic subformulae of γ can be found
in a bounded initial fragment of each resulting path.
Firstly, we introduce the notion of a segment which can
be seen as a “minimal loop”.

Definition 3 (Segment) A segment of path λ is a tuple
(i, j) ∈ N2

0 with i < j such that λ[i] = λ[j] and there
are no indices k, k′ with i ≤ k < k′ ≤ j such that
λ[k] = λ[k′] except for k = i, k′ = j. The set of
segments of λ is denoted by seg(λ).

Lemma 3 Let M, q |= 〈〈A〉〉γ. Then, there is a strat-
egy sA for (M, q, γ) such that for all paths λ ∈
outM (q, sA) the following property holds: For every
segment (i, j) ∈ seg(λ) with j ≤ maxwit(λ, γ) there
is a witness position k ∈ wit(λ, γ) with i ≤ k ≤ j.

Proof. Suppose such a strategy does not exist; then,
for any strategy sA for (M, q, γ), there is a path λ ∈
out(q, sA) and a segment (i, j) ∈ seg(λ) with j ≤
maxwit(λ, γ) s.t. there is no k ∈ wit(λ, γ) with i ≤
k ≤ j.

We now define s′A as the strategy that is equal to sA
except that it cuts out the “idle” segment (i, j) from λ,
i.e., s′A(λ[0, i]h) := sA(λ[0, j]h) for all h ∈ St+, and
s′A(h) := sA(h) otherwise. Note that out(q, s′A) =
out(q, sA) except for paths that begin with λ[0, j]:
these are replaced with paths that achieve the remain-
ing witness positions in j− i less steps. Let [h]q,sA de-
note the set of all paths λ′ such that hλ′ ∈ out(q, sA)
where h ∈ St+. Now it is easy to see that for all
λ′ ∈ [λ[0, j]]q,sA we have that the path λ[0, j]λ′ satis-
fies γ if, and only if, the path λ[0, i]λ′ does. Hence, we
have that all paths in out(q, s′A) satisfy γ. Moreover,
the latter set of outcomes is non-empty iff out(q, sA)
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is not. By following this procedure recursively, we ob-
tain a strategy that reaches a witness in every segment
of each λ up to maxwit(λ, γ). �

Given, for instance, an ATL+ formula 〈〈A〉〉(3p ∧
3r) the previous lemma says that ifA has any winning
strategy than it also has one such that only the first two
segments on each path in the outcome are important
to witness the truth of 3p ∧ 3r. In the next defini-
tion we make this intuition formal and define the truth
of ATL+ path formulae on finite initial sequences of
states.

Definition 4 (|=k) Let M be a CGS, λ be path in M ,
and k ∈ N. The semantics |=k is defined as follows:

M,λ |=k ¬γ iff M,λ 6|=k γ;
M,λ |=k γ ∧ δ iff M,λ |=k γ and M,λ |=k δ;
M,λ |=k gϕ iff M,λ[1] |= ϕ and k > 1; and
M,λ |=k ϕU ψ iff there is an i < k such that

M,λ[i] |= ψ and M,λ[j] |= ϕ for all 0 ≤ j < i;

Essentially, we consider the first k states on a path in
order to see whether a formula is made true on it.

We define the notion k-witness positions on a finite
segment of length k in an obvious way: if the witness
of γ on the full path λ is > k then the k-witness is −1;
otherwise, it is equal to wit(λ, γ).

Definition 5 (k-witness strategy) We say that a strat-
egy sA is a k-witness strategy for (M, q, γ) if for all
λ ∈ out(q, sA) we have that M,λ |=k γ.

The following theorem is essential for our model
checking algorithm. The result ensures that the exis-
tence of a winning strategy can be decided by only
guessing the first k-steps of a k-witness strategy.

Theorem 4 M, q |= 〈〈A〉〉γ iff there is a |StM | ·
|APF(γ)|-witness strategy for (M, q, γ).

Proof. ”⇒:” Let sA be a strategy for (M, q, γ). By
Lemma 3 and the fact that |wit(λ, γ)| ≤ |APF(γ)|
for any path λ there is a strategy s′A for (M, q, γ) such
that maxwit(λ, γ) ≤ |StM | · |APF(γ)| for all λ ∈
out(q, sA). This shows that s′A is a |StM | · |APF(γ)|-
witness strategy for (M, q, γ).

“⇐”: Suppose there is a k := |StM | · |APF(γ)|
witness strategy then there also is a k-witness strat-
egy such that on no path in the outcome there is an
“idle” segment (i, j) (a segment containing no wit-
ness) with j ≤ v, where v is the maximal witness on
the path smaller than k (cf. Lemma 3). We call such

λ

w = wit(λ, γ�)
kv

|APF(γ)\{γ�}| − subformulae

kv

λ�

wit(λ�, γ�)

(i, j) − segment

Fig. 7. Proof of Theorem 4

strategies efficient. Now suppose there is an efficient
k-witness strategy sA but no strategy for (M, q, γ);
i.e. for all efficient k-witness strategies there is a path
λ ∈ out(q, sA) such that M,λ 6|= γ. Note, that this
can only happen if there is some γ′ ∈ APF(γ) with
(minimal) w := witpos(λ, γ′) ≥ k that cannot be pre-
vented by A (cf. Figure 7). Due to efficiency all sub-
formulae that have a witness ≤ k actually have a wit-
ness ≤ k − |StM |. But then, the opponents can ensure
that there is some other path λ′ ∈ out(q, sA) on which
γ′ is witnessed within the first k steps on λ′ and after
all the other formulae with a witness ≤ v (i.e. within
steps v and k). This contradicts that sA is a k-witness
strategy.

The see that the opponents can ensure that γ′ is wit-
nessed within the first k steps, consider a segment (i, j)
such that j ≤ w and j maximal. In particular, the pro-
ponents cannot prevent the sequence λ[j, w]. But then,
the opponents are able to execute there moves played
from λ[j] onwards already from λ[i]. This results in a
path λ′′ also belonging to the outcome which equals λ
but segment (i, j) beeing cut out. Following this proce-
dure recursively shows that there is a path λ′ such that
γ′ is witnessed within the first k steps as stated above.

�

In the next theorem we construct an alternating Tur-
ing machine that solves the model checking problem.

Theorem 5 Let ϕ ≡ 〈〈A〉〉γ be a flat ATL+
IR formula,

M a CGS, and q a state. Then, there is a polynomial-
time alternating Turing machine with O(nl) alterna-
tions (wrt the size of the model and length of the for-
mula) that returns “yes” if M, q |= ϕ, and “no” oth-
erwise (where l is the length of ϕ, k is the number of
agents, and n the number of states in M ).

Proof. The idea behind the algorithm can be summa-
rized as follows: coalition A acts as a collective “veri-
fier”, and the rest of the agents plays the role of a col-
lective “refuter” of the formula. We first transform γ to
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its negation normal form.6 Next, we allow the verifier
to nondeterministically construct A’s strategy step by
step for the first |StM | · |APF(γ)| rounds (|Agt| steps
each), while the refuter guesses the most damaging re-
sponses of Agt \ A. This gives us a finite path h (of
length |StM | · |APF(γ)|) that is the outcome of the
best strategy of A against the worst course of events.
Then, we implement the game-theoretical semantics of
propositional logic [11] as a game between the verifier
(who controls disjunction) and the refuter (controlling
conjunction). The game reduces the truth value of γ to
a (possibly negated) atomic subformula γ0. Finally, we
check if h |=|StM |·|APF(γ)| γ0, and return the answer.
The correctness of the construction follows from The-
orem 4. �

For model checking arbitrary ATL+ formulae, we
observe that nested cooperation modalities can be
model-checked recursively (bottom-up) in the same
way as e.g. in the standard model checking algorithm
for ATL [3]. Since PPSPACE = PSPACE, we ob-
tain the following as immediate corollary.

Theorem 6 Model checking ATL+ over CGS’s with
the perfect-recall semantics is PSPACE-complete
wrt the size of the model and the length of the formula.
It is PSPACE-complete even for turn-based models
with two agents and “flat” ATL+ formulae.

3.3. Correcting Related Results

Concurrent game structures specify transitions through
a function that defines state transformations for ev-
ery combination of simultaneous actions from Agt.
In other words, transitions are given through an array
that defines the outcome state for every combination
of a state with k actions available at that state. This is
clearly a disadvantage from the computational point of
view, since the array is in general exponential with re-
spect to the number of agents: more precisely, we have
that m = O(ndk), where m is the number of (labeled)
transitions in the model, n is the number of states, d is
the maximal number of choices per state, and k is the
number of agents.

Two variants of game structures overcome this prob-
lem. In alternating transition systems (ATS), used as
models in the initial semantics of ATL [1,2], agents’
choices are state transformations themselves rather

6I.e., so that negation occurs only in front of atomic path subfor-
mulae.

than abstract labels. In implicit concurrent game struc-
tures [12], the transition array is defined by Boolean
expressions. ATS and implicit CGS do not hide ex-
ponential blowup in a parameter of the model check-
ing problem (m), and hence the complexity of model
checking for these representations is perhaps more
meaningful than the results obtained for “standard”
CGS. In [12], Laroussinie et al. claim that model
checking ATL+

IR against ATS as well as implicit
CGS is ∆P

3 -complete. Since the proofs are actually
based on the flawed result from [17], both claims are
worth a closer look. We will briefly summarize both
kinds of structures and give correct complexity results
in this section.

Alternating Transition Systems. An ATS is a tuple
M = 〈Agt, St,Π, π, δ〉, where Agt, St,Π, π are like
in a CGS, and δ : St×Agt→ 22St is a function that
maps each pair (state, agent) to a non-empty family
of choices with respect to possible next states. The idea
is that, at state q, agent a chooses a set Qa ∈ δ(q, a)
thus forcing the outcome state to be from Qa. The re-
sulting transition leads to a state which is in the in-
tersection of all Qa for a ∈ Agt. Since the system
is required to be deterministic (given the state and the
agents’ decisions), Qa1

∩ ... ∩ Qak must always be a
singleton.

Implicit CGS. An implicit CGS is a concurrent
game structure where, in each state q, the outgoing
transitions are defined by a finite sequence

((ϕ1, q1), ..., (ϕn, qn)).

In the sequence, every qi is a state, and each ϕi
is a Boolean combination of propositions α̂a, where
α ∈ d(a, q); α̂a stands for “agent a chooses ac-
tion α”. The transition function is now defined as:
o(q, α1, ..., αk) = qi iff i is the lowest index such that
{α̂1

1, ..., α̂k
k} |= ϕi. It is required that ϕn ≡ >, so

that no deadlock can occur. The size of an implicit
model is given by the number of states, agents, and the
length of the sum of the sizes of the Boolean formulae.

Model Checking ATL+ Is PSPACE-Complete
Again. Contrary to [12, Section 3.4.1], where model
checking ATL+ with respect to both ATS and im-
plicit CGS is claimed to be ∆P

3 -complete, we estab-
lish the complexity as PSPACE.

Theorem 7 Model checking ATL+ for ATS and
implicit CGS using the perfect-recall semantics is
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PSPACE-complete wrt the size of the model and the
length of the formula (even for turn-based models with
two agents and “flat” ATL+ formulae).

Proof (sketch). Lower bound. We observe that the
number of transitions in a turn-based CGS is lin-
ear in the number of states (n), agents (k), and ac-
tions (d). Moreover, each turn-based CGS has an iso-
morphic ATS, and an isomorphic implicit CGS; the
transformation takes O(nd) steps. This, together with
the reduction from Section 3.1, gives us PSPACE-
hardness wrt n, k, d and the length of the formula (l)
and the encoded transition function for model check-
ing ATL+ against ATS as well as implicit CGS.

Upper bound. A close inspection of the algorithm
from Section 3.2 reveals that it can easily applied to
ATS and implicit CGS. In each step when a transi-
tion is taken one has to evaluate a sequence of Boolean
formulae. This can be done in polynomial time wrt to
a, k, and the length of the encoding. �

4. Adding Fairness to ATL+

Fairness conditions allow to focus on computations
where no agent is neglected wrt given resources (e.g.,
access to power supply, processor time, etc.). Fair-
ness is extremely important in asynchronous composi-
tion of agents. In general, it may happen that requests
of a group A ⊂ Agt are postponed forever in favor
of actions from other agents. In consequence, if we
want to state any positive property about what A can
achieve, we need to refer explicitly to paths where A’s
actions are always eventually executed. To this end, it
is enough to augment ATL+ with the “always eventu-
ally” combination 23 as an additional primitive 3

∞
.

4.1. EATL+

“Extended ATL+” (EATL+) is a subset of ATL∗

obtained by adding another kind of path formulae to
ATL+:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ, where
γ ::= ¬γ | γ ∧ γ | gϕ | ϕU ϕ | 3∞ϕ.

Note that in ATL∗ the formula 3
∞
ϕ can be written as

23ϕ. Hence, we can also use the ordinary ATL∗ se-
mantics to give truth to EATL+ formulae.

By the fact that CTL+ is more expressive than
CTL (which follows from ECTL being more ex-

pressive than CTL [9]), we conjecture that EATL+

is also more expressive than ATL+ (a formal proof is
beyond the scope of this article). In particular, we con-
jecture that fairness constraints cannot be expressed in
ATL+. Hence the importance of EATL+ which al-
lows for reasoning about the outcome of fair compu-
tations in model M . This is extremely important in
specification and verification of agents that act in an
asynchronous environment. For example, most agent
(and multi-agent) programming frameworks assume
an asynchronous execution platform. In such settings,
the following property from [8] holds.

Proposition 8 ([8]) Let M be a multi-agent program
model, q a state inM , and ϕ an ATL formula. If there
is a path in M, q on which ϕ never holds, then there
must be an agent i in M so that, for every coalition
A ⊆ Agt \ {i}, we have M 6|= 〈〈A〉〉3ϕ.

In other words, if the design of the program does not
guarantee that ϕ must eventually happen, then the ex-
ecution platform (agent i in the proposition above) can
stall actions of every coalition of “real” agents (from
Agt \ {i}) and prevent them from achieving ϕ.

In EATL+, this can be overcome by putting fair-
ness constraints explicitly in the formula. To make our
discussion more concrete, let us assume that M is an
asynchronous CGS as defined in [3]. That is, M is
a CGS where agent k is designated as the scheduler.
The scheduler’s task is to choose the agent whose ac-
tion is going to be executed, i.e., dk(q) = Agt \ {k}
for every q ∈ St, and for every pair of action pro-
files ~α, ~α′ that agree on the action of agent j we have
o(q, ~α, j) = o(q, ~α′, j). In our construction, we also
assume that transitions by different agents lead to dif-
ferent states (o(q, ~α, i) 6= o(q, ~α′, j) for i 6= j). More-
over, each state is labeled by proposition acti, where i
is the agent whose action was executed last.

Now, for example, the EATL+ formula
〈〈1, 2〉〉

(
(
∧k−1
i=1 3

∞
acti) → 3cleanRoom) says that

agents 1 and 2 can cooperate to make the room clean
for every course of events on which no agent is stalled
forever.

4.2. Model Checking EATL+
IR

In this section we extend the construction from Sec-
tion 3.2 to obtain an algorithm for EATL+ under the
perfect-recall semantics. Firstly, we define the set of
witnesses wit∞(λ, γ) for a flat atomic formula γ ≡
3
∞
ϕ. If λ 6|= 3

∞
ϕ then wit∞(λ, γ) = ∅; and if λ |= 3

∞
ϕ
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then wit∞(λ, γ) = {i | λ[i] |= ϕ}. Note that the set is
either infinite or empty.

Moreover, an EATL+ path formula γ is called 3
∞

-
atomic if it has the form 3

∞
ϕ1. For ϕ ∈ EATL+ we

denote the set of all 3
∞

-atomic flat path subformulae of
ϕ by APF∞(ϕ).

In the following we generalize the definition of a
segment.

Definition 6 (γ-segment, strict) A γ-segment on a
path λ is a tuple (i, j) ∈ N2

0 with i < j such that
λ[i] = λ[j] and for each γ′ ∈ APF∞(γ) with
wit∞(λ, γ′) 6= ∅ there is a witness w ∈ wit∞(λ, γ′)
such that i ≤ w ≤ j.

We call a γ-segment (i, j) strict if there is no other
γ-segment (k, l) in it.

The next proposition shows that such γ-segments al-
ways exist on paths on which some 3

∞
-atomic flat for-

mula is true. The following proofs are done similarly
to the ones given in Section 3.2.

Proposition 9 Let sA be a strategy for (M, q, γ).
Then, for all paths λ ∈ out(q, sA) and t ∈ N there is
a strict γ-segment (i, j) on λ with i ≥ t.

Proof. Suppose there is a path in the outcome that does
not contain such a γ-segment. Then, as the set of states
is finite there must be some position l ≥ t on λ such
that λ[l,∞] does not contain a witness for some γ′ ∈
APF∞(γ) with wit(λ, γ′) 6= ∅. But this contradicts
wit(λ, γ′) 6= ∅. If there is no 3

∞
-formula true on a path

the condition is trivially true. �

Lemma 10 Let M, q |= 〈〈A〉〉γ. Then, there is a strat-
egy sA for (M, q, γ) such that any strict γ-segment
(i, j) that contains no more witnesses for any formula
from APF(γ) contains at most |StM | · |APF∞(γ)|
states.

Proof. We proceed similar to Lemma 3 to make all
eventualities fromAPF(γ) true. Then, we modify the
strategy to a strategy s′A such that any segment (il, jl)
contained in any strict γ-segment (i, j) contains some
witness of wit∞(λ, γ′) for each γ′ ∈ APF∞(γ) for
that the witness set is non-empty on λ (and which
does not contain any more witnesses from formulae
from APF(γ)). Now, we consider the last segment,
say (il, jl), contained in (i, j) (i.e. jl = j). If all for-
mulae γ′ ∈ APF∞(γ) with wit∞(λ, γ′) 6= ∅ that
have a witness in (il, jl) do also have a witness in-
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Fig. 8. Proof idea of Theorem 11.

side (i, j) but outside (il, jl) then we modify s′A such
that (il, jl) is “removed” from the γ-segment (i, j) by
applying the reduction of Lemma 3. If not, we chose
the segment next to the last one and so on. The result-
ing γ-segment (i, j′) is jl − il + 1 states shorter than
(i, j). Applied recursively, this procedure results in a
γ-segment that contains at most |APF∞(γ)| neces-
sary segments which are interconnected by a minimal
number of states that do not contain unnecessary seg-
ments. The number of states of each segment plus the
number of intermediate states between two segments is
at most |StM |. Hence, the γ-segment contains at most
|StM |(|APF∞(γ)|) states. �

In the following we extend the finite path semantics
such that it can deal with 3

∞
-atomic flat formulae.

Definition 7 (|=k for EATL+) The semantics from
Definition 4 is extended to EATL+-formulae by
adding the following clause: M,λ |=k 3

∞
γ iff there is

some i < k such that M,λ[i,∞] |=k γ;

The notion of a k-witness strategy is given anal-
ogously to Definition 5: sA is a k-witness strategy
for (M, q, γ) if for all λ ∈ out(q, sA) we have that
M,λ |=k γ.

The analog of Theorem 4 for EATL+ is given next.

Theorem 11 We have that M, q |= 〈〈A〉〉γ iff there is a
|StM |·(1+|APF(γ)|+|APF∞(γ)|)-witness strategy
for (M, q, γ).

Proof (sketch). “⇒”: Let sA be a strategy for (M, q, γ).
Then, we modify sA according to Lemma 3 and obtain
a strategy s′A such that on all paths λ of the outcome of
s′A and for all formulae γ′ ∈ APF(γ) with a witness
on λ we have that wit(λ, γ′) ≤ |St| · |APF(γ)| =: t.
We modify s′A to a strategy s′′A according to Propo-
sition 9 and Lemma 10. Finally, the states between
t and the start of the strict γ-segment can be shrunk
up to at most |St|-many, again according to Lemma 3
(cf. Figure 8) resulting in a |StM | · (1 + |APF(γ)|+
|APF∞(γ)|)-witness strategy for (M, q, γ).
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“⇐”: Now assume there is a k := |StM | · (1 +
|APF(γ)|+|APF∞(γ)|)-witness strategy for (M, q, γ)
and no strategy for (M, q, γ). If this is caused by a
formula from APF(γ), or γ′ from APF∞(γ) with
a minimal witness position ≥ k the reasoning is as in
the proof of Theorem 4. We now consider the case if it
is caused by a formula from APF∞(γ) with a mini-
mal witness position < k. Then, for any k-strategy sA
there must be a γ′ ∈ APF∞(γ) such that for some
path λ1 ∈ out(q, sA) it holds that M,λ1 |=k γ′ but
M,λ2 6|= γ′ where λ2 equals λ1 up to position k. We
show that this cannot be the case. M,λ1 |=k γ′ im-
plies that γ′ has a witness in the initial γ-segment on
λ1 (cf. the initial γ-segment on λ1 with start and end
state q1 in Figure 8). So, there must be a state q and
an outgoing path λ2 containing no more γ-segments.
However, this state and outgoing path must also be
present in the initial γ-segment on the path λ1 and on
λ3 (see Fig. 8) there must also be a γ-segment. If it
starts within q1 and q on λ3 it must also be present on
λ2. So, suppose the initial γ-segment on λ3 with start
and end state q2 begins before q1. But this gives us
a (non-strict) γ-segment on λ2 (shown by the dotted
line) and of course, this segment can also be reached
on the outgoing path λ2 going through state q on λ1.
Applying this reasoning recursively proves that each of
these paths contains infinitely many γ-segments. This
contradicts the assumption that M,λ2 6|= γ′. �

The previous result allows to construct an alternat-
ing Turing machine with a fixed number of alternations
to solve the model checking problem (cf. the proof of
Theorem 5).

Theorem 12 Let ϕ be a flat EATL+ formula, M be
a CGS, and q a state in M . There is a polynomial-
time alternating Turing machine that returns “yes” if
M, q |= ϕ and “no“ otherwise.

Proof. The proof is done analogously to the one of
Theorem 5. Now, the verifiers strategy and the first
outcome of the opponents is constructed for the first
k := |StM | · (1 + |APF(γ)| + |APF∞(γ)|) steps.
Then, the game theoretic game to determine a flat
atomic subformula is implemented. Finally, this sub-
formula is tested agains the guessed path regarding the
semantics |=k. Note, that also also the clause for 3

∞
-

atomic formulae has to be considered. The correctness
follows from Theorem 11. �

Finally, we get the following result as a combina-
tion of Theorem 12 and Theorem 2. The reasoning is
exactly the same as for Theorem 6.

Theorem 13 Model checking EATL+ with the perfect-
recall semantics over CGS’s is PSPACE-complete
wrt the size of the model and the length of the formula
(even for turn-based models with two agents and flat
ATL+ formulae).

5. Significance of the Results

Why are the results presented here significant? First
of all, we have corrected a widely believed “result”
about model checking ATL+, and that is important
on its own. Several other existing claims concerning
variants of the model checking problem were based
on the ∆P

3 -completeness for ATL+, and thus needed
to be rectified as well. Moreover, the ATL+ verifica-
tion complexity is important because ATL+ can be
seen as the minimal language discerning strategic abil-
ities with and without memory of past actions. Our re-
sults show that the more compact models of agents
(which we usually get when perfect memory is as-
sumed) come with a computational price already in the
case of ATL+, and not only for ATL∗ as it was be-
lieved before.

ATL+ deserves attention from the conceptual point
of view, too. We argued in Section 2.3 that it enables
neat and succinct specifications of sophisticated prop-
erties regarding e.g. the outcome of agents’ play un-
der behavioral constraints. This is especially clear for
EATL+ where the constraints can take the form of
fairness conditions. Constraints of this kind are ex-
tremely important when specifying and/or verifying
agents in an asynchronous environment, cf. [8]. Since
ATL+

IR was believed to have the same model check-
ing complexity as ATL+

Ir, the former seemed a sen-
sible tradeoff between expressivity and complexity. In
this context, our new complexity results are rather pes-
simistic and shift the balance markedly in favor of ver-
ification of memoryless agents. In consequence, for
agents with memory one has to fall back to the less
expressive logic ATLIR, or accept the less desirable
computational properties of ATL+

IR. On the positive
side, we have also shown that fairness properties incur
no extra cost in either case and that model checking
ATL+/EATL+ is still much cheaper than for ATL∗.
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6. Conclusions

In this paper we have corrected a result concern-
ing the model checking complexity of ATL+ with re-
spect to agents that remember the whole history of the
game. In an otherwise excellent study [17], the prob-
lem was “proved” to be ∆P

3 -complete. Our amend-
ment is rather pessimistic as we show that the problem
is in fact PSPACE-complete. In consequence, the re-
sults on model checking ATL+, reported in [12], are
also incorrect. On the other hand, we also show that
adding fairness conditions does not increase the com-
plexity further, which is definitely good news. In con-
sequence, EATL+

IR is still an interesting option for
specification and verification of multi-agent systems if
one wants to avoid the prohibitive complexity of model
checking with full ATL∗IR.
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