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Abstract. A possible purpose of performing an action is to collect in-
formation. Such informative actions are usually resource-consuming. The
resources needed for performing them can be for example time or mem-
ory, but also money, specialized equipment etc. In this work, we propose
a formal framework to study how the ability of an agent to improve its
knowledge changes as a result of changing the available resources. We
introduce a model for resource-consuming informative actions, and show
how the process of accumulating knowledge can be modelled. Based on
this model, we propose a modal logic for reasoning about the epistemic
abilities of agents. We present some validities of the logic, and show that
the model checking problem sits in the first level of polynomial hierar-
chy. We also discuss the connection between our framework and classical
information theory. More specifically, we show that the notion of un-
certainty given by Hartley measure can be seen as a special case of an
agent’s ability to improve its knowledge using informative actions.

1 Introduction

Performing actions is an intrinsic feature of agents. In the real world, execution
of an action requires resources. The resources may be time, money, memory,
space, etc. Therefore, the abilities ascribed to an agent depend on the amount
of available resources. Reasoning about realistic agents should take into account
the limitations imposed by resource bounds.

In this work, we are mostly interested in reasoning about the abilities of
agents to change their view of the situation. More specifically, we want to cap-
ture the way agents with bounded resources, modify their knowledge about the
environment by performing informative actions, such as sensing and observing.
Building knowledge by performing informative actions is in many cases essen-
tial for an intelligent agent. One example of an agent that performs (resource
consuming) observations in order to refine its knowledge is a robot in a rescue
mission that tries to obtain knowledge about the type of danger and the lo-
cation of people in the danger zone. Another example is a real-time classifier
with the task of classifying a given picture within a short time, and with several
classification algorithms at hand. We believe that a logic to reason about accu-
mulating knowledge by use of resource consuming informative actions can help
in modelling and analysing the behaviour of agents in many similar scenarios.



1.1 Related Work

The inspiration for this work can be traced back to Herbert A. Simon who intro-
duced the term of bounded rationality [27]. More recently, several approaches,
such as the works of Halpern [19, 15], Rantala [25] and Konolige [22], have been
introduced to dealing with the so called omniscience problem, and enable reason-
ing about agents who are not necessarily perfect reasoners themselves. Reasoning
about agents’ abilities under bounded resources has also become a major topic
in the community of temporal and strategic logic, cf. the works by Alechina
and Logan [3–8] and Bulling and Farwer [11, 10]. We review the most relevant
approaches below, but it is fair to say that none of them includes both a no-
tion of quantitatively restricted reasoning and a semantic representation of the
knowledge owned or gained by agents.

In the syntactic approach to knowledge [14, 24, 22], the known sentences are
explicitly listed for each possible world. This approach enables to capture an
agent’s limited ability to gain knowledge in a given condition. However, such
model cannot capture changes in epistemic abilities of an agent when the avail-
able resources change. For each new amount of available resource, a new model
must be built to reason about the new situation. The same applies to the aware-
ness approach [15], impossible worlds [25], and algorithmic knowledge [19]. On
the other hand, the accumulation of knowledge is at the focus of Dynamic Epis-
temic Logic [28] and its extensions [1]. However, DEL takes into account neither
limited observational resources nor imperfections of reasoning by real agents.

In [3, 4], a notion of delayed belief was introduced. That approach assumes
that the agent is a perfect reasoner in an arbitrary decidable logic, but only
derives the consequences of its beliefs after some delay. An advantage of delayed
belief is that we can represent situations where an agent does not yet know a
property, but it can learn the property by using some action(s). Still, there is
no notion of quantitative resource in this approach. So, e.g., we cannot reason
about the effect of changing the available resources on the epistemic state of an
agent. Likewise, Timed Reasoning Logic [5] allows to capture the dynamics of
agents’ knowledge, but it lacks the explicit notion of resources (although it is
possible to reason about the time consumed when performing actions).

Another group of approaches was proposed in the agent logics community.
RTL [10, 11] is a resource bounded extension to the Computation Tree Logic
(CTL) which models the temporal evolution of a system as a tree-like structure
in which the future is not determined. In RTL, each transition between states can
consume some resources and produce other resources. The logic RTL includes
the notion of resource, and enables reasoning about changes of abilities of agents
due to changes of available resources. However, it has no semantic representation
of knowledge. In order to reason about the evolution of knowledge, one would
have to define new propositions to capture the knowledge of agents, and find
out (by using other methods) what an agent knows in each state in order to
determine the valuation of these propositions. The same applies to several other
logics for resource bounded agents, such as Coalition Logic for Resource Games
[6], Resource Bounded Alternating-time Temporal Logic [7], Priced Resource



Bounded ATL [12], and Resource Bounded Coalition Logic [8]. The main focus
is reasoning about how agents use actions to achieve their goals under resource
bounds, with no specific machinery to capture information flow.

Reasoning about the outcome of accumulated observations has been also
studied in belief revision and AI planning. Classical belief revision is syntactic
in nature [2], though there are also formalizations based on possible worlds [17].
Still, both strands focus on inference by perfect reasoners using cost-free infor-
mative actions. AI planning approaches that take into account epistemic actions
are also mostly based on the syntactic approach to knowledge. For instance, the
C-BURIDAN planner [13] represents each state by the set of propositions that
hold in it. An informative action does not change the propositions, but adds
some labels to the state. These labels represent the observations that the agent
has has collected, and can later be used to block application of other actions.
Although C-BURIDAN and similar planners capture informative actions, they
do not include a notion of resource. One can set preconditions for actions, and
by this restrict the availability of an action in a state, but there is no way of
representing the amount of resources needed to perform the action. Also, the
main concern in AI planning is to find a sequence of actions that transforms
the initial state of the world to an “objective” goal state, and not to a given
epistemic state. Outcomes of observations can be used to find out the needed
sequence of actions, but cannot define the goal itself.

Variants of AI planning which come much closer to our approach are belief
planning [26] and dynamic epistemic planning [9]. They are both based on Kripke
semantics, and focus on goals formulated in terms of epistemic states. Still,
they lack the notion of quantitative resource, and do not address the impact of
available resources on the outcome of plans (nor the on the outcome of planning).

In summary, some existing frameworks allow for reasoning about information
flow and epistemic change, albeit in a purely qualitative way. Other approaches
capture epistemic limitations of agents under bounded resources, but do not
include the concept of resource, and do not facilitate reasoning about the rela-
tionship between agents’ ability to gain knowledge, and changes in the resources.
Yet another group includes the notion of resource and supports reasoning about
resource-dependent abilities of agents, but lacks a semantic representation of
knowledge and its dynamics. In this paper, we propose a logic-based approach
that on the one hand relates epistemic abilities to resources, and on the other
hand represents the process of refining knowledge in a semantically sensible way.

2 Resource Bounded Model for Accumulative Knowledge

In this section we develop a model that formalizes scenarios in which agents
build their knowledge by using resource-consuming actions. We explain the ideas
behind our approach with the following motivating example.

Example 1 (Medical agent). Consider a medical assistant agent. The agent is to
help diagnosing patients in areas where there are not enough general practition-
ers. The process of helping a patient starts when the patient informs the agent



about his symptoms. The agent then generates a list of all possible diseases con-
sistent with the symptoms. Among the diseases, some are considered as being
serious. The agent’s duty is finding out whether the patient’s disease is serious
or not. If it is found out that the disease is not serious, the agent prescribes
appropriate medications. Otherwise the agent sends the patient to a medical
centre. A set of medical tests is available to determine the seriousness of the
disease. Each medical test takes some specific time. Depending on the result of
the test, the agent can rule out some of the diseases, and so on.

In principle, the process should continue until the agent finds out if the disease
is serious. However, there are some important questions that an intelligent agent
might consider before even starting. What are the relevant medical tests for a
patient with the given symptoms? If the supply of test kits is limited, is the
agent able to find out the seriousness of the disease with the available kits? If,
among the possible diseases, there is one that should be diagnosed quickly, is
there a sequence of tests that will make the agent certain about this very disease
before the condition of the patient gets critical?

2.1 Observation-Based Certainty Model

We will use possible worlds models [23] to formalize this and similar scenarios.
Each world corresponds to a possible state of affairs. If an agent cannot dis-
tinguish between two worlds, this is represented by the corresponding modal
accessibility relation. For instance, for the medical agent, the set of possible
worlds can consist of all possible diagnoses (i.e., diseases). The agent knows that
a given property holds if and only if it holds in all the accessible worlds. For
example, if all the possible diseases consistent with the symptoms are caused by
infection, then we say that the agent knows that the patient has an infection.

An agent may refine its knowledge by performing informative actions. In this
work, we refer to all informative actions as observations. The medical agent can,
e.g., check the temperature of the patient. Performing an observation may refine
the knowledge of an agent by ruling out some of the possible worlds. For example,
after learning that the patient does not have high temperature, the medical
agent rules out all the diseases that include high temperature. The agent needs
resources (time, memory, space, money, etc.) to perform observations. Thus, in
order to analyse the agent’s ability to gain the required knowledge, we need to
take into account the cost of the observations and the available resources.

We formalize the intuitions as follows, drawing inspiration from modal epis-
temic logic and dynamic epistemic logic.

Definition 1 (Observation-based certainty model). Having a set of atomic
propositions P and a set of agents A, an observation based certainty model is a
tuple M = 〈S,R, V,Obs, obs, cost, cover〉 where:

– S is a set of states (possible worlds).
– R ⊆ A× S × S is the accessibility relation which represents the worlds that

are accessible for each agent. We will write s1∼as2 instead of (a, s1, s2) ∈ R.
Each binary relation R(a, ·, ·) is an equivalence relation.



Fig. 1. A model of simple medical diagnosis. The epistemic accessibility relation for
agent a is represented by the dotted lines (modulo transitivity). q1, q2 are the available
observations; their covering sets are depicted by the rectangles. Moreover, we assume
that cost(q1) = 1 and cost(q2) = 2.

– V : P → 2S is a valuation propositions that shows which propositions are
true in which worlds.

– Obs is a set of labels for binary observations.
– obs : A→ 2Obs defines availability of observations to agents.
– cover : Obs→ 2S is the coverage function. It specifies the set of worlds that

correspond to the “positive” outcome of an observation. We call cover(q) the
covering set of the observation q.

– cost : Obs → C is the cost function that specifies the amount of resources
needed to make the observation. The set of cost values C depends on the
context. For example, when the resource in question is time, C can be the
set of positive real numbers. For memory usage, costs can be conveniently
represented by natural numbers. In case of multiple resources consumption,
the cost can be a vector of numbers, such that each number represents the
consumption of a different type of resource. To simplify the presentation, we
will assume that C = N ∪ {0} throughout the paper.

An example model is shown in Figure 1, and discussed in detail in Example 2.

2.2 Queries and Updates

Definition 2 (Update by an observation). Let m ⊆ S be a subset of worlds
(e.g., the ones considered possible by the agent at some moment), q ∈ Obs an
observation, and s ∈ m a state. The update of m by observation q in state s is
defined as follows:

m|sq =

{
m ∩ cover(q) if s ∈ cover(q)
m \ cover(q) if s /∈ cover(q).



Definition 3 (Query). A query is a finite sequence of observations, i.e., a
tuple l = 〈q1, . . . , qk〉 where each qi is an observation.

Definition 4 (Update by a query). An update of a subset of worlds m ⊆ S
by a query l = 〈q1, q2, . . . qk〉 in state s is defined recursively as follows:

m|sl = m|sq1,q2,...,qk =
(
m|sq1,...,qk−1

)
|sqk

After updating the initial set m by the first observation in the sequence, the
updated set of worlds is the new set of worlds that is used to be updated by
next observation in the sequence. This process continues until updating by the
last observation in the sequence is done.

Example 2. Consider the medical agent scenario. In Figure 1, the set of possible
worlds m = {s1, s2, s3, s4} represents the diseases consistent with the symptoms
of the patient (say, pneumonia, meningitis, leukaemia, and chronic kidney dis-
ease). The available medical tests for the medical agent a in this example are
the observations q1 and q2, which respectively correspond to checking the tem-
perature of the patient and checking her blood pressure. The covering set of the
observation q1 is {s1, s2}, i.e., the diseases with high temperature, and the cover-
ing set of q2 is {s2, s4}, that is, the diseases characterized by high blood pressure.
Suppose that that the actual disease is s1 and the medical agent first checks the
temperature and then the blood pressure. It means that we would like to find
the update of the set m in state s1 by the observations q1 and q2. Checking the
temperature tells the agent whether the actual state is in the covering set of q1 or
not. Here the answer is “yes”, and thus we have m|s1q1 = m∩cover(q1) = {s1, s2}.
Checking the blood pressure after this corresponds to updating the result of the
previous update {s1, s2} by observation q2. In state s1, the final result is {s1},
so the agent knows precisely that the disease is pneumonia.

Definition 5 (Cost of a query). Let ⊕ : C × C → C be a fixed additive
aggregation function [18]. The cost of a query is the aggregation of the costs of
its observations: cost(〈q1, . . . , qk〉) = cost(q1)⊕ · · · ⊕ cost(qk).

The aggregation function ⊕ is context-dependent, and can be defined in vari-
ous ways. For example, if the resource is time and observations are made sequen-
tially then the aggregate cost is simply the sum of individual costs. If the obser-
vations are applied in parallel, the time needed for the whole query is the maxi-
mum of the costs, and so on. In this paper, we assume that cost(〈q1, . . . , qk〉) =
cost(q1) + · · ·+ cost(qk), and leave the general case for future work.

Definition 6 (Relevant observation). The observation q is called relevant to
a set m ⊆ S iff m ∩ cover(q) 6= ∅ and m ∩ cover(q) 6= m.

If m is the set of worlds that the agent considers possible, a relevant obser-
vation is one that brings new information to the agent. In other words, when an
observation is not relevant, the agent knows the result of updating even before
applying the observation.



Fig. 2. A model of diagnosis for a more knowledgeable medical agent

Example 3. Consider the model in Figure 2. The set m = {s1, s3} collects the
diseases that the medical agent takes into account. It is easy to see that q2 in not
relevant because the agent already knows that the patient does not have high
blood pressure. In other words an update of m by q2 is equal to m itself. But
the agent does not know the result of checking the temperature, therefore q1 is
a relevant observation.

Definition 7 (Relevant query). Let a ∈ A and s ∈ S. A query l = 〈q1, . . . , qk〉
is relevant for agent a in state s iff: (1) qi ∈ obs(a) for all i, (2) q1 is relevant
to {s′|s∼as′}, and (3) qi is relevant to {s′|s∼as′}|sq1,...,qi−1

for all i ≥ 2.

Note that, while we defined the relevance of an observation with respect to a
set of worlds, we use a set and a state to define the relevance of a query. This is
because in the process of updating a set by a query, in each step, the outcome
of the update depends on the actual state. This implies that an agent who does
not know what the actual world is, might not know beforehand whether a query
is relevant or not. However, the agent knows at each step of updating if the next
observation to be applied is relevant or not. Note also that in a state, the same
query might be relevant for one agent, and irrelevant for another agent.

Finally, we remark that for practical purposes such an explicit modeling of
the outcome of observations (in terms of global states in a Kripke model) can
be impractical. This can be overcome by using a higher-level model specification
language, for instance one based on interpreted systems [16]. We do not dig
deeper into this issue, and discuss only the abstract formulation throughout the
paper.

3 A Logic of Accumulative Knowledge

In this section, we introduce a modal language for reasoning about the abilities
of agents to refine their knowledge under bounded resources.



3.1 Syntax

The set of formulas of Logic of Accumulative Knowledge (LAcK) is defined by
the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | Kaϕ | Klaϕ | ♦K
b
aϕ | �Kbaϕ,

where p ∈ P is an atomic proposition, a ∈ A is an agent, and b ∈ B is a
resource bound. Unless explicitly stated, we will assume that the set of bounds
is B = N∪{0,∞}. The other Boolean operators are defined as usual. Additionally,
we define Kaϕ ≡ Kaϕ ∨Ka¬ϕ.

Formula Kaϕ says that agent a knows that ϕ. Consequently, Kaϕ expresses
that a has no uncertainty about ϕ, that is, he knows the truth value of ϕ. The
formula Klaϕ says that a has observation-based certainty about ϕ through obser-
vation l. Formula ♦Kbaϕ reads as “a can possibly (or potentially) obtain certainty
about ϕ under resource bound b”. Finally, �Kbaϕ expresses that a is guaranteed
to obtain certainty about ϕ under bound b.

3.2 Semantics

The semantics of LAcK in observation-based certainty models is defined by the
following clauses:

– M, s |= p iff s ∈ V (p), for any p ∈ P .

– M, s |= ¬ϕ iff M, s 6|= ϕ.

– M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ.

– M, s |= Kaϕ iff ∀s′ ∈ ma(s) : M, s′ |= ϕ, where ma(s) = {s′|s∼as′} denotes
the set of states indistinguishable from s for agent a.

– M, s |= Klaϕ where l = 〈q1, . . . , qk〉, iff firstly for all 1 ≤ i ≤ k, we have
qi ∈ obs(a), and secondly either ∀s′ ∈ ma(s)|sl : M, s′ |= ϕ or ∀s′ ∈ ma(s)|sl :
M, s′ |= ¬ϕ. We call such l an answer query for (a, ϕ) in s.

– M, s |= ♦Kbaϕ iff for some query l, M, s |= Kla and cost(l) ≤ b.
Potential certainty expresses that under a given resource bound, the agent
has a way to obtain certainty by applying some relevant observations. Note
that this does not guarantee that the agent will obtain the certainty, since
he may not know exactly what observation is the right one in each step of
querying.

– M, s |= �Kbaϕ iff, for all queries l which are relevant for a in s and cost(l) ≤ b,
we have either M, s |= Klaϕ, or there exists a query l′ so that M, s |= Kl·l

′

a ϕ
and cost(l · l′) ≤ b.
Equivalently, we can define guaranteed certainty by saying that M, s |=
�Kbaϕ iff, for all relevant queries l for agent a in s, which are maximal under
bound b (meaning that adding any observation to the query makes its cost
more than b), l is an answer query for ϕ in s. Guaranteed certainty expresses
that the agent, by applying relevant and possible observations in any order,
obtains certainty without running out of resource.



Fig. 3. Observation-based certainty about ϕ using 〈q1, q2, q3〉.

3.3 Examples

Example 4. Consider the model in Figure 3. The initial set of possible diseases
for the medical agent a is {s1, s2, . . . , s6}. Moreover, proposition ϕ is true in
a state if the corresponding disease is dangerous, otherwise it is false. In this
example, in some of the possible worlds for the agent the formula ϕ is true, while
in some it is not. Therefore initially the agent is not certain about seriousness
of the disease. There are three types of medical tests available, corresponding to
observations q1, q2 and q3. After updating its initial set of possible worlds with
l1 = 〈q1, q2, q3〉, the agent gets {s1, s2}. Since ϕ is true in both s1 and s2, we
have that the agent can use l1 to become certain about the truth value of ϕ. We
denote this by M, s1 |= Kl1a ϕ. If the agent prescribes only the medical tests q2
and q3, then the updated set is {s1, s2, s4}. As ϕ is neither true in all elements
of this set, nor false in all of them, we have M, s1 6|= Kl2a ϕ.

Example 5. Now consider the model in Figure 4. As before, the available medical
tests are represented with observations q1, q2, and q3. Next to each observation
there is a number that shows the cost of applying that medical test. In our
example the cost of a test is the time needed to execute it. So, the time needed
for test q1 is 5 hours, and for tests q2, q3 it is 2 hours each. The medical agent
is not certain about the seriousness of the disease, but it is guaranteed to be
certain about it if it has at least 5 hours for doing the tests. To see why, first
note that initially all the three observations tests are relevant and their costs
are all lower than the bound. Thus, the agent has three choices. If it chooses q1
as the first test, the updated set is {s1, s2, s3}. In all the worlds in this set ϕ is
true, So the agent has obtained certainty (in this case, it knows that the disease
is dangerous). If the agent chooses q2 first, the updated set is {s1, s2, s3, s5, s6}.



Fig. 4. Guaranteed certainty about ϕ under bound 5

The agent is not certain yet and has to continue applying observations. The time
needed of applying q2 is 2, so after applying q2 the agent has 5 − 2 = 3 hours
left, during which it only can apply q3. After updating by q3, the updated set is
{s1, s2, s3}. The agent does not need to continue prescribing new tests because
the certainty is already gained. The result of applying q3 first is similar to the
previous case, except that this time the second observation is inevitably q2. So
if the agent at each step, chooses any arbitrary observation from the relevant
and possible ones, it attains certainty about ϕ under bound 5. Therefore in this
example M, s1 |= �K5

aϕ.
If the agent had only 3 hours for tests, the only possible choices would be q2

and q3. But after updating the set of its possible worlds with each of these ob-
servations the agent would still be uncertain about the seriousness of the disease
and the remaining time would not suffice for applying any more observations.
Therefore M, s1 6|= ♦K3

aϕ.
Note, finally, that if the actual disease is s4, the agent is able to obtain

certainty within 3 hours. This is possible by choosing observation q2. On the
other hand, a chooses q3 first, it will not obtain certainty within the same time.
Thus, in state s4, the agent has potential but not guaranteed certainty about ϕ,
i.e., M, s4 |= ♦K3

aϕ ∧ ¬�K3
aϕ.

Example 6. Nested formulas refer to an agent’s certainty about its own, or an-
other agent’s certainty. Consider medical agent a is not sufficiently equipped to
become certain about the seriousness of the disease (Figure 5). Instead, a has
to decide to which specialized medical center the patient should be sent. The
medical centre b specializes in brain diseases, and the medical center c specializes
in heart diseases. Test q1 is a general test and is available for all the agents a,
b and c. Test q2 is only available at the brain centre, and test q3 is only avail-



Fig. 5. If obs(a) = {q1}, obs(b) = {q1, q2}, and obs(c) = {q1, q3}, then agent a has
observation-based certainty about certainty of agents b and c.

able at the heart center. So in this model obs(a) = {q1}, obs(b) = {q1, q2} and
obs(c) = {q1, q3}. By applying the medical test q1 the medical agent a is able to
determine which specialized center are competent to do the diagnosis in a given

time (say, up to 5 hours), and which are not: M, s1 |= K
〈q1〉
a ♦K5

bϕ ∧ K
〈q1〉
a ♦K5

bϕ.
In consequence, we also have that M, s1 |= ♦K1

a♦K
5
bϕ ∧ ♦K1

a♦K
5
bϕ and M, s1 |=

�K1
a♦K

5
bϕ∧�K1

a♦K
5
bϕ: the agent has bot potential and guaranteed certainty to

learn about b and c’s epistemic abilities within 1 hour.

4 Some Properties

In this section, we present some interesting properties that can be expressed
in LAcK. We begin by listing some validities that capture interesting general
properties of accumulative knowledge. Then, in Section 4.2, we show how the
basic information-theoretic notion of Hartley measure can be characterized in or
framework.

4.1 Interesting Validities

Below we list some interesting validities of LAcK. We give only some of the
proofs; the others are either straightforward or analogous.

Theorem 1. The following formulas are valid in LAcK:

1. Kaϕ→ Klaϕ.
Certainty cannot be destroyed by observations.

2. Klaϕ→ Kl·l
′

a ϕ.
A more general variant of 1.

3. Klaϕ ∧ Klaψ → Kla(ϕ ∧ ψ).
Outcomes of a query combine.



4. Klaϕ ∧ Kl
′

aψ → Kl·l
′

a (ϕ ∧ ψ).
Combining queries yields combined outcomes.

5. Kaϕ→ ♦Kbaϕ and Kaϕ→ �Kbaϕ.
A variant of 1 for potential and guaranteed observation-based certainty.

6. ♦Kbaϕ→ �Kb+b
′

a ϕ and �Kbaϕ→ �Kb+b
′

a ϕ.
Monotonicity of observation-based certainty wrt resource bounds.

7. ♦Kbaϕ ∧ ♦Kb
′

a ψ → ♦Kb+b
′

a (ϕ ∧ ψ).

8. ♦Kbaϕ ∨ ♦Kb
′

a ψ → ♦Kmax(b,b
′)

a (ϕ ∨ ψ).
Combination rules for potential observation-based certainty.

9. �Kbaϕ ∧�Kb
′

a ψ → �Kmax(b,b
′)

a (ϕ ∧ ψ).

10. �Kbaϕ ∨�Kb
′

a ψ → �Kmax(b,b
′)

a (ϕ ∨ ψ).
Combination rules for guaranteed observation-based certainty.

11. �Kbaϕ→ ♦Kbaϕ.
Guaranteed certainty implies potential certainty.

12. �K∞a ϕ↔ ♦K∞a ϕ.
For unlimited resources, the two notions of observation-based uncertainty
coincide.

Proof.
Ad. 7: From the antecedent, we know that there is an answer query l for (a, ϕ)
such that cost(l) ≤ b, and there is an answer query l′ for (a, ψ) such that
cost(l′) ≤ b′. Therefore l · l′ is answer query for (a, ϕ ∧ ψ), and cost(l · l′) =
cost(l) + cost(l′) < b+ b′.

Ad. 9: Assume that max(b, b′) = b. Then by definition, any relevant maximal
query l under bound b is an answer query for (a, ϕ). Then there exist queries l1
and l2 such that l = l1 + l2 and l1 is a maximal query under bound b′. From

�Kb
′

a ϕ we know that l1 is an answer query for (a, ψ), therefor l = l1 + l2 is
also an answer query for (a, ψ). As l is an answer query both for (a, ϕ) and for
(a, ψ), it is an answer query for (a, ϕ ∧ ψ). The proof is similar in the case that
max(b, b′) = b′.

Ad. 12: Inferring ♦K∞a ϕ from �K∞a ϕ is a direct result of the previous prop-
erty. For proving the other direction, first note that changing the order of the
observations in a query does not change the updated set of worlds, and adding
some observations to a query cannot make an answer query a non-answer query.
Now if we have ♦K∞a ϕ, then there is an answer query l for (a, ϕ). Therefore any
query l′ which consists of all the available observations is also an answer query
for (a, ϕ). As the upper limit for the resource is infinity, the agent can choose
the observations in any order and it is guaranteed to be certain about ϕ without
running out of recourse, hence �K∞a ϕ. ut

4.2 Relation To Information Theory

In the previous sections we have defined a framework for reasoning about agents
that collect information in order to become certain about a given property. In



other words, the agents reduce their uncertainty about the property by accumu-
lating observations. There seems to be an intuitive connection to the classical
definition of uncertainty, and in particular Hartley measure of uncertainty. In
this section, we look at the relationship.

Two most established measures of uncertainty are Hartley measure and Shan-
non entropy. Hartley measure is based on possibility theory, whereas Shannon
entropy is based on probability theory. Hartley measure quantifies uncertainty
in terms of a finite set of possible outcomes. Let X be the set of all alternatives
under consideration, out of which only one is considered the correct one. Note
that this can be seen as corresponding to the set of possible worlds and the ac-
tual world, respectively. It was shown by Hartley [20] that the only sensible way
to measure the uncertainty about the correct alternative in a set of alternatives
X is to use the function:

H(X) = dlog2 |X|e.
The unit of uncertainty measured by H(X) is bit. The intuition behind Hartley
measure is that log2 |X| is the minimal number of binary questions that guaran-
tees identifying the correct alternative, provided that the set of questions is rich
enough. We will now use the intuition to characterize Hartley measure in LAcK.

Definition 8 (Bisective Observations). Let n[i] denote the ith bit in the
binary unfolding of n. A set of observations O is bisective for states S iff there
is a bijective ordering of states ord : S → {1, . . . , |S|} and a bijective mapping
bitno : O → {1, . . . , dlog |S|e} such that cover(q) = {s ∈ S |

(
ord(s)

)
[bitno(q)]}

for every q ∈ Q. In other words, we see S as a k-dimensional binary cube, with
each q ∈ Q “cutting across” a different dimension.

Definition 9 (Distinguishing model). A possible worlds model M is distin-
guishing by formulas ψ1, . . . , ψk iff for every state si in M there exists ψi which
holds exactly in si.

Definition 10 (Hartley model, Hartley formula). We say that an observation-
based certainty model M = 〈S,R, V,Obs, obs, cost, cover〉 is a Hartley model iff:

1. M consists of a single agent a (the “observer”),
2. M is distinguishing by some formulas ψ1, . . . , ψk,
3. Obs includes a set of bisective observations for S, and
4. The cost of every observation is 1.

The Hartley formula of M under bound b is defined as: χ(M, b) ≡
∧
si∈S ♦K

b
aψi.

Intuitively, Hartley formula in a Hartley model expresses that the observer
can identify the actual world in at most b steps.

Theorem 2. Let M be a Hartley model with state space S. Then, for all s ∈ S,
we have M, s |=LAcK χ(M,H(S)).

Proof. Take a query consisting of all the bisective observations in M . Clearly,
the query updates any set of indistinguishable states yielding the singleton set
containing only the actual state. Moreover, it consists of at most H(S) steps,
which concludes the proof. ut



5 Model Checking

In this section, we look at the complexity of verification for accumulative knowl-
edge. Similarly to many problems where agents’ uncertainty is involved, it turns
out to be NP-hard. We also show that the hardness of the problem is due to
bounded resources. Finally, we prove that verification becomes tractable in many
realistic scenarios where resource bounds are relatively tight.

5.1 General Result

The (local) model checking problem for LAcK is formally defined as follows.

Definition 11 (Model checking for LAcK).
Input: Observation-based certainty model M , state s in M , LAcK formula ϕ;
Output: yes iff M, s |=LAcK ϕ.

We will show that the problem sits in the first level of polynomial hierarchy,
more precisely between NP ∪ coNP and ∆P

2 (where ∆P
2 = NPNP is the class

of problems that can be solved in polynomial by a deterministic Turing machine
asking adaptive queries to an NP oracle). We start by showing the upper bound.

Proposition 1. Model checking LAcK is in ∆P
2 .

Proof. We demonstrate the upper bound by the following algorithm.

mcheck(M, s, ϕ):

Case ϕ ≡ p : return(s ∈ V (p));
Cases ϕ ≡ ¬ψ,ψ1 ∧ ψ2,Kaψ : standard;
Case ϕ ≡ Klaψ : X := {s′ ∈ S | mcheck(M, s′, ψ)};

return(ma(s)|sl ⊆ X or ma(s)|sl ⊆ S \X);
Case ϕ ≡ ♦Kbaψ : return(oracle1(M, s, ψ));
Case ϕ ≡ �Kbaψ : return(not oracle2(M, s, ψ));

oracle1(M, s, ψ):

X := {s′ ∈ S | mcheck(M, s′, ψ)};
guess a query l with no repeated observations;
return

(
cost(l) ≤ b and (ma(s)|sl ⊆ X or ma(s)|sl ⊆ S \X)

)
;

oracle2(M, s, ψ):

X := {s′ ∈ S | mcheck(M, s′, ψ)};
guess a query l with no repeated observations;
maximal := (cost(l) ≤ b and for all observations q /∈ l: cost(lq) > b;
return

(
maximal and ma(s)|sl 6⊆ X and ma(s)|sl 6⊆ S \X)

)
; ut

To prove the lower bound, we will use an old result by Karp [21].



Definition 12 ([21]). SetCovering is the following decision problem.
Input: Domain of elements D, a finite family of finite sets S = {S1, . . . , Sn} ⊆
22

D

, and a number k ∈ N;
Output: yes iff there exists a family of k sets T = {T1, T2, . . . , Tk} ⊆ S such
that

⋃
j Tj =

⋃
i Si.

Proposition 2 ([21]). SetCovering is NP-complete.

Lemma 1. Model checking of the LAcK formula ♦Kbap is NP-complete.

Proof. Inclusion in NP follows from the algorithm in the proof of Proposition 1.
The lower bound is obtained by a reduction of SetCovering. Let M include:

– S = D ∪ {s0} for some s0 /∈ D;
– A = {a}, and ∼a= S × S;
– Obs = {q1, . . . , qn}, and cover(qi) = {s0} ∪ Si;
– cost(qi) = 1 for every i;
– single atomic proposition p0 with V (p0) = {s0}.

Now, SetCovering(D, {S1, . . . , Sn}, k) iff M, s0 |=LAcK ♦Kka. ut

The following is a straightforward consequence (note that we can use negation
to obtain the complement of a problem expressible in LAcK).

Proposition 3. Model checking LAcK is NP-hard and coNP-hard.

Thus, finally, we obtain the following result.

Theorem 3. Model checking LAcK is between (NP ∪ coNP) and ∆P
2 .

5.2 Closer Look

What is the hard part of the verification problem for LAcK? The next result
shows that the hardness is due to bounded resources, since with unlimited re-
sources the problem becomes easy.

Proposition 4. If B = {∞} then model checking LAcK is in P.

Proof. First, observe that M, s |= ♦K∞a ϕ iff M, s |= Klaϕ for l being the “grand
query” collecting all the observations available for a in M . Moreover, M, s |=
�K∞a ϕ iff M, s |= ♦K∞a ϕ by Theorem 1, point 12. For the other cases, we proceed
according to the algorithm in the proof of Proposition 1. It is easy to see that
the new algorithm terminates in time O(|S| · |Obs| · |ϕ|). ut

Finally, we want to suggest that the pessimistic view of Theorem 3 is not
always justified. True, verification is NP-hard in general. However, we argue
that it only makes sense to engage in checking M, s |= ♦Kbaϕ or M, s |= ♦Kbaϕ if
a’s observations are relatively expensive compared to the available resources b.
After all, if observations were cheap, a might as well skip deliberation and start
observing right away. The following result shows that when the relation between
costs and bounds is tight, the model checking problem becomes easy again.



Proposition 5. Let α > 1 be given and fixed. Model checking ♦Kbap and �Kbap
in a model such that min{cost(q) | q ∈ Obs} ≥ b

α(log |S|+log |Obs|+log b) is in P.

Proof. If min{cost(q) | q ∈ Obs} ≥ b
α(log |S|+log |Obs|+log b) then every query that

consists of more than α(log |S| + log |Obs| + log b) observations will cost more
than b. Thus, it suffices to check the outcome of at most 2α · b · |S| · |Obs| queries,
which is polynomial in the size of the model.

Note that, for this result, it is essential that α is not a parameter of the
problem, and it makes sense only for relatively small values of α. ut

6 Conclusions

Intelligent agents usually choose their actions based on their knowledge about
the environment. In order to gain or refine this knowledge, agents may perform
informative actions. Informative actions like all other actions require resources.
Therefore, the abilities of agents to improve their knowledge are limited by the
resources available to them. In this work, we propose a modal approach to mod-
eling, analyzing, and reasoning about agents that build their knowledge by using
resource-consuming informative actions.

Our approach is based on several simplifying assumptions, which might not
hold in real situations. Nevertheless, we believe the approach to be useful, espe-
cially with respect to simple scenarios. In more complex contexts, refinements
of the framework could be needed.
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