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Abstract. We present a translation that reduces epistemic operators to
strategic operators in the context of model checking. The translation is a
refinement of the one from [4], and it improves on the previous scheme in
two ways. First, it does not suffer any blowup in the length of formulae
(the one from [4] did). Second, the new translation is defined in a more
general setting: additional constraints can be imposed on strategy profiles
that agents can execute. We show the applicability of such a general
translation on the case of strategic abilities under imperfect information.

1 Introduction

Modal logics of multi-agent systems usually combine several dimensions. Knowl-
edge, time, actions, strategic abilities, norms/obligations, intentions, desires etc.
can all be involved in a description of an agent system. This way, modal logic
can support sufficiently realistic descriptions of agents. But there is a price to
pay: such multi-modal logics are usually harder to handle semantically as well as
algorithmically. Thus, a designer is usually faced with the task of finding a good
tradeoff between a “clean” logic with few modalities (and clear overall semantics)
and a “realistic” language with many modalities (where it is not immediately vis-
ible how parts of the semantics interfere). A reduction method that allows to
express one modality with the others offers two kinds of advantage. In terms
of theory, it allows to make the logic “cleaner”, and study its theoretical prop-
erties (semantics, computational complexity) in a simpler environment. On the
practical side, we can reuse the advances in, say, model checking of one sort of
modality to improve the techniques used for dealing with the other dimensions.

In [4], we proposed how epistemic modalities can be equivalently expressed
by strategic operators of alternating-time temporal logic atl [1] in the context
of model checking. The reduction was polynomial in almost every respect. Un-
fortunately, the length of formulae could suffer exponential blowup (although
the number of different subformulae in the formula increased only linearly). We
argued that, for most model checking algorithms, it would not increase the ver-
ification time. Still, it was a flaw that made using the reduction awkward, at
least for theoretical purposes. The aim of this paper is to propose a refinement
of the reduction that does not suffer from the blowup any more. Moreover, we
point out that the reduction can be used even if we impose some “behavioral



constraints” on the strategies that can be played by agents. Thus, the method
can be used also for variants of atl where one assumes that the agents can only
play in a uniform [7], socially acceptable [11], or rational way [6].

Our presentation here is based on some material from [4]. It should be also
mentioned that the original reduction was inspired by [9], and shared some sim-
ilarities with [13] (although the reduction proposed in the latter paper had a
more limited scope). Similar translations of modal logics include [8, 3]. Our pre-
sentation of strategic constraints is based on the approach of [6].

2 Preliminaries

2.1 ATL: Abilities in Perfect Information Games

Atl [1] generalizes the branching time logic ctl [2] by replacing path quantifiers
with so called cooperation modalities. The formula 〈〈A〉〉ϕ expresses that group of
agents A have a collective strategy to enforce ϕ. Atl formulae include temporal
operators: “ g” (“in the next state”), 2 (“always from now on”) and U (“until”).
Operator 3 (“now or sometime in the future”) can be defined as 3ϕ ≡ TU ϕ.
Formally, the recursive definition of atl formulae is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 gϕ | 〈〈A〉〉2ϕ | 〈〈A〉〉ϕU ϕ.
A concurrent game structure (cgs) is a tupleM = 〈Agt, St,Π, π,Act, d, o〉 which
includes a nonempty finite set of all agents Agt = {1, . . . , k}, a nonempty set of
states St, a set of atomic propositionsΠ, a valuation of propositions π : St→ 2Π ,
and a set of (atomic) actions Act. Function d : Agt × St → (2Act \ ∅) defines
nonempty sets of actions available to agents at each state, and o is a transition
function that assigns the outcome state q′ = o(q, α1, . . . , αk) to state q and a
tuple of actions 〈α1, . . . , αk〉, αi ∈ d(i, q), that can be executed by Agt in q.

A (memoryless) strategy sa of agent a is a conditional plan that specifies
what a is going to do for every possible situation: sa : St → Act such that
sa(q) ∈ d(a, q). We denote the set of such functions by Σa. A collective strategy
sA for a group of agents A is a tuple of strategies, one per agent from A; the
set of A’s collective strategies is given by ΣA =

∏
a∈AΣa. The set of all strategy

profiles is given by Σ = ΣAgt.
A path λ in model M is an infinite sequence of states that can be effected

by subsequent transitions, and refers to a possible course of action (or a possible
computation) that may occur in the system; by λ[i], we denote the ith position
on path λ. The set of all paths starting from state q is given by Λ(q). Function
out(q, sA) returns the set of all paths that may result from agents A executing
strategy sA from state q onward.

Formally, the semantics of cooperation modalities can be given via the fol-
lowing clauses:

M, q |= 〈〈A〉〉 gϕ iff there is a collective strategy sA such that, for every
λ ∈ out(q, sA), we have M,λ[1] |= ϕ;
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Fig. 1. Simple concurrent epistemic game structure M1. Nodes represent states of the
system, solid arrows depict transitions (labeled by the agent’s actions), and dotted
arrows show indistinguishability of states.

M, q |= 〈〈A〉〉2ϕ iff there exists sA such that, for every λ ∈ out(q, sA), we have
M,λ[i] |= ϕ for every i ≥ 0;

M, q |= 〈〈A〉〉ϕU ψ iff there exists sA such that for every λ ∈ out(q, sA) there
is an i ≥ 0, for which M,λ[i] |= ψ, and M,λ[j] |= ϕ for every 0 ≤ j < i.

2.2 Epistemic Logic: Knowledge and Imperfect Information

Epistemic logic uses operators Kaϕ (“agent a knows that ϕ”). Additional opera-
tors EAϕ, CAϕ, and DAϕ, where A is a set of agents, refer to mutual knowledge
(“everybody knows”), common knowledge, and distributed knowledge among the
agents from A. On the semantic side, uncertainty of agents is modeled by indis-
tinguishability relations ∼1, . . . ,∼k⊆ St× St (one per agent). The semantics of
Ka is defined as: M, q |= Kaϕ iff M, q′ |= ϕ for every q′ such that q ∼a q

′.
Relations ∼E

A, ∼C
A and ∼D

A , used to model group epistemics, are derived from
the individual relations of agents from A. First, ∼E

A is the union of relations
∼a, a ∈ A. Next, ∼C

A is defined as the transitive closure of ∼E
A. Finally, ∼D

A

is the intersection of all the ∼a, a ∈ A. Then, for K = C,E,D, we define:
M, q |= KAϕ iff M, q′ |= ϕ for every q′ such that q ∼KA q′.

A straightforward combination of atl and epistemic logic, called atel was in-
troduced in [12]. The language of atel allows to express knowledge about agents’
(perfect information) abilities. Models of atel are called concurrent epistemic
game structures (cegs). A simple cegs (with only one agent a) is depicted in
Figure 1. For that model, we have for instance that M1, q1 |= Ka〈〈a〉〉3p0.

3 Restricting Strategies of Agents

In many cases, it seems appropriate to put some constraints on the “good” (al-
lowed, legal etc.) behaviors. We define a class of such strategic constraints in
this section. Our constraints are based on the idea of plausibility sets [6], and
generalize the behavioral constraints from the framework of social laws [11].



3.1 Strategic Constraints

A behavioral constraint in [11] is a function β : Agt × St → 2Act that specifies
which actions can be “legally” played by agents. More specifically, β(a, q) is the
set of actions that a is allowed to play at state q. Naturally, β(a, q) ⊆ d(a, q), and
the inclusion can be strict. β(a, q) is assumed to implement a social norm: agent
a (when in state q) may be forbidden to play some actions in his repertoire; if
he decides to play them, he will violate the norm.

Note that using constraints of this type implies that norms only apply to
actions of individual agents (independently). It is therefore not possible to specify
e.g. that one is allowed to shoot in self-defense, i.e., right at the moment when
another person is trying to harm him. Likewise, norms of that type specify
legal actions independently for each state. Thus, if we do not accept lying, then
making a false statement will be always forbidden, even if it is just a joke, and
the speaker is going to disclose the truth in the very next moment.

Here, we are looking for a model that enables to cope with such interre-
lationships between the allowed actions of different agents at different states,
too. Another rationale for this comes from game theory. Unlike in normative
systems, we are interested in “rational” rather than “moral” behavior there, but
the general pattern is the same. That is, some strategy profiles of agents (e.g.,
those in Nash equilibrium) are deemed “rational”, while the others are rejected
as “irrational”. Note that, especially for Nash equilibrium, the rationality of an
action does depend on what the agent is going to do at other states; moreover,
it depends on what the other agents are going to do at this and other states.
Thus, our requirements with respect to agents’ behavior will be modeled as sets
of strategy profiles.

When defining agents’ behavior via strategy sets, one assumes implicitly that
agents actually play strategies. In our case, it would for instance imply that each
agent does the same action every time the system comes back again to one of
the previous states (as memoryless strategies are used in our semantics of atl).
This is a very strong assumption, and we do not always want to make it with
respect to all agents. Thus, our strategic constraints will also include the set of
agents to whom the constraint should apply.

Definition 1. A strategic constraint is a pair η = 〈Υ,A〉, where Υ ⊆ Σ is a
non-empty set of strategy profiles and A ⊆ Agt is a set of agents.

Definition 2 (Substrategy). Let A,B ⊆ Agt, and let sA be a collective strat-
egy for A. We use sA[B] to denote the substrategy of sA for agents from B
only, i.e., strategy tA∩B such that taA∩B = sa

A for every a ∈ A ∩ B. We extend
the notation to sets in a natural way: for a set of collective strategies ΥA ⊆ ΣA,
we define ΥA[B] = {t ∈ ΣA∩B | ∃sA ∈ ΥA.t = sA[B]}.

Definition 3 (Consistency with a constraint). Let sA be a collective strat-
egy of A ⊆ Agt, and η = 〈Υ,B〉 be a strategic constraint. Strategy sA is consistent
with constraint η iff the part of sA to which the constraint should apply occurs
in Υ , i.e., sA[B] ∈ Υ [A ∩B].



Definition 4 (Outcome under constraint). Let M be a cgs, and q a state
in M . Furthermore, let sA be a collective strategy, and η = 〈Υ,B〉 be a strategic
constraint. The outcome of sA from q under constraint η contains all paths which
may result from agents A executing sA from q on, when the opponents are only
allowed to play strategies which complement sA in a way that complies with η.
Formally, the set is defined as:

out(q, sA, η) = {λ ∈ Λ(q) | there is t ∈ ΣA∪B, consistent with η, such that
t[A] = sA and for every i = 1, 2, . . . there exists a tuple of agents’ decisions
〈α1, . . . , αk〉 for which: αa = ta(λ[i − 1]) for a ∈ A ∪ B, αa ∈ d(a, λ[i − 1])
for a /∈ A ∪B, and o(λ[i− 1], α1, . . . , αk) = λ[i]}.

3.2 Abilities under Strategic Constraints: Semantics

The intuition behind strategic constraints is rather simple: for a constraint η =
〈Υ,B〉 we assume that the actual collective strategy of agents B must occur
somewhere in Υ . Note that the agents from B do not have to be all in the
same coalition – B can collect both “proponents” and “opponents”. The formal
semantics of atl formulae in the presence of strategic constraints is given by the
clauses below.

M, q, η |= p iff p ∈ π(q) (for p ∈ Π);
M, q, η |= ¬ϕ iff M, q, η 6|= ϕ;
M, q, η |= ϕ ∧ ψ iff M, q, η |= ϕ and M, q, η |= ψ;
M, q, η |= 〈〈A〉〉 gϕ iff there is a collective strategy sA, consistent with η, such

that for every λ ∈ out(q, sA, η) we have M,λ[1], η |= ϕ;
M, q, η |= 〈〈A〉〉2ϕ iff there exists sA consistent with η, such that for every
λ ∈ out(q, sA, η) we have M,λ[i], η |= ϕ for every i ≥ 0;

M, q, η |= 〈〈A〉〉ϕU ψ iff there exists sA consistent with η, such that for every
λ ∈ out(q, sA, η) there is an i ≥ 0, for which M,λ[i], η |= ψ, and M,λ[j], η |=
ϕ for every 0 ≤ j < i.

The semantics of knowledge under strategic constraints is defined in a straight-
forward way: agents know that ϕ under η iff ϕ holds under η in every indistin-
guishable state.

M, q, η |= Kaϕ iff M, q′, η |= ϕ for every q′ such that q ∼a q
′.

M, q, η |= KAϕ iff M, q′, η |= ϕ for every q′ such that q ∼KA q′ (where K =
C,E,D).

A useful example of strategic constraints are so called uniform strategies, i.e.,
strategies that can be feasibly executed by an agent under imperfect information.
We say that sa is uniform iff, for every q, q′, q ∼a q

′ implies that sa(q) = sa(q′);
that is, agent a must specify same choices in states that look the same to him.
A collective strategy sA is uniform iff it consists only of uniform individual
strategies. Let Σu

a denote the set of uniform strategies of agent a. Then Σu
A =∏

a∈AΣ
u
a is the set of collective uniform strategies of A, and Σu = Σu

Agt is



the set of uniform strategy profiles. Now, the requirement that agents from A
should only use uniform strategies can be captured by the strategic constraint
η = 〈Σu, A〉.

Consider cegs M1 from Figure 1. For that model, the requirement that the
only agent sticks to executable (i.e., uniform) strategies can be captured by
the constraint η = 〈{[q0 7→ α, q1 7→ α, q2 7→ α], [q0 7→ α, q1 7→ β, q2 7→ β]}, {a}〉.
Then, we have for instance that M1, q1, η |= Ka¬〈〈a〉〉3p0: no uniform strategy
can guarantee that a gets from q1 to q0, and the agent knows about it.

4 Translating Knowledge to Strategic Ability

In this section, we show a satisfaction-preserving interpretation of atel formulae
and models into atl. The interpretation is an update of that proposed in [4].
Two things are changed. First, we slightly change the transformation of models so
that, after visiting an “epistemic” state, the system always returns immediately
to its corresponding “action” state. In consequence, it is possible to define the
translation of formulae without exponential blowup in their length. Second, we
show that the translation is also correct when we add constraints on the behavior
of agents.

4.1 Idea of the Translation

atel consists of two orthogonal layers. The first one, inherited from atl, refers
to what agents can achieve in temporal perspective, and is underpinned by the
structure defined via transition function o. The other layer is the epistemic com-
ponent, reflected by epistemic indistinguishability relations. Our idea of the
translation is to leave the original temporal structure intact, while extending
it with additional transitions to “simulate” epistemic links. The simulation is
achieved through adding new “epistemic” agents who can enforce transitions to
special “epistemic” copies of “action” states (i.e., the states inherited from the
original model). The “action” and “epistemic” states form separate strata in the
resulting model, and are labeled accordingly to distinguish transitions that im-
plement different modalities.

The interpretation consists of two independent parts: a transformation of
models and a translation of formulae. First, we propose a construction that
transforms every concurrent epistemic game structure M for a set of agents
{1, ..., k}, into a (pure) concurrent game structure M ′ over a set of agents
{1, ..., k, e1, ..., ek}. Agents 1, ..., k are the original agents from M (we will call
them “real agents”). Agents e1, ..., ek are “epistemic doubles” of the real agents:
the role of ei is to “point out” the states that were epistemically indistinguish-
able from the current state for agent i in M . In order to distinguish transitions
referring to different modalities, we introduce additional states in model M ′.
States qei

1 , ..., q
ei
n satisfy new proposition ei added to enable identifying moves of

epistemic agent ei. Moreover, epistemic state qei has the same “epistemic” tran-
sitions as q (leading to epistemic copies of states indistinguishable from q), plus



one outgoing transition leading to the corresponding action state q. The original
states q1, ..., qn are still in M ′ to represent targets of “action” moves of the real
agents 1, ..., k. We will use a new proposition act to label these states. Now,
the type of a transition can be recognized by the label of its target state. The
structure of the transformation can be seen in Figure 2.

Defining the transition function o so that both epistemic and “action” transi-
tions can occur is the trickiest part of the construction. We achieve this by giving
priority to the epistemic agents’ decisions. Every epistemic agent can choose to
be “passive” and let the others decide upon the next move, or may try to effect
an epistemic move. The resulting transition leads to the state selected by the
first non-passive epistemic agent. If all the epistemic agents have decided to be
passive, the action transition chosen by the real agents follows. Epistemic states
are given special treatment, as we assume that the real agents are always passive
there. Thus, if all the epistemic agents decide to be passive at an epistemic state,
the system proceeds to the corresponding action state.

With the above construction in mind, atel formulae can be translated to
atl according to the following scheme:

– Kiϕ can be rephrased as ¬〈〈e1, ..., ei〉〉 g(ei ∧ 〈〈e1, ..., ek〉〉 g(act ∧ ¬ϕ)): the
epistemic moves to agent ei’s epistemic states do not lead to a state where
ϕ fails (more precisely: where ϕ fails in the corresponding “action” state).
Note that player ei can select a state of his if, and only if, players e1, ..., ei−1

are passive (hence their presence in the cooperation modality).
– 〈〈A〉〉 gϕ becomes 〈〈A ∪ {e1, ..., ek}〉〉 g(act ∧ ϕ) in a similar way.
– Translation of the other temporal operators is now more straightforward

than in [4]: 〈〈A〉〉2ϕ can be rephrased as 〈〈A ∪ {e1, ..., ek}〉〉2(act ∧ ϕ), and
〈〈A〉〉ϕU ψ becomes 〈〈A ∪ {e1, ..., ek}〉〉(act ∧ ϕ)U (act ∧ ψ). This is possible
because the construction of epistemic states (and the translation of Ka)
ensures that strategic (sub)formulae will be always evaluated in “action”
states. We observe that the new translation of 2 and U does not involve
exponential increase in the length of formulae (contrary to the construction
from [4]).

– Translation of mutual knowledge (EA) is analogous to the individual knowl-
edge case. Translation of common knowledge refers to the definition of rela-
tion ∼C

A as the transitive closure of relations ∼i for i ∈ A: CAϕ means that
all the (finite) sequences of appropriate epistemic transitions must end up in
a state where ϕ is true.

The only operator that does not seem to lend itself to a translation according
to the above scheme is the distributed knowledge operatorDA, for which we seem
to need more “auxiliary” agents. Thus, we will begin with presenting details
of our interpretation for ATELCE – a reduced version of atel that includes
only common knowledge and “everybody knows” operators for group epistemics.
Section 4.3 shows how to modify the translation to include distributed knowledge
as well.



4.2 Interpreting Models and Formulae of ATELCE into atl

Transforming Models Given a concurrent epistemic game structure M =
〈Agt, St,Π, π,Act, d, o,∼1, ...,∼k〉, we construct a new concurrent game struc-
ture M ′ = 〈Agt′, St′,Π ′, π′, Act′, d′, o′〉 as follows:

– Agt′ = Agt ∪ Agte, where Agte = {e1, ..., ek} is the set of epistemic agents;
– St′ = St ∪ Ste1 ∪ ... ∪ Stek , where Stei = {qei | q ∈ St}.
– Π ′ = Π ∪ {act, e1, ..., ek};
– π′(p) = π(p) for every proposition p ∈ Π. Moreover, π′(act) = St and
π′(ei) = Stei ;

– Act′ = Act ∪ St ∪ {pass}: the new model M ′ contains the original actions
from M , plus epistemic actions (pointing indistinguishable states), and the
“do nothing” action pass;

– d′a(q) = da(q) for a ∈ Agt, q ∈ St; d′a(q) = {pass} for a ∈ Agt, q ∈ St′ \ St;
d′ei

(q) = img(q,∼i) ∪ {pass} for q ∈ St′;
– the new transition function is defined as follows:

o′(q, α1, ..., αk, αe1 , ..., αek
) =



o(q, α1, ..., αk) if q ∈ St and
αe1 = ... = αek

= pass

q0 if q = qei
0 ∈ Steiand

αe1 = ... = αek
= pass

(αei)
ei if ei is the first active

epistemic agent.

We assume that all the epistemic agents from Agte, states from Ste1 ∪ ...∪ Stek ,
and propositions from {act, e1, ..., ek}, are new and were absent in the original
model M .

The transformation of the simple cegs from Figure 1 is shown in Figure 2.

Translation of Formulae Now, we define a translation of formulae from
ATELCE to atl corresponding to the above transformation of models:

tr(p) = p, for p ∈ Π
tr(¬ϕ) = ¬tr(ϕ)

tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ)
tr(〈〈A〉〉 gϕ) = 〈〈A ∪ Agte〉〉 g(act ∧ tr(ϕ))
tr(〈〈A〉〉2ϕ) = 〈〈A ∪ Agte〉〉2(act ∧ tr(ϕ))

tr(〈〈A〉〉ϕU ψ) = 〈〈A ∪ Agte〉〉(act ∧ tr(ϕ))U (act ∧ tr(ψ))
tr(Kiϕ) = ¬〈〈e1, ..., ei〉〉 g(

ei ∧ 〈〈Agte〉〉 g(act ∧ ¬tr(ϕ))
)

tr(EAϕ) = ¬〈〈Agte〉〉 g(
(

∨
ai∈A

ei) ∧ 〈〈Agte〉〉 g(act ∧ ¬tr(ϕ))
)

tr(CAϕ) = ¬〈〈Agte〉〉 g〈〈Agte〉〉( ∨
ai∈A

ei

)
U

(
(

∨
ai∈A

ei) ∧ 〈〈Agte〉〉 g(act ∧ ¬tr(ϕ))
)
.
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Fig. 2. Reconstruction for the concurrent epistemic game structure from Figure 1.

Extending Strategic Constraints Given a strategic constraint η = 〈Υ,B〉
in M , we must extend it to match the type of constraints in M ′ (because M ′

includes more agents than M , and in consequence the elements of Υ , which are
full strategy profiles in M , are only partial profiles in M ′).1 This can be done in
many ways; here, we explicitly assume that the additional (epistemic) agents can
use any strategies they like. The new constraint must apply to the agents from
B, plus (possibly) to some of the new agents from Agte. That is, agents from B
are constrained in the same way as before, agents from Agt\B are unconstrained
in the same way as before, and the new agents can be put under constraints or
not – but even if they are, they can play any available strategy.2

Definition 5. Let η = 〈Υ,B〉 be a strategic constraint in concurrent epistemic
game structure M , and let M ′ be the concurrent game structure obtained from M
by the construction presented in Section 4.2. We say that constraint η′ = 〈Υ ′, B′〉
extends η in M ′ iff: (1) Υ ′ = Υ ×ΣAgte , and (2) B ⊆ B′ ⊆ B ∪ Agte.

Soundness and Complexity of the Translation

Theorem 1. Let ϕ be a formula of ATELCE, M be a cegs, q ∈ St a state in
M , and M ′ the cgs resulting from the transformation. Furthermore, let η be a
1 Note that the old agents from Agt have no real choice in the new states (St′ \ St),

so extending the set of states is not a problem (for every sa : St → Act there is a
unique s′

a : St′ → Act that extends sa).
2 We recall that the assumption that a player plays a memoryless strategy is itself a

restriction on the agent’s behavior.



behavioral constraint in M , and let η′ extend η in M ′.
Then, M, q, η |= ϕ iff M ′, q, η′ |= tr(ϕ).

A proof of the theorem can be found in the technical report [5].
Note that the construction used above has several nice complexity properties.

In the following list, k denotes the number of agents, p the number of proposi-
tions, n the number of states, m the number of transitions, and m the number of
epistemic links in the original cegs M . Likewise, k′, p′, n′,m′ denote the number
of agents, propositions, states and transitions in the resulting cgs M ′.

– The vocabulary (set of propositions Π) and the set of agents only increase
linearly: p′ = p+ k + 1 = O(p+ k) and k′ = 2k = O(k).

– The set of states in an atel-model grows linearly, too: n′ = (k+1)n = O(kn).
– We have m′ = m + k(m + 1) = O(m + km) transitions in M ′ (m “action”

transitions and m epistemic transitions from “action” states, plus m + 1
transitions from each “epistemic” state).

– The length of formulae also increases linearly: l ≤ l′ ≤ l(8 + 5k) = O(kl).

The transformation of models and formulae is straightforward, and in conse-
quence its complexity is no worse than the complexity of the resulting structures.

4.3 Handling Distributed Knowledge

In order to interpret the full atel we modify the construction from Section 4.2
by introducing additional epistemic agents (and states) indexed with coalitions
which occur with a distributed knowledge operator:

– Agte = {ei | i ∈ Agt} ∪ {eA | DA ∈ ϕ};
– St′ = St ∪

⋃
i∈Agt St

ei ∪
⋃

DA∈ϕ St
eA .

Accordingly, we extend the language with new propositions {ei | i ∈ Agt}
and {eA | DA ∈ ϕ}. The choices of collective epistemic agents eA refer to the
(epistemic copies of) states accessible via distributed knowledge relations:

– d′eA
(q) = {pass} ∪ img(q,∼D

A )eA .

The new transition function extends the one from Section 4.2 with choices of
agents eA (putting them in any predefined order, e.g. alphabetical order):

o′(q, α1, ..., αk, αe1 , ..., αek
,

..., αeA
, ...) =



o(q, α1, ..., αk) if q ∈ St and
αa = pass for all a ∈ Agte

q0 if q = qei
0 ∈ Steiand

αa = pass for all a ∈ Agte

(αea
)ea if ea is the first active

epistemic agent.

The translation of formulae for all operators of ATELCE remains the same
as well, and the translation of DA is:

tr(DAϕ) = ¬〈〈Agte〉〉 g(
eA ∧ 〈〈Agte〉〉 g(act ∧ ¬tr(ϕ))

)
.



Theorem 2. Let ϕ be a formula of atel, M be a cegs, and q ∈ St an “action”
state in M . Furthermore, let η be a behavioral constraint in M , and let η′ extend
η in M ′. Then, M, q, η |= ϕ iff M ′, q, η′ |= tr(ϕ).

This construction, too, does not involve any substantial increase of complex-
ity. Still, it has one disadvantage when compared to the construction from Sec-
tion 4.2: there, models and formulae could be translated independently; here, the
transformation of a model depends on the formula which will be model-checked.
Thus, it is not possible any more to “pre-compile” a given cegs in advance, and
then model-check on the fly any formulae that will become relevant.

4.4 Reducing Knowledge to Strategic Ability: Example

Since the transformation of models and formulae involves only linear increase
of their size, it can be used for an efficient reduction of model checking when
we want to get rid of epistemic operators from formulae. Strategic constraints,
on the other hand, enable realistic approach to the semantics of abilities. The
idea behind indistinguishability relations is that they capture agents’ uncertainty
about the current state of the game, so our analysis of abilities should be in most
cases restricted to uniform strategies.

Let 〈〈A〉〉
u

be a “uniform” version of cooperation modality, similar to the op-
erator 〈〈A〉〉

ir
from [10]. The semantics of 〈〈A〉〉

u
γ is the same as for 〈〈A〉〉γ except

that only uniform strategies can be used by A. It is easy to see that 〈〈A〉〉u can be
rephrased as an ordinary cooperation modality with the strategic constraint that
requires A’s choices to be uniform: M, q |= 〈〈A〉〉

u
γ iff M, q, 〈Σu, A〉 |= 〈〈A〉〉γ.

For example, we have that M1, q1 |= Ka¬〈〈a〉〉u
3p0 for the cegs from Fig-

ure 1. This can be rephrased as M1, q1, 〈Σu, {a}〉 |= Ka¬〈〈a〉〉3p0, which is
by Theorem 1 equivalent to M ′

1, q1, 〈Σu, {a}〉 |= ¬〈〈ea〉〉 g(
ea ∧ 〈〈ea〉〉 g(act ∧

〈〈a〉〉3p0)
)
, where M ′

1 is the concurrent game structure from Figure 2. Thus, we
have reduced the original property (and model) to ones that include no epistemic
dimension.

Note that we can incorporate the uniformity constraints back into the co-
operation modalities if we keep epistemic links in the reconstructed model. Let
M ′′

1 be M ′
1 with epistemic links retained from the original model M1 (plus re-

flective epistemic links added for the epistemic agent ea to indicate that ea has
perfect information in every state). Then, M1, q1 |= Ka¬〈〈a〉〉u3p0 iff M ′′

1 , q1 |=
¬〈〈ea〉〉u

g(
ea ∧ 〈〈ea〉〉u

g(act ∧ 〈〈a〉〉
u
3p0)

)
. On a more general level, Theorem 1

implies that adding explicit operators Ka for describing agents’ knowledge does
not increase the complexity of model checking agents’ abilities also in the case
of imperfect information strategies.

5 Conclusions

In this paper, we propose an update of the reduction scheme that was pre-
sented in [4]. The original reduction allowed to get rid of epistemic operators



by translating them to cooperation modalities of atl which made use of addi-
tional “epistemic” agents. The new version has two new features. First, we avoid
the exponential blowup of formulae, which was to some extent present in the
original reduction. Second, we show that the reduction is valid also if we specify
strategic constraints which restrict collective strategies that some (or all) agents
are allowed to use. Thus, the applicability of the new reduction scheme goes
well beyond atel (i.e., perfect information atl + knowledge operators). We
can use the scheme to translate knowledge to strategic ability for agents playing
under imperfect information (like in atlir from [10]), acting in the presence of
social norms [11], or choosing only rational play [6]. It seems that many other
extensions of alternating-time logic should submit to the reduction, too.
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