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ABSTRACT
We propose an extension of alternating-time temporal logic, that
can be used for reasoning about the behavior and abilities of agents
under various rationality assumptions.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems; I.2.4 [Artificial Intelligence]: Knowledge Rep-
resentation Formalisms and Methods—Modal logic

General Terms
Theory
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1. INTRODUCTION
Alternating-time temporal logic (ATL) [1] is a temporal logic

that incorporates some basic game theoretical notions. In this pa-
per, we extend ATL with a notion of plausibility, which can be used
to model and reason about rational behavior of agents. In our ap-
proach, some strategies (or rather strategy profiles) can be assumed
plausible, and one can reason about what can be plausibly achieved
by agents under such an assumption.

This idea has been inspired by the way in which games are an-
alyzed in game theory. First, game theory identifies a number of
solution concepts (e.g., Nash equilibrium, undominated strategies,
Pareto optimality) that can be used to define rationality of players.
Then, we usually assume that players play rationally in the sense
of one of the concepts, and we ask about the outcome of the game
under this assumption. Note that solution concepts do not only help
to determine the right decision for “our” agent. Perhaps even more
importantly, they constrain the possible (predicted) responses of the
opponents. For many games the number of all possible outcomes is
infinite, although only some of them “make sense”. Still, we need
a notion of rationality (like subgame-perfect Nash equilibrium) to
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discard the “less sensible” ones, and determine what should happen
had the game been played by ideal players.

There are two possible points of focus in this context. Research
within game theory understandably favors work on characteriza-
tion of various types of rationality (and defining most appropriate
solution concepts). Applications of game theory, also understand-
ably, tend toward using the solution concepts to predict the out-
come in a given game (i.e., to “solve” the game). The first issue has
been studied in the framework of logic, for example in [2, 4, 10,
11]; more recently, game-theoretical solution concepts have been
characterized in dynamic logic [7], dynamic epistemic logic [3],
and ATL [13, 8]. The second issue seems to have been neglected in
logic-based research: papers by Van Otterloo and his colleagues [14,
16, 15] are the only exceptions we know of (and each of them com-
mits to a particular view of rationality). Here, we try to fill in this
gap, and propose a general, modal logic-based framework for rea-
soning about behavior and abilities of rational agents.

2. ATL
The language of Alternating-time Temporal Logic [1] is defined

over a set Agt of agents and a set Π of propositions, and consists
of the following formulae:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ, γ ::= fϕ | 2ϕ | ϕU ϕ.
where p ∈ Π and A ⊆ Agt. Informally, 〈〈A〉〉ϕ says that agents
A have a collective strategy to enforce ϕ. ATL formulae include
the usual temporal operators: f(“in the next state”), 2 (“always
from now on”) and U (strict “until”). Additionally, 3 (“now or
sometime in the future”) can be defined as 3ϕ ≡ >U ϕ.

The semantics of ATL is defined in concurrent game structures:

M = 〈Agt,Q ,Π, π, Act, d, o〉,

consisting of: a set Agt = {1, . . . , k} of agents; set Q of states;
set Π of atomic propositions; valuation of propositions π : Q →
P(Π); set Act of actions. Function d : Agt × Q → P(Act)
indicates the actions available to agent a ∈ Agt in state q ∈ Q .
A move vector in state q is a tuple 〈m1, . . . ,mk〉 ∈ d(q) where
d(q) =

Q
a∈Agt da(q) is the set of all move vectors in q. Finally, o

is a transition function which maps a state q ∈ Q and a move vector
〈m1, . . . ,mk〉 ∈ d(q) to another state q′ = o(q, 〈m1, . . . ,mk〉).

A computation or path λ = q0q1 . . . is an infinite sequence of
states such that there is a transition between each qi, qi+1. We de-
fine λ[i] = qi to denote the i-th state of λ. ΛM denotes all paths of
M . The set of all paths, starting in q, is given by ΛM(q).

A (memoryless) strategy of agent a is a function sa : Q →
Act such that sa(q) ∈ da(q). The set of strategies for agent a is
denoted by Σa. A collective strategy sA for team A ⊆ Agt spec-
ifies an individual strategy for each agent a ∈ A. Now, ΣA =



Q
a∈A Σa denotes the set of collective strategies of A. The set of

all strategy profiles is given by Σ = ΣAgt.1

Let A ⊆ B ⊆ Agt, and let sB be a collective strategy for B.
We use sB [A] to denote the substrategy of sB for agents A, i.e.,
strategy tA such that taA = sa

B for every a ∈ A. Additionally, for
a set of strategy profiles P , P (sA) denotes all strategy profiles that
contain sA as substrategy (i.e., P (sA) = {s′ ∈ P | s′[A] = sA}).

Finally, the outcome of strategy sA in state q is defined as the set
of all computations that may result from executing s:

out(q, sA) = {λ = q0q1q2... | q0 = q and for every i = 1, 2, ...
there exists m ∈ d(qi−1) such that ma = sA[a](qi−1) for
each a ∈ A, and o(qi−1,m) = qi}.

The semantics of cooperation modalities can be given through
the following clauses:

M, q |= 〈〈A〉〉 fϕ iff there is a collective strategy sA such that,
for every λ ∈ out(q, sA), we have M,λ[1] |= ϕ;

M, q |= 〈〈A〉〉2ϕ iff there exists sA such that, for every λ ∈
out(q, sA), we have M,λ[i] |= ϕ for every i ≥ 0;

M, q |= 〈〈A〉〉ϕU ψ iff there exists sA such that for every λ ∈
out(q, sA) there is i ≥ 0, for which M,λ[i] |= ψ, and
M,λ[j] |= ϕ for every 0 ≤ j < i.

3. REASONING ABOUT RATIONAL
AGENTS

Agents usually have very limited ability to predict the future.
However, some lines of action seem often more sensible or realistic
than others. Having defined a rationality criterion, we obtain means
to solve the game, i.e. to determine the most plausible plays, and
compute their outcome. In game theory, the outcome consists of
the payoffs (or utilities) assigned to players at the end of the game.
In temporal logics, the outcome of a play can be seen as the set of
paths that can occur – which allows for subtler descriptions.

In general, plausibility can be seen as a broader notion than ratio-
nality: one may obtain plausibility specifications e.g. from learning
or folk knowledge. In this paper, however, we focus on plausibility
as rationality in a game-theoretical sense.

3.1 ATL with Plausibility
We extend the language of ATL with operators Pl , Ph , and

(set-pl ω). Pl restricts the considered strategy profiles to ones that
are plausible in the given model. Consequently, Pl 〈〈A〉〉γ means
that agents A can enforce γ if only plausible strategy profiles can
be used. Ph disregards plausibility assumptions, and refers to all
physically available strategies. Finally, we propose one model up-
date operator: (set-pl ω) allows to define (or redefine) the set of
plausible strategy profiles Υ to the ones described by plausibil-
ity term ω (in this sense, it implements revision of plausibility).
ω is called a plausibility term, and refers to a set of strategy pro-
files from Σ. We note that, in contrast to [6, 12, 5], the concept
of plausibility presented in this paper is objective, i.e. it does not
vary from agent to agent. This is, again, very much in the spirit
of game theory, where rationality criteria are used in an analogous
way. Moreover, our plausibility concept is holistic in the sense that
Υ represents an idea of the plausible behavior of the whole sys-
tem (including the behavior of other agents). Finally, it is global,
because plausibility sets do not depend on the state of the system.
1In the original semantics [1], strategies assign agents’ choices to
sequences of states. It should be pointed out, however, that both
types of strategies yield equivalent semantics for the “pure” ATL.

DEFINITION 1 (ATLP). The languageLATLP is defined over
nonempty sets: Π of propositions, Agt of agents, and Ω of plausi-
bility terms. Let p ∈ Π, a ∈ Agt, A ⊆ Agt, and ω ∈ Ω. LATLP

formulae are defined recursively as:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 fϕ | 〈〈A〉〉2ϕ | 〈〈A〉〉ϕU ϕ | Plϕ |
Phϕ | (set-pl ω)ϕ

Again 3ϕ ≡ >U ϕ. With ATLP, we can for example express that
Pl 〈〈∅〉〉2(unlocked ∧ Ph 〈〈guard〉〉 f¬unlocked): “it is plau-
sible to expect that the emergency doors will always remain un-
locked, but the guard retains the physical ability to lock them”.

3.2 Semantics of ATLP
Models of ATLP extend concurrent game structures with a plau-

sibility set Υ, and a denotation of plausibility terms ω ∈ Ω. The
denotation is defined via a plausibility mapping [[·]] : Q → (Ω →
P(Σ)): each term is mapped to a set of strategy profiles. Note that
the denotation depends on the current state of the system. In a way,
the state defines the initial “position in the game”, which influences
the set of rational strategy profiles for most rationality criteria. For
example, a strategy profile can be a Nash equilibrium in q0, and yet
it may not be a NE in some of its successors.

DEFINITION 2. A concurrent game structure with plausibility
(CGSP) is given by a tuple

M = 〈Agt,Q ,Π, π, Act, d, o,Υ,Ω, [[·]]〉

where 〈Agt,Q ,Π, π, Act, d, o〉 is a CGS, Υ ⊆ Σ is a set of plau-
sible strategy profiles; Ω is a set of of plausibility terms, and [[·]] is
a plausibility mapping.

The idea behind Pl 〈〈A〉〉γ is that only plausible strategy profiles
can be played. Thus, coalitionA can only choose strategies that are
substrategies of plausible profiles. Moreover, the agents in Agt\A
can only respond in a way that yields a plausible strategy profile.

DEFINITION 3. LetM be a CGSP,A ⊆ Agt be a set of agents,
q ∈ Q be a state, sA ∈ ΣA be a collective strategy of A, and
P ⊆ Σ be a set of strategy profiles. The set out(q, sA, P ) contains
all computations which may result from agents A executing sA,
when only strategy profiles from P can be played. Formally:

out(q, sA, P ) = {λ ∈ ΛM (q) | ∃z ∈ P (sA)∀i
`
λ[i + 1] =

o(λ[i], z(λ[i]))
´
}.

Note that out(q, sA,Σ) = out(q, sA). Furthermore, ΣA(P ) de-
notes all profiles of A consistent with P , i.e., the set contains all
sA ∈ ΣA such that there is a t ∈ P with sA = t[A].

Again, let P ⊆ Σ. The semantics of ATLP is given by the satis-
faction relation |=P defined as follows:

M, q |=P p iff p ∈ π(q)

M, q |=P ¬ϕ iff M, q 6|=P ϕ

M, q |=P ϕ ∧ ψ iff M, q |=P ϕ and M, q |=P ψ

M, q |=P 〈〈A〉〉 fϕ iff there is a strategy profile sA ∈ ΣA(P )
such that we have M,λ[1] |=P ϕ for all λ ∈ out(q, sA, P )

M, q |=P 〈〈A〉〉2ϕ iff there is a strategy profile sA ∈ ΣA(P ) such
that M,λ[i] |=P ϕ for all λ ∈ out(q, sA, P ) and all i ∈ N0

M, q |=P 〈〈A〉〉ϕU ψ iff there is a strategy profile sA ∈ ΣA(P )
and i ∈ N0 such that M,λ[i] |=P ψ and for all j ∈ N0 with
0 ≤ j < i we have M,λ[j] |=P ϕ



Figure 1: CGS M2 for the bargaining game

M, q |=P Plϕ iff M, q |=Υ ϕ

M, q |=P Phϕ iff (M, q) |= ϕ

M, q |=P (set-pl ω)ϕ iff Mω, q |=P ϕ, where the new model
Mω is equal to M except for the set Υ of plausible strat-
egy profiles, which is now set to [[ω]]q .

The “absolute” satisfaction relation |= is given by |=Σ. Note that
an ordinary concurrent game structure (without plausibility) can be
interpreted as a CGSP with all strategy profiles assumed plausible,
i.e., with Υ = Σ. This way, satisfaction of ATLP formulae can be
extended to ordinary CGS.

We say that formula ϕ is valid iff M, q |= ϕ for every CGSP M
and state q ∈ QM ; ϕ is strongly valid iff M, q |=P ϕ for every
CGSP M , q ∈ QM , and P ⊆ Σ; ϕ is CGS-valid iff M, q |= ϕ
for every CGS (without plausibility) M , and q ∈ QM . Obviously,
strong validity implies validity, which implies CGS-validity. We
will be usually interested in the last notion of validity, where plau-
sibility sets must be specified explicitly in the formula. Still, strong
validity is important when we want to state that two ATLP formulae
are equivalent in the sense of interchangeability.

EXAMPLE 1. Consider bargaining with discount. Two agents,
a1 and a2, bargain (in rounds) about how to split goods worth ini-
tially w0 = 1 EUR. At each round, the subsequent player makes an
offer 〈x1, x2〉, meaning that a1 takes x1w and a2 gets x2w, where
x1 + x2 = 1, and w is the current value of the goods. The other
player can accept or refuse, but, after each refusal from agent ai,
the worth w decreases by δi (called the discount rate of player ai).
A CGS M , modeling the game, is presented in Figure 1. The pay-
offs of agents at the final states are represented with propositions
pv

i (meaning that “player i gets at least the payoff of v”).
Let ωNE denote the set of Nash equilibria (every payoff can be

reached by a Nash equilibrium), and ωSPN the set of subgame
perfect Nash equilibria in the game. Then, we have the following
formula for every x ∈ [0, 1]:

M, q0 |= (set-pl ωNE)〈〈1, 2〉〉3(px
1 ∧ p1−x

2 ) ∧

(set-pl ωSPN )〈〈∅〉〉3(p
1−δ2

1−δ1δ2
1 ∧ p

δ2(1−δ1)
1−δ1δ2

2 ).

Indeed, every split of the goods has a corresponding Nash equi-
librium, but only the split

D
1−δ2

1−δ1δ2
, δ2(1−δ1)

1−δ1δ2

E
is yielded by a sub-

game perfect NE [9].

4. CONCLUSIONS
We propose a logic in which one can study the outcome of ra-

tional play in a logical framework, under various game-theoretical
rationality criteria. To our knowledge, there has been very little
work on this issue. Note that we are not discussing the merits of
this or that rationality criterion, nor the pragmatics of using partic-
ular criteria to predict the actual behavior of agents. Our aim, most

of all, is to propose a conceptual tool in which the consequences of
accepting one or another criterion can be studied. We believe that
our concept provides much flexibility and modeling power.

Our ultimate goal is to come up with a logic that would allow us
to study strategies, time, knowledge, and plausible/rational behav-
ior under both perfect and imperfect information. However, putting
so many dimensions in one framework at once is usually not a good
idea – even more so in this case because the interaction between
abilities and knowledge is non-trivial. In the companion paper [5],
we have investigated time, knowledge and plausibility. In this pa-
per, we study strategies, time and rationality. We hope to integrate
both views into a single powerful framework in the future.
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