
Concepts, Agents, and Coalitions in Alternating Time
Wojciech Jamroga1

Abstract. We consider a combination of the strategic logic ATL
with the description logic ALCO. In order to combine the logics in
a flexible way, we assume that every individual can be (potentially)
an agent. We also take the novel approach to teams by assuming that
a coalition has an identity on its own, and hence its membership can
vary. In terms of technical results, we show that the logic does not
have the finite model property, though both ATL and ALCO do. We
conjecture that the satisfiability problem may be undecidable. On the
other hand, model checking of the combined logic is decidable and
even tractable. Finally, we define a particular variant of realizability
that combines satisfiability of ALCO with model checking of the
ATL dimension, and we show that this new problem is decidable.

1 Introduction
Description logics (DLs) are logical formalisms for representing the
knowledge of an application domain in a structured way [4]. More
precisely, DLs allow to describe classes, assign individuals to these
classes, and define binary relations on individuals. The importance
of DLs lies in the fact that comprise the formal basis of the Semantic
Web ontology languages [6], and they have well developed practi-
cal decision procedures. On the other hand, alternating-time tempo-
ral logic (ATL) [3] is probably the most influential logic of strategic
ability that has emerged in recent years. In this paper, we propose a
product-style combination of ATL with the description logicALCO.
An obvious motivation is to extend ATL with limited first-order com-
ponent for reasoning about individuals (objects in the world). Alter-
natively, one can see it as extending the description logic ALCO
with means to explicitly reason about what the actors in the system
can achieve over time. We call the resulting language alternating-
time description logic (ADL).

ADL allows to specify how agents/coalitions can change the prop-
erties of the external world, but also how they influence their own
characteristics. To some extent this was already present in [10] but
that formalism was limited in two respects. First, by using coali-
tion logic (CL) rather than ATL for reasoning about the outcome of
agents’ actions, specifications were restricted to properties that can
be enforced in the next moment (or, in a fixed and pre-specified num-
ber of steps). This was a serious limitation since most interesting
properties refer to patterns that persist over time: either as invariants
(specifying e.g. safety conditions of the system) or in terms of reach-
ability (specifying e.g. goals that should be eventually achieved).

Secondly, unlike in [11] where the sets of agents and objects (in-
dividuals) were rigidly separated, or in [10] where agents were as-
sumed a special kind of individuals that had to be “called by name”,
we want to allow here for flexible specifications of coalitions, so that
the advantages of description logics are really used. To this end, we
assume that coalitions are just concepts, and they are specified in the

1 University of Luxembourg, email: wojtek.jamroga@uni.lu

same way as any other concept. Since concepts are semantically sets
of individuals, this suggests that any individual can be an agent, at
least potentially. That poses some important semantic issues, as now
the number of agents can become infinite. We also take the novel ap-
proach to modeling teams by assuming that a coalition has an identity
on its own, and hence its membership can vary.

In terms of technical results, we show that the logic is strictly more
expressive than ATL, ALCO, and CLALCO . On the other hand, it
does not have the finite model property, though ATL,ALCO, as well
as CLALCO do. We conjecture that the satisfiability problem may
be undecidable. On the other hand, model checking of the combined
logic is decidable and even tractable (in the size of the input). Finally,
we define a particular variant of realizability that combines satisfia-
bility ofALCO with model checking of the ATL dimension, and we
show that this new problem is decidable.

2 Preliminaries
We begin by a short presentation of the logics ATL and ALCO.

2.1 Alternating-time Temporal Logic
ATL [3] is a generalization of the branching-time logic CTL, in which
path quantifiers are replaced with so called cooperation modalities
〈〈C〉〉. Formula 〈〈A〉〉γ expresses that coalition A has a collective
strategy to enforce property γ. Formally, the language of ATL is
given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕU ϕ

where p is an atomic proposition from a countable set Prop =
{p1, p2, . . .}. Typically, coalitions in ATL formulae are given by list-
ing the names of their members. Cooperation modalities are fol-
lowed by standard temporal operators: X (next), G (always), U
(until). Additionally, F (sometime in the future) can be defined as:
〈〈A〉〉Fϕ ≡ 〈〈A〉〉>U ϕ.

The semantics of ATL is defined in a variant of transition sys-
tems where transitions are labeled with combinations of actions, one
per agent. Formally, a concurrent game structure (CGS) is a tuple
M = 〈Ag, St, V,Act, d, o〉 which includes a nonempty finite set
of all agents Ag = {1, . . . , k}, a nonempty set of states (or possible
worlds) St, a valuation of atomic propositions V : Prop→ 2St, and
a nonempty set of (atomic) actions Act. Function d : Ag × St →
2Act defines nonempty sets of actions available to agents at each
state, and o is a (deterministic) transition function that assigns the
outcome state q′ = o(q, α1, . . . , αk) to state q and a tuple of actions
〈α1, . . . , αk〉, αi ∈ d(i, q), that can be executed by Ag in q.

A strategy of agent a is a conditional plan that specifies what a
is going to do in each possible state. Thus, a (memoryless) strategy
can be represented by a function sa : St → Act, such that sa(q) ∈

q0

q12

q21

q12c

q21c

qd

dinner
up2,

nop

dn,nop

nop,up
1

nop,dn

grab,nop

nop,grab

dn,nop

nop,dn

eat,eat / eat,nop
nop,eat

nop,nop
up2 ,up1

nop,nop nop,nop

nop,nop nop,nop

nop,nop

Figure 1. Possums and cheese: a concurrent game structure M1.

d(a, q). A collective strategy for a group of agents A = {a1, ..., ar}
is simply a tuple of strategies sA = 〈sa1 , ..., sar 〉, one per agent
from A. We will denote the set of A’s collective strategies by ΣA.
Also, by sA[a], we denote agent a’s part of the collective strategy
sA. Function out(q, sA) returns the set of all paths (i.e., infinite se-
quences of states) that may occur when coalitionA executes strategy
sA from state q onward. The semantics of cooperation modalities is
defined below.

M, q |= 〈〈A〉〉Xϕ iff there is sA ∈ ΣA such that, for each path
λ ∈ out(q, sA), we have M,λ[1] |= ϕ;
M, q |= 〈〈A〉〉Gϕ iff there is sA ∈ ΣA such that, for each λ ∈
out(q, sA), we have M,λ[i] |= ϕ for every i ≥ 0;
M, q |= 〈〈A〉〉ϕU ψ iff there is sA ∈ ΣA such that, for each
λ ∈ out(q, sA), there is i ≥ 0 for which M,λ[i] |= ψ, and
M,λ[j] |= ϕ for each 0 ≤ j < i.

Example 1 (Dining Possums) k possums are wandering in an
empty house when they spot a beautifully smelling piece of cheese
on the table. The table is too high to leap on it, and too slippery to
climb, but the possums can reach the cheese if n ≤ k of them stand
on top of each other. Actions available to possum i are: do nothing
(nop), climb on top of another possum j (upj), climb down (dn),
and pick up the cheese (grab). An example CGS for k = n = 2
is depicted in Figure 1. Note that not every action is enabled in ev-
ery state. Also, some actions may fail (e.g., when two possums try to
climb on each other at the same time). States are named to reflect
the configuration, e.g., q0 is the state where all possums stand on the
floor with no cheese, q12c one where possum 1 stands on 2 holding
the cheese etc.

It is easy to see that, in q0, the possums can cooperate and get to
the “dinner” state. However, no possum can get to dinner on its own:
M1, q0 |= 〈〈1, 2〉〉Fdinner ∧ ¬〈〈1〉〉Fdinner ∧ ¬〈〈2〉〉Fdinner.

2.2 Description Logic ALCO
Description logics are fragments of monadic first-order logic, widely
used as knowledge representation languages. Here, we use ALCO
which extends the standard description logicALC with nominals and
enumeration of sets [4]. The language of concepts and formulae of
ALCO is defined as:

C ::= > | C0 | {|i|} | ¬C | C u C | ∃R.C
ϕ ::= C v C | ¬ϕ | ϕ ∧ ϕ

where C0 represents atomic concepts from a countable set NC =
{C1, C2, . . .} of concept names, i is an individual from a count-
able set NI , and R a role from a countable set NR. Intuitively,
each concept describes a set of individuals, and concept construc-
tors apply basic set operations on simpler concepts. The following
abbreviations can be used: ⊥ ≡ ¬>, C t D ≡ ¬(¬C u ¬D),
{|i1 . . . , in|} ≡ {|i1|} t · · · t {|in|}, C(i) ≡ {|i|} v C, and C

.
= D ≡

(C v D ∧D v C).
The semantics is given by a terminological interpretation
I = 〈∆, ·I〉, where ∆ is a nonempty set called the domain, and
·I is a mapping that assigns each atomic concept Ci with a subset
CIi of ∆, each individual name i with an individual iI ∈ ∆,
and each role name R with a binary relation RI on ∆. The
interpretation is extended to other concepts as follows: >I = ∆,
{|i|}I = {iI}, (¬C)I = ∆ \ CI , (C uD)I = CI ∩DI , and
(∃R.C)I = {δ ∈ ∆ | ∃δ′ (〈δ, δ′〉 ∈ RI ∧ δ′ ∈ CI)}. Finally, the
meaning of formulae is given by I |= C v D iff CI ⊆ DI .

Example 2 (Possums and Cheese) Consider the domain ∆ =
{pos1, pos2, cheese, table}, plus atomic concepts Possums,Free
and a binary relation On. A natural interpretation of the situa-
tion in state q12 of model M1 is: PossumsI = {pos1, pos2},
FreeI = {pos1, cheese}, OnI = {(pos1, pos2), (cheese, table)}.
The following formula is true in this interpretation: ∃On.(Possumsu
Free) = ⊥ (nothing stands on a free possum).

3 Concepts and Coalitions in Alternating Time
In this section we introduce our new logic ADL. The logic combines
(restricted) first-order features of description logic, and modal ap-
proach to reasoning about agents, strategies, and impact of strate-
gic play on evolution of the system. We overcome two limitations
that made specification with Coalition Description Logic [10] cum-
bersome. First, ADL allows for reasoning about long-term temporal
patterns (e.g., properties that persist over time). Second, agents and
coalitions are treated in ADL like any other individual and concept,
which allows for flexible and succinct specification of the interplay
between players and their sets.

3.1 Alternating-time Description Logic: Syntax
One way of seeing ADL is that the description logicALCO provides
concept descriptions and sentences that refer to properties of the cur-
rent state of the system. The strategic logic ATL adds two kinds
of modal operators. Modal sentence constructors allow to specify
agents’ strategic abilities to influence the temporal evolution of the
state of the system. Modal concept constructors allow to describe the
set of individuals that can be influenced in a specified way. We set the
sentence constructors in bold to make specifications easier to read.

Formally, the set of concepts is given by the grammar below:

C ::= > | C0 | {|i|} | ¬C | C u C | ∃R.C | 〈〈C〉〉XC | 〈〈C〉〉GC |
〈〈C〉〉C U C,

That is, we extend ALCO concepts with ones referring to the in-
dividuals that can be forced by C1 to join C2 in the next step
(〈〈C1〉〉XC2), the individuals that can be forced by C1 to stay in C2

forever (〈〈C1〉〉GC2), and so on. We use 〈〈C1〉〉FC2 as the abbrevi-
ation for 〈〈C1〉〉>U C2. The set of formulae of ADL is defined as
follows (with standard abbreviations):

ϕ ::= C v C | ¬ϕ | ϕ ∧ ϕ | 〈〈〈〈〈〈C〉〉〉〉〉〉Xϕ | 〈〈〈〈〈〈C〉〉〉〉〉〉Gϕ | 〈〈〈〈〈〈C〉〉〉〉〉〉ϕUϕ.

Example 3 (Dining Possums ctd.) Example ADL formulae are:
〈〈〈〈〈〈Hungry u Possums〉〉〉〉〉〉F(Hungry u Possums

.
= ⊥) (hungry pos-

sums can collaborate so that eventually no possum is hungry), and
(〈〈Possums〉〉F∃In.Possums)

.
= {|cheese|} (cheese is the only object

that the possums can eat, i.e., transfer it into a possum).

Note that CLALCO from [10] can be seen as the “next-time” frag-
ment of ADL, with the additional restriction that coalitions are only
specified by enumerating their members.

3.2 How to Interpret Coalitions
In the new syntax, a coalition C is just a concept. This follows the
intuition that coalitions are groups of agents, i.e., sets of those in-
dividuals who act and influence the evolution of the system. Since
we assume that interpretation of concepts can change as the system
evolves, the same applies to coalitions. This means in particular that
the actual membership in C may change while the coalition is ex-
ecuting its strategy. The interpretation has an organizational flavor
which is very close to how humans reason about teams. We illustrate
this point by a number of examples.

Example 4 (Coalitions evolve over time) Consider the following
statements: “The Rolling Stones (the rock band) have had 9 no. 1
hits to date”, “FC Liverpool (the soccer team) can win the next sea-
son of Premier League”, “the European Union will implement the
policy by 2015”, “researchers from Malta will keep scoring at least
one ECAI paper per decade.” In all these cases, we refer to coalitions
with potentially varying memberships: the Rolling Stones have been
scoring hits with different bassists, drummers and lead guitarists, the
EU may enhance or even shrink etc. – yet we do not mean that the
policy will be implemented by the current EU states. The statement
about Maltese researchers is perhaps the most significant. While the
other team descriptions refer to groups that have a clearly estab-
lished identity (e.g., legal identity), this one is a mere description of
a variable set of people. Still, it is interpreted in the same way.

Another consequence of taking Ag = ∆ is that transitions might
be labeled by infinite (and even non-enumerable) tuples of actions.
To avoid that, we assume that at each moment only a finite subset
of individuals is active. Note that a system can still include infinitely
many agents (i.e., acting individuals), but they can only act by taking
“turns” of finitely many actions.

3.3 Models
Models, concurrent game structures with terminological interpreta-
tion (CGSI), are CGS’s endowed with limited first-order features.
Like in [10], interpretation of concepts and roles can vary from state
to state. Also, the domain and interpretation of individual names is
assumed to be constant throughout a CGSI.

Definition 1 (CGSI) A concurrent game structures with terminolog-
ical interpretation is a tuple M = 〈∆, St, Act, active, d, o, · I(q)〉,
where: ∆ is a nonempty domain of interpretation (that defines the set
of individuals as well as agents), St is a nonempty set of states, and
active : St → Fin(∆) \ ∅ defines the finite nonempty set of active
agents at each state in St. Function d : St → (∆ ⇀ 2Act \ ∅)
defines actions available to agents at particular states; we assume
that dom(d(q)) = active(q). We will often write da(q) instead of
d(q)(a). The transition function o defines the next state q′ given
the current state q and one action per each active agent in q;

q0

Possums={pos1,pos2}
On={(cheese,table)}

Hungry=∅
In=∅

q′0
Possums={pos1,pos2}
On={(cheese,table)}

Hungry={pos1}
In=∅

q12

Possums={pos1,pos2}
On={(cheese,table)}
Hungry={pos1,pos2}

In=∅

nop,nop
up2 ,up1

up2,nop

up2,
nop

dn,nop

grab,nop

nop,nop
up2 ,up1

no
p,

no
p

Figure 2. Possums and cheese: a part of the CGSI M2.

i.e., o(q, αa1 , . . . , αak) = q′ for {a1, . . . , ak} = active(q) and
αai ∈ dai(q), i = 1, . . . , k. Finally, · I(q) defines the interpretation
of atomic concepts and role names for every q ∈ St.

Example 5 (Dining Possums ctd.) We refine the CGS from Exam-
ple 1 by the conceptual structure from Example 2, plus an additional
concept name Hungry to represent the set of hungry individuals and
role name In for the relation of being inside. We assume that no pos-
sum is hungry at the beginning, but it becomes hungry after ti transi-
tions, with t1 = 1 for pos1 and t2 = 2 for pos2. Moreover, a possum
that has just eaten the cheese is not hungry anymore. A part of the
resulting CGSI is presented in Figure 2 (we cannot present the whole
graph due to lack of space).

Definition 2 (Frame) A concurrent action frame is a model without
interpretation of states, i.e., F = 〈∆, St, Act, active, d, o〉.

Note that agents/individuals that are never active do not
change the action/transition structure. Thus, we say that M =
〈∆′, St′, Act′, active′, d′, o′, · I(q)〉 extends F iff ∆ ⊆ ∆′, and
St′, Act′, active′, d′, o′ are the same as St,Act, active, d, o.

3.4 Strategies
Before we give the semantic clauses for ADL, we need to redefine
the notion of a collective strategy. In ATL, individual strategies are
functions from states to actions, and collective strategies are tuples
of individual strategies. However, in our case this would mean that
we need to take potentially an infinite number of individual plans,
though only finitely many of them would be used at each particular
state. To avoid this, we start with the notion of a joint action of coali-
tion C: that is, a tuple of actions by the currently active members of
C. Formally, the sets of joint actions of C at state q and in the whole
system are defined as:

dC(q) =
∏

a∈active(q)

∩(C)I(q)

da(q); ActC =
⋃
q∈St

dC(q).

Definition 3 (Joint strategy) A joint strategy of coalition C is a
function sC : St → ActC such that sC(q) ∈ dC(q). That is, sC
prescribes a collective action of C in every state q. The set of all
such strategies is denoted by Σ̂C .

Note that we index strategies with syntactic rather than semantic
entities: C is a concept that describes the coalition, and not its exten-
sion! The set of outcome paths of sC from q on is defined as:

out(q, sC) = {λ = q0q1q2 . . . | q0 = q and for each i =
0, 1, 2, . . . there exists a tuple decisions 〈αi1, . . . , αik〉 for agents
in active(qi) such that αia ∈ da(qi) for every a ∈ active(qi),
and αia = sC(qi)[a] for every a ∈ active(qi) ∩ (C)I(qi), and
o(qi, α

i
1, . . . , α

i
k) = qi+1}.

It is easy to see that the new notion of collective strategies coin-
cides with the one from [3] when the membership in C is constant
and the members of C are always active (which is the case in ATL):

Proposition 1 Let sC ∈ Σ̂C like in Definition 3, and let CI(q) =
A ⊆ active(q) for all q ∈ St. We construct tA as the tuple of
strategies ta : St→ Act, a ∈ A, such that ta(q) = sC(q)[a]. Then,
out(q, sC) = out(q, tA) for every q ∈ St.

3.5 Interpretation of Concepts and Formulae
We can now finally define the semantics of ADL. We begin with the
interpretation of modal concepts:

(〈〈C〉〉XD)I(q) = {x ∈ ∆ | there is a joint strategy sC ∈ Σ̂C such
that for every λ ∈ out(q, sC) we have x ∈ (D)I(λ[1])};

(〈〈C〉〉GD)I(q) = {x ∈ ∆ | there is sC ∈ Σ̂C such that for every
λ ∈ out(q, sC) and i = 0, 1, . . . we have x ∈ (D)I(λ[i])};

(〈〈C〉〉D1 UD2)I(q) = {x ∈ ∆ | there is sC ∈ Σ̂C such that for
every λ ∈ out(q, sC) there is i such that x ∈ (D2)I(λ[i]), and for
every j = 0, . . . , i− 1 we have x ∈ (D1)I(λ[j])}.

It is easy to see that (〈〈C〉〉FD)I(q) = {x ∈ ∆ | there is sC ∈
Σ̂C such that for every λ ∈ out(q, sC) there is i such that x ∈
(D)I(λ[i])}. We also note that the above formulation is more intuitive
and easier to read than the one for CLALCO in [11] (compare our
clause for 〈〈C〉〉XD with the clause for [C]D from that paper).

The semantics of ADL formulae updates that of ATL as follows:

M, q |= C v D iff CI(q) ⊆ DI(q);
M, q |= ¬ϕ iff M, q 6|= ϕ;
M, q |= ϕ ∧ ψ iff M, q |= ϕ and M, q |= ψ;
M, q |= 〈〈〈〈〈〈C〉〉〉〉〉〉Xϕ iff there is a joint strategy sC ∈ Σ̂C such that,

for each path λ ∈ out(q, sC), we have M,λ[1] |= ϕ;
M, q |= 〈〈〈〈〈〈C〉〉〉〉〉〉Gϕ iff there is sC ∈ Σ̂C such that, for each λ ∈
out(q, sC), we have M,λ[i] |= ϕ for every i ≥ 0;
M, q |= 〈〈〈〈〈〈C〉〉〉〉〉〉ϕUψ iff there is sC ∈ Σ̂C such that, for each
λ ∈ out(q, sC), there is i ≥ 0 for which M,λ[i] |= ψ, and
M,λ[j] |= ϕ for every 0 ≤ j < i.

Example 6 (Dining Possums ctd.) An example formula that holds
in M2, q0 is 〈〈〈〈〈〈Hungry u Possums〉〉〉〉〉〉F({|cheese|} v ∃In.Possums):
hungry possums can collaborate so that the cheese is eventually
eaten by a possum (note that this requires that the possums first
wait so that enough of them become hungry and the coalition
Hungry uPossums grows sufficiently). On the other hand, they can-
not bring about the cheese having been eaten by a hungry possum
– as soon as a possum eats, it ceases to be hungry: M2, q0 6|=
〈〈〈〈〈〈Hungry u Possums〉〉〉〉〉〉F

(
{|cheese|} v ∃In.(Hungry u Possums)

)
.

4 Expressing Interesting Properties with ADL

In this section we discuss what can be expressed in ADL. We start
by reworking a motivating example from [10]. We note that, like in
ATL, 〈〈⊥〉〉 and 〈〈>〉〉 can be used to express the “for all paths” and
“there is a path” quantifiers of branching-time logic.

Example 7 (Authorization) Let Perm stand for the set of permis-
sions to be in a building, and In represent the set of agents that
are currently inside. Formula 〈〈〈〈〈〈⊥〉〉〉〉〉〉G(〈〈admin〉〉FPerm

.
= >) ∧

(〈〈admin〉〉F¬Perm .
= >) specifies that the administrator can grant

and deny the permission to any agent. Moreover, 〈〈〈〈〈〈⊥〉〉〉〉〉〉G(¬In u
〈〈>〉〉XIn v Perm) says that agents who enter the building are only
ones that have permission to do so.

We note three important differences to the specifications from [10].
First, the above formulae specify invariants of the system, i.e., prop-
erties that will hold at every possible future state. Second, the admin
can grant and revoke permissions, but not necessarily in one time
step. Third, the above specifications are much more succinct. In par-
ticular, they do not require the big conjunction that enumerates all
agents by name.

We will now present some general patterns for specification of
evolution of concepts, and examine the expressivity of ADL formally.

4.1 General Patterns of Evolution
ADL can capture the following properties of concepts (in particular,
coalitions):

• C remains constant in 1 step: Const1(C) ≡ (C v 〈〈⊥〉〉XC) ∧
(〈〈>〉〉XC v C);

• C remains constant throughout every execution of the system:
Const(C) ≡ 〈〈〈〈〈〈⊥〉〉〉〉〉〉GConst1(C);

• Losless1(C) ≡ C v 〈〈⊥〉〉XC and Losless(C) ≡
〈〈〈〈〈〈⊥〉〉〉〉〉〉GLosless1(C) expressing that C does not lose elements
(for every possible transition);

• Grows1(C) ≡ ¬(〈〈>〉〉XC v C) and Grows(C) ≡
〈〈〈〈〈〈⊥〉〉〉〉〉〉GGrows1(C) stating that there is (always) at least one tran-
sition introducing a new element to C.

We will use the last two patterns in Section 5.2 to show that ADL
does not have the finite model property.

4.2 Expressive Power of ADL
We use the standard notions of expressive power and distinguishing
power [12].

Definition 4 (Distinguishing power) Logic L1 is at least as distin-
guishing as L2 over class of modelsM (written L2 ≤d L1) iff, for
everyM ∈M andϕ ∈ L2, there isϕ′ ∈ L1 with the same extension
as ϕ in M . L1 is strictly more distinguishing than L2 iff L2 ≤d L1

but not L1 ≤d L2.

Definition 5 (Expressive power) Logic L1 is at least as expressive
as L2 over class of models M (written L2 ≤e L1) iff there is a
translation TR from L2 to L1 such that for each ϕ ∈ L2 we have:
M, q |=L2

ϕ iff M, q |=L1
TR(ϕ) for all M ∈ M and q in M . L1

is strictly more expressive than L2 iff L2 ≤e L1 but not L1 ≤e L2.

For comparison of distinguishing and expressive power, we ob-
serve that ALCO and CLALCO can be interpreted over CGSI as the
“present-time” resp. “next-time” sublanguages of ADL. ATL can be
interpreted e.g. by translating atomic propositions pi to atomic state-
ments Ci v ⊥ in ADL (i.e., pi holds iff the corresponding con-
cept is empty). Moreover, we interpretALCO models as single-state
ADL models, and ATL models as ADL models where atomic con-
ceptsC1, C2, . . . “simulate” propositions p1, p2, . . . so that pi holds
at q iff the interpretation of Ci at q is nonempty. The proofs of the
following theorems are rather easy, and we omit them to save space.

Theorem 2 ADL is strictly more expressive and strictly more distin-
guishing than ATL as well as ALCO.

Theorem 3 ADL is strictly more expressive and strictly more distin-
guishing than CLALCO . In finite models, ADL has the same distin-
guishing power as CLALCO , but strictly more expressive power.

In short, this is because ADL includes the “transitive closure” oper-
ators F,G, U that can be neither expressed in CL nor simulated in
ALCO.

Theorem 4 The “next-time” fragment of ADL has the same distin-
guishing power, but strictly more expressive power than CLALCO .

5 Decision Problems and Decidability
5.1 Model Checking
The (global) model checking problem asks, given a finite model M
and a formula ϕ, about the exact set of states Q ⊆ StM in which ϕ
holds. Below we sketch how ADL model checking can be done by
the standard fixpoint model checking algorithm for ATL.

First, we compute the interpretation of concepts in ϕ by construct-
ing an ATL modelM ′ where points are pairs of states and individuals
from M , and concepts play the role of formulae: StM′ = StM ×
∆M , AgM′ =

⋃
q∈StM

activeM (q), oM′((q, i), α1, . . . , αk) =(
oM (q, α1, . . . , αk), i

)
,2 and VM′(C) = CIM for all atomic

concepts C in ϕ. We also use next((q, i), α) to denote
the set of points in M ′ that can result from executing a
(possibly coalitional) action α from (q, i). For any C ⊆
StM × ∆M , let ind(C, q) = {i | (q, i) ∈ C}. Now, we de-
fine the pre-image function for M ′ as follows: pre(C1, C2) =
{(q, i) | ∃α ∈ dM′

(
ind(C1, q), q

)
. next((q, i), α) ⊆ C2}. Finally,

we use the standard model checking algorithm from [3] with this new
function pre to compute the (global) interpretation of all concepts in
ϕ. The algorithm will run in time O(|StM′ | · |ϕ| + |oM′ | · |ϕ|) =
O(|∆M | · |oM | · |ϕ|).

The final step consists in constructing an ATL model M ′′ with
the same states, actions and transitions as M , and the atomic sub-
formulae of ϕ treated as atomic propositions: V (C v D) =
{q ∈ St | CIM (q) ⊆ DIM (q)}. Now, we simply model check ϕ in
M ′′ with the algorithm from [3] and return the result. This part of
the algorithm will also run in time O(|∆M | · |oM | · |ϕ|).

Theorem 5 Model checking ADL is P-complete, and can be done
in time linear wrt the number of individuals and transitions in the
model, and the length of the formula.

Proof. P-hardness follows from P-hardness for ATL. Inclusion and
the upper bound are guaranteed by the above algorithm. �

5.2 Satisfiability and Validity
Theorem 6 ADL does not have the finite model property.

Proof. We recall the patterns from Section 4.1, and observe that
Losless(C)∧Grows(C) is satisfiable in general but unsatisfiable in
finite models (there must be an infinite sequence of states q0, q1, . . .
such that each (C)I(qi) strictly subsumes (C)I(qi−1)). �

2 We assume that agents who were not active in M, q are assigned in
M ′, (q, i) only the “no operation” action that does not change the outcome
of transitions.

Conjecture 7 ADL is undecidable.

Proof idea: we reduce the Halting Problem by simulating a config-
uration of a Turing machine with a sequence of states that can be
“browsed” by agent a1. Another agent a2 is responsible for trans-
forming configurations according to transitions of the TM. Then, the
TM halts iff a2 can reach a terminating configuration, with a1 veri-
fying correctness of transitions on the way.

In the next section we present a more positive result which fits the
practice of both DL and MAS communities well.

5.3 Realizability
The communities of description logics and MAS logics differ sig-
nificantly in what they consider their “standard” decision problems.
For description logics, satisfiability is most studied, motivated by the
syntactic way in which knowledge bases and ontologies are usually
formulated. In contrast, the MAS community mostly studies model
checking, because most problem domains can be easily formalized
by relational models, often emphasizing the graphical aspect of such
modeling. In this section, we propose a variant of realizability3 that
combines model checking in the temporal/strategic dimension with
satisfiability of the description logic layer.

Definition 6 (Frame satisfiability) Frame satisfiability is the deci-
sion problem which, given a concurrent action frame F , a state q in
it, and a formula ϕ, answers whether there exists a modelM extend-
ing F such that M, q |= ϕ.

We will show that frame satisfiability for ADL is decidable. The
proof proceeds by a translation of the problem to satisfiability of
CLALCO , a decidable problem from [10]. The main idea is as fol-
lows: (1) We translate the ADL formula ϕ to a CLALCO formula
tr(ϕ) which is equivalent to ϕ on the given pointed frame F, q0;
(2) We characterize the pointed frame F, q0 by a CLALCO formula
ΦF,q0 that accepts only structures strategically bisimilar [1] to F, q0;
(3) Frame satisfiability for F, q0, ϕ is now equivalent to satisfiability
of tr(ϕ) ∧ ΦF,q0 . We sketch the formal construction below.
Translation of the formula. Let F, q0, ϕ be given (and finite). We
will use the following notation: |F | is the number of states in F ,
Ag =

⋃
q∈St active(q) is the set of all active individuals in F ,

and C = {{|i1, . . . , ik|} | i1, . . . , ik ∈ Ag} the set of all concepts that
enumerate possible coalitions in Ag. We will also need an additional
relational symbol FC (“fully connected”) to facilitate the translation
of concepts, and require that all individuals are fully connected to ev-
ery active agent fromAg by FCI (in every state q). This can imposed
by the following formula:

ΦFC ≡
∧
i∈Ag

〈〈〈〈〈〈⊥〉〉〉〉〉〉G(∃FC.{|i|}) .
= >.

Lemma 8 Let ifsub(A,B,C) ≡ ¬(∃FC.(A u ¬B)) u C. Then, if
FCI is fully connected in the sense above, and AI ⊆ Ag, we have
that

(
ifsub(A,B,C)

)I
= CI if AI ⊆ BI and ∅ otherwise.

We translate the subformulae and concepts in ϕ recursively as be-
low.4 We use the fact that a successful strategy can be constructed for

3 The term refers to a class of decision problems where the input is a formula
and a part of a model. Then, realizability returns ”yes” if there exists a
model that extends the part and makes the formula true.

4 For lack of space, we only show translations for the “next” and “always”
strategic operators. The case of “until” is analogous, and tr distributes over
all the other operators.

〈〈A〉〉Gϕ, 〈〈A〉〉ϕU ψ iff there exists a sequence of |F | joint actions
for A that preserve the fixpoint translations of Gϕ,ϕU ψ from [3].5

tr(〈〈〈〈〈〈C〉〉〉〉〉〉Xϕ) =
∨
A∈C

(
(A v tr(C)) ∧ [A]tr(ϕ)

)
,

tr(〈〈〈〈〈〈C〉〉〉〉〉〉Gϕ) = tr|F |(〈〈〈〈〈〈C〉〉〉〉〉〉Gϕ), tr0(〈〈〈〈〈〈C〉〉〉〉〉〉Gϕ) = tr(ϕ),
trk(〈〈〈〈〈〈C〉〉〉〉〉〉Gϕ) = tr(ϕ) ∧

∨
A∈C

(
(A v tr(C)) ∧

[A]trk−1(〈〈〈〈〈〈C〉〉〉〉〉〉Gϕ)
)
.

By coalitional monotonicity of ATL (if A can enforce γ then also
every superset ofA can), we have that 〈〈〈〈〈〈C〉〉〉〉〉〉X is about properties that
the current members C can bring about, while 〈〈〈〈〈〈C〉〉〉〉〉〉G is about the
properties that can be preserved by the subsequent interpretations of
C in |F | steps. The translation of modal concepts is similar, but we
need the ifsub macro to obtain the union of outcomes achievable by
(subsets of) CI :
tr(〈〈C〉〉XD) = tA∈C ifsub

(
A, tr(C), [A]tr(D)

)
,

tr(〈〈C〉〉GD) = tr|F |(〈〈C〉〉GD), tr0(〈〈C〉〉GD) = tr(D),
trk(〈〈C〉〉GD) = tr(D) u(

tA∈C ifsub(A, tr(C), [A]trk−1(〈〈C〉〉GD))
)
.

Note that the ifsub construction is not used in tr(ΦFC). Thus, we
obtain the following.

Lemma 9 For every CGSI M that extends F , let M ′ be the
CLALCO model extending M (by taking the set of agents that col-
lects all active individuals, and setting nop actions for those who
do not act). Then, we have that M, q |=ADL ϕ iff M ′, q |=CLALCO
tr(ΦFC) ∧ tr(ϕ).

Characterizing the frame. Let AS(ϕ) be the set of atomic sen-
tences in ϕ. We add a concept symbol State that will represent the
current state of the frame. Now, we encode the following properties:

• Frame completeness: Φcomp ≡
∨
q∈StF

State
.
= {|q|};

• Uniqueness of state: Φuniq ≡
∧
q,q′∈StF

¬({|q|} .= {|q′|});
• Preservation of atomic properties: Φat(q, ψ) ≡(

(State
.
= {|q|}) ∧ ψ

)
→ 〈〈〈〈〈〈⊥〉〉〉〉〉〉G

(
(State

.
= {|q|})→ ψ

)
,

Φat ≡
∧
q∈StF

∧
ψ∈AS(ϕ) Φat(q, ψ) ∧ Φat(q,¬ψ);

• Characterization of one-step transitions. Let Next+(q,A) =
{Q ⊆ StF | ∃α ∈ dA(q).Q = next(q, α)}, i.e., Next+(q,A)
collects all possible outcome sets for A’s actions in q. Also,
let Next−(q,A) = {Q ⊆ StF |6 ∃α ∈ dA(q).Q ⊇ next(q, α)}
collect outcome sets that cannot be enforced by A.6 Now:
Φtrans(q,A) ≡

∧
Q∈Next+(q,A) 〈〈〈〈〈〈A〉〉〉〉〉〉X(State v Q)

∧
∧
Q∈Next−(q,A) ¬〈〈〈〈〈〈A〉〉〉〉〉〉X(State v Q);

Φtrans ≡
∧
q∈StF

(
(State

.
= {|q|})→

∧
A∈C Φtrans(q,A)

)
.

Now, formula ΦF,q0 ≡ (State
.
= {|q0|}) ∧ 〈〈〈〈〈〈⊥〉〉〉〉〉〉G(Φcomp ∧

Φuniq ∧ Φat ∧ Φtrans) can be used to characterize F, q0 modulo
the strategic bisimulation from [1].

Lemma 10 Let M be a CGSI that extends F with a valuation of
AS(ϕ). Then, every pointed model satisfying ΦF,q0 is strategically
bisimilar to M, q0 wrt AS(ϕ). In consequence, all pointed models
satisfying ΦF,q0 satisfy the same formulas over AS(ϕ) as M, q0.

Wrap-up. By Lemmas 9 and 10, we obtain the following result.

Theorem 11 ADL formula ϕ is satisfiable in pointed frame F, q0 iff
the formula tr(ΦF,q0) ∧ tr(ΦFC) ∧ tr(ϕ) is CLALCO-satisfiable.

Corollary 12 ADL frame satisfiability is decidable.

5 This follows from correctness of the ATL model checking algorithm in [3].
6 Next+(q,A) is similar to the nonmonotonic core of A’s α-effectivity

function in q, andNext−(q,A) to the complement of the function, cf. [8].

6 Conclusions and Related Work
In this paper, we propose a product-style combination of strategic
logic and description logic. We believe that the resulting framework
is interesting for at least three reasons. First, it is very expressive and
allows for neat and succinct specification of operational concepts that
persist in time, or can be enforced through a long-term strategic be-
havior. Second, we propose a semantics of strategies where the exe-
cuting team can vary in the runtime – which is a concept very natural
for everyday reasoning, but noticeably absent in formal theories of
interaction. Thirdly, we propose a variant of realizability that com-
bines traditional approaches to decision problems in the MAS and
DL communities, and show that it can be a worthy alternative to both
satisfiability and model checking.

Similar ideas have been discussed in a number of papers. A com-
bination of DL and Coalition logic was studied in [11, 10]. Another
MAS/DL combination – of the branching-time logic CTL and ALC
– was discussed in [7]. The idea that membership in a coalition can
vary throughout execution of a strategy was mentioned in [5], but
never formalized nor explored further. Also, referring to coalitions by
intensional descriptions was used in [2], but there it was interpreted
by a set of (constant) teams, and not a single (but variable) team like
in our case. Finally, realizability is a well known problem in tempo-
ral logic (cf. e.g. [9]) but the setup is different. There, a part of the
temporal structure is usually missing, while we assume that only the
valuation of atomic terms and formulae must be synthesized.

Acknowledgements. Wojciech Jamroga acknowledges the support
of the FNR (National Research Fund) Luxembourg under project S-
GAMES – C08/IS/03.

REFERENCES
[1] T. Ågotnes, V. Goranko, and W. Jamroga, ‘Alternating-time temporal

logics with irrevocable strategies’, in Proceedings of TARK XI, ed.,
D. Samet, pp. 15–24, (2007).

[2] T. Ågotnes, W. van der Hoek, and M. Wooldridge, ‘Quantified coalition
logic’, Synthese, 165(2), 269–294, (2008).

[3] R. Alur, T. A. Henzinger, and O. Kupferman, ‘Alternating-time Tem-
poral Logic’, Journal of the ACM, 49, 672–713, (2002).

[4] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-
Schneider, eds. The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, 2003.

[5] N. Bulling and J. Dix, ‘Modelling and verifying coalitions using argu-
mentation and ATL’, Inteligencia Artificial, Revista Iberoamericana de
Inteligencia Artificial, 14(46), 45–73, (2010).

[6] I. Horrocks, P.F. Patel-Schneider, and F. van Harmelen, ‘From SHIQ
and RDF to OWL: The making of a web ontology language’, Journal
of Web Semantics, 1(1), 7–26, (2003).

[7] C. Lutz, F. Wolter, and M. Zakharyaschev, ‘Temporal description log-
ics: A survey (with appendix)’, in Proceedings of TIME’08, (2008).

[8] M. Pauly, Logic for Social Software, Ph.D. dissertation, University of
Amsterdam, 2001.

[9] A. Pnueli and R. Rosner, ‘Distributed reactive systems are hard to syn-
thesize’, in Proceedings of the 31th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 746–757. IEEE Computer Society
Press, (1990).

[10] İ. Seylan and W. Jamroga, ‘Coalition description logic for individuals’,
in Proceedings of the 6th Workshop on Methods for Modalities M4M-6,
pp. 146–162, (2009).

[11] İ. Seylan and W. Jamroga, ‘Description logic for coalitions’, in Pro-
ceedings of AAMAS’09, pp. 425–432, (2009).

[12] Y. Wang and F. Dechesne, ‘On expressive power and class invariance’,
CoRR, abs/0905.4332, (2009).

