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Abstract. Alternating-Time Epistemic Logic (ATEL) has been pro-
posed recently for specification and verification of multi-agent systems
properties in situations of incomplete information. Some minor prob-
lems with ATEL semantics are characterized in this paper: an agent can
’access’ the current state of the whole system when making up his strat-
egy (even when he should be uncertain about the state); moreover, no
explicit representation of actions in ATEL models makes some natural
situations harder to model. A few small changes are suggested in con-
sequence, mostly to make ATEL models consistent with the incomplete
information assumption.
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Beware: the solutions proposed in this paper turned out not to be final
and completely satisfying. Several new problems and research questions
concerning ATEL semantics have been identified since the publication of
the paper. In this version, some technical mistakes are corrected; how-
ever, the more fundamental issues are still left untouched. A new paper
that tackles both old and newly identified problems is under preparation
now.

1 Introduction: Alternating-Time Logics

Two formalisms based on temporal logic have been proposed recently to tackle
the verification of multi-agent systems properties. The first one was Alternating-
Time Logic (ATL and ATL* [1–3]), which offered a possibility of expressing the
capabilities of autonomous agents in a way similar to CTL and CTL*. The
second, Alternating-Time Epistemic Logic (ATEL and ATEL* [4]), enriched the
picture with an epistemic component.

There are some minor problems with ATEL semantics: an agent can ’access’
the current state of the whole system when making up his strategy (even when he
should be uncertain about the state), and no explicit representation of actions in
ATEL models makes things a little bit difficult. The problems are characterized
in more detail in section 2. In section 3 some solutions are proposed.



1.1 ATL and ATEL

ATL is an extension of CTL in which a class of cooperation modalities 〈〈A〉〉
(A ⊆ Σ, where Σ is the set of all agents or players) replace the simple path
quantifiers ∃ and ∀. The common-sense reading of 〈〈A〉〉Φ is: ”the group of agents
A have a collective strategy to bring about Φ regardless of what all the other
agents do”. The original CTL operators ∃ and ∀ can be expressed in ATL with
〈〈Σ〉〉 and 〈〈∅〉〉, respectively, but between both extremes we can express much
more about the abilities of particular agents and groups of agents. ATL* extends
CTL* in the same way ATL extends CTL. The dual operator [[A]] can be defined
in the usual way as [[A]]Φ ≡ ¬〈〈A〉〉¬Φ, meaning that A can’t avoid Φ on their
own.

ATEL (ATEL*) adds to ATL (ATL*, respectively) operators for representing
knowledge in the world of incomplete information. Kaϕ reads as ”agent a knows
that ϕ”.

Computational complexity of model checking is the main virtue of ATL and
ATEL. For both ATL and ATEL, the problem of checking whether ϕ is valid in
M can be solved in polynomial time. Thus the semantic structures in which the
formulae are verified are even more important than usually.

1.2 Concurrent Game Structures and AETS

A model for ATL is defined as a concurrent game structure [3]:

S = 〈k, Q, Π, π, d, δ〉

where k is a natural number defining the set of players (the players are identified
with numbers 1, ..., k), Q is the set of states of the system, Π is the set of
atomic propositions (observables), and π : Q → 2Π is the observation function,
specifying which propositions are true in which states. The decisions available
to player a at state q are labeled with natural numbers 1, ..., da(q); finally, a
complete tuple of decisions 〈j1, ..., jk〉 in state q implies a deterministic transition
according to the transition function δ(q, j1, ..., jk).1

Models for ATEL – alternating epistemic transition systems (AETS) – add
epistemic accessibility relations ∼1, ...,∼k⊆ Q × Q for expressing agents’ be-
liefs [4]:

S = 〈Σ, Q, Π, π,∼1, ...,∼k, δ〉

Since the definition of ATEL from [4] is based on the previous version of ATL [2],
actions are not represented explicitly here, function d is absent, and Σ is an

1 it should be noted that at least three different versions of ATL have been proposed by
Alur and colleagues over the course of the last 6 years, each with a slightly different
definition of the semantic structure. The earliest version [1] includes definitions for
a synchronous turn-based structure and an asynchronous structure in which every
transition is owned by a single agent. [2] offers general games structures with no ac-
tion labels and more sophisticated transition function. In [3] function d is introduced
and δ simplified; moreover, an arbitrary finite set of agents Σ is replaced with set
{1, ..., k}. All of this may lead to some confusion.



arbitrary finite, non-empty set of players. The system transition function δ :

Q × Σ → 22
Q

is meant to encode all the choices available to agents at each
state. Now δ(q, a) = {Q′, Q′′, ...} (Q′, Q′′, ... ⊆ Q) defines the possible outcomes
of a’s decisions at state q, and the choices are identified with the outcomes.
The resulting transition is assumed to be the intersection of choices from all the
agents: Q1∩...∩Qk, Qi ∈ δ(q, ai). Since the system is required to be deterministic
again (given the state and the agents’ choices), Q1 ∩ ... ∩ Qk must always be a
singleton.

1.3 Agents’ Strategies and Semantics of Cooperation Modalities

In a concurrent game structure, a strategy for an agent a is a function fa : Q+ → N

such that fa(λq) ≤ da(q), i.e. fa(λq) is a valid decision in q. The function speci-
fies a’s decisions for every possible (finite) history of system transitions. The set
of all possible (infinite) computations from q, consistent with a tuple of strate-
gies FA : A → (Q+ → N) – one strategy for each agent from A ⊆ Σ – is denoted
with out(FA, q). Now, informally speaking, S, q � 〈〈A〉〉Φ iff there exists a collec-
tive strategy FA such that Φ is satisfied for all computations from out(FA, q).
In other words, no matter what the rest of the agents decides to do, the agents
from A have a way of enforcing Φ.

In AETS, a strategy for an agent a is a function fa : Q+ → 2Q, giving
a choice for every finite history of possible transitions. The strategy must be
consistent with the choices available to a, i.e. fa(λq) ∈ δ(q, a). Again (informally)
S, q � 〈〈A〉〉Φ iff there exists a collective strategy FA such that Φ is satisfied for
all computations from out(FA, q).

2 Problems with AETS Transitions

Something seems to be lacking in the definition of a valid strategy for an agent
in AETS. When defining a strategy, the agent can make his choices for every
state independently. This is not feasible in a situation of incomplete information
if the strategy is supposed to be deterministic: if a can’t recognize whether he’s
in situation s1 or s2, he cannot plan to proceed with one action in s1, and
another in s2. It’s very much like with the information sets from von Neumann
and Morgenstern [6]: for every state in an information set the same action must
be chosen within a strategy.

The following example can be considered: two agents play a very simple card
game with the deck consisting of Ace, King and Queen (A, K, Q). It is assumed
that A beats K, K beats Q, but Q beats A. First a1 and a2 are given a card.
Then a1 can trade his card for the one remaining in the deck, or he can keep
the current one. The player with the better card wins the game. A turn-based
synchronous AETS for the game is shown on figure 1, with the environment env
dealing the cards. Right after the cards are given, both a1 and a2 don’t know
what is the hand of the other player; for the rest of the game the players have
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Σ = {env, a1, a2}
δ(q0, env) = {{q1}, ..., {q6}}
δ(q0, a1) = δ(q0, a2) = {{q1, ..., q6}}
δ(q1, a1) = {{q7}, {q8}} etc.
δ(q1, env) = δ(q1, a2) = {{q7, q8}} etc.
δ(q7, env) = δ(q7, a1) = δ(q7, a2) = {{q7}} etc.
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Fig. 1. Epistemic transition system for the card game. For every state, the players’
hands are described. The thick arrows indicate a1’s winning strategy.

complete information about the state. Two atomic propositions: win1 and win2

enable to recognize the final winner.

Note that q0 � 〈〈a1〉〉3win1, although it should definitely be false for this
game! Of course, a1 may happen to win, but he doesn’t have the power to bring
about winning because he has no way of recognizing the right decision until it’s
too late. Even if we ask about whether the player can know that he has a winning
strategy, it doesn’t help: Ka1

〈〈a1〉〉3win1 is satisfied in q0, too, because for all
q ∈ Q such that q0 ∼a1

q we have q � 〈〈a1〉〉3win1.

This calls for a constraint like the one from von Neumann and Morgenstern:
if q ∼a q′ and the history of previous transitions is the same, then a strategy fa

must specify the same action for both q and q′. Unfortunately, it’s impossible
to express this constraint because actions are identified with their outcomes in
AETS. Note, however, that the same action started in two different states seldom
generates the same result: if a1 trades his Ace in q1, the system moves to q8 and
a1 loses the game; if he trades the card in q2, the system moves to q10 and he
wins. Still he can’t discriminate trading the Ace in both situations. Thus, some
relation of ’subjective unrecognizability’ is necessary over the agents’ choices to
tell which decisions will be considered the same in which states. Probably the
easiest way to accomplish this is to provide the decisions with explicit labels –
the way it has been done in the latest version of ATL – and assume that the
choices with the same label represent the same action from the agent’s subjective
point of view. This kind of solution fits also well in the tradition of game theory.



Identifying actions with their outcomes may make things unnecessarily com-
plicated even for AETS with no incomplete information. Consider a system with
a single binary variable x. There are two processes: the controller (or server) s
can enforce that the variable retains its value in the next step, or let the client
change the value. The client c can request the value of x to be 0 or 1. Every
player has complete information about the current state, i.e. q ∼a q′ iff q = q′.
The players proceed with their choices simultaneously – they don’t know the
other player’s decision until the transition is done. The states and possible tran-
sitions of the system as a whole are shown on figure 2. There are two propositions
available to observe the value of x: ”x=0” and ”x=1” (note: these are just atomic
propositions, = is not the equality symbol here).

q0 q1

x=0 x=1

Fig. 2. Transitions of the variable controller/client system

Let’s try to have a look at δ(q0, s) first. The controller should have a choice to
”enforce no change” with deterministic outcome of {q0}, so {q0} ∈ δ(q0, s). Now,
for all Q′ ∈ δ(q0, c), q0 must be in Q′ because {q0} ∩ Q′ has to be a singleton.
Thus {q1} /∈ δ(q0, c), and if we want to make the transition from q0 to q1 possible
at all then {q0, q1} ∈ δ(q0, c). Now {q0, q1} /∈ δ(q0, s) because {q0, q1}∩{q0, q1} is
no singleton, so {q1} ∈ δ(q0, s) – otherwise the system still never proceeds from
q0 to q1. In consequence, {q0} /∈ δ(q0, c), because {q1} ∩ {q0} isn’t a singleton
either. The resulting transition function for q0 is:

δ(q0, s) = {{q0}, {q1}}

δ(q0, c) = {{q0, q1}}

Unfortunately, it is easy to show that q0 � 〈〈s〉〉© x=1 for this model, and this is
obviously wrong with respect to the original description of the system.

This doesn’t necessarily mean that no AETS can be made up for this problem,
having added some extra states and transitions. Indeed, for the transition system
on figure 3, q0 � ¬〈〈s〉〉 © x=1, q0 � 〈〈s〉〉 © x=0 and so on. The states reflect the
value of x and the last transition made: q0 is for ”x=0 by s’s force”, q′0 for
”x=0 by c’s request” etc.2 The point is, however, that ATEL is aimed mostly
for model checking – so we’re not going to search for a model in which some
formula is satisfied. Actually, it’s the other way round: we must come up with

2 in fact, this shows how we can design a transition system in a general case, too: first
we identify the set of ’pure system states’ St (tuples of valuations of all the variables
in all the involved processes, for instance) and sets of possible actions for all the
agents: Act1, ..., Actk. Then defining Q as a subset of St × Act1 × ... × Actk should
do the trick.



an AETS which we believe is right (or ’natural’) in order to verify the formulae
in question. And the first model from figure 2 seems perfectly natural.
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Fig. 3. New AETS for the controller/client

3 Improved Definitions for AETS

How to get rid of those problems? Following the evolution of the concurrent
game structures and allowing for explicit representation of agents’ actions seems
the simplest solution. Additionally, it may be useful to allow for symbolic action
and agent labels (instead of natural numbers only) – it doesn’t change the com-
putational costs, but it can make specifying a system more natural for human
designers. Thus an alternating epistemic transition system can be defined as

S = 〈Σ, Q, Π, π,∼1, ...,∼k, Act, d, δ〉

where Act = {α1, ..., αm} are action labels and da(q) ⊆ Act defines the actions
available to agent a at state q. For every q, q′ such that q ∼a q′, it is required
that

– da(q) = da(q′)

otherwise a can distinguish q from q′ by the decisions he can make.3 Finally,
δ(q, α1, ..., αk) ∈ Q describes the system transition from q for a complete array
of decisions 〈α1, ..., αk〉 ∈ da1

(q) × ... × dak
(q).

Let λ[i] denote the ith item in sequence λ. An incomplete information strategy

is a function fa : Q+ → Act for which the following constraints hold:

3 as it turned out during preparation of the final version of this paper, the authors of
ATEL have also suggested a similar requirement in a case study submitted indepen-
dently to another forum [5]. They also considered whether some further constraint
on the possible runs of the system should be added, but they dismissed the idea.



– fa(λq) ∈ da(q),
– if λ[i] ∼a λ′[i] for every i, then fa(λ) = fa(λ′).

We will require that agents have incomplete information strategies in order to
be able to enforce some state of affairs.
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Fig. 4. New AETS for the card game. The transitions are labeled with decisions from
the player who takes turn.

A new transition system for the card game is shown on figure 4. Now a1

can be proven unable to bring about winning on his own: q0 � ¬〈〈a1〉〉3win1.
Like in the real game, he can win only with some ’help’ from the environment:
q0 � 〈〈a1, env〉〉3win1.

4 Final Remarks

ATEL and ATEL* are interesting formalisms to describe and verify properties
of autonomous processes in situations of incomplete information. A few small
changes are suggested in this paper, mostly to make ATEL/ATEL* models con-
sistent with the incomplete information assumption. The notion of a strategy –
the way it is defined in [4] – makes formula 〈〈A〉〉Φ describe what coalition A may
happen to bring about against the most efficient enemies (i.e. when the enemies
know the current state and even the A’s collective strategy beforehand), whereas
the original idea from ATL was rather about A being able to enforce Φ.

Explicit representation of actions makes specifying the incomplete informa-
tion strategies constraint easy. It also enables to express some interesting features



of multiagent systems. For instance, we can define an epistemically monotonic

agent as a player who uses new observations only to narrow down his beliefs:

if q′1 ∼a q′2 and there exist α1, ..., αk such that δ(q1, α
1, ..., αk) = q′1 and

δ(q2, α
1, ..., αk) = q′2

then q1 ∼a q2.

i.e. who does only monotonic reasoning with no belief revision.
The incomplete information constraint on strategies, proposed in this paper,

is far from being perfect. Consider the last game structure and state q1, for exam-
ple. It is easy to show that q1 � 〈〈a1〉〉3win1. Moreover, q0 � 〈〈〉〉 © 〈〈a1〉〉3win1,
although still q0 2 〈〈a1〉〉3win1. These and other issues about ATEL will be
hopefully made clear in the next paper, which is actually in preparation.

The author would like to thank the anonymous reviewers and Wiebe van der
Hoek for their valuable remarks.
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