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Abstract. Specification and verification of multi-agent programs is a key prob-
lem in agent research and development. One may for example be interested in
checking if a specific subset of individual agent programs can achieve a particular
state of their shared environment, or if they can protect the system from entering a
“bad” state. This paper focuses on BDI-based multi-agent programs that consist
of a finite set of BDI-based agent programs executed concurrently. We choose
alternating-time temporal logic (ATL) for expressing such properties. However,
the original ATL is based on a synchronous model of multi-agent computation
while most (if not all) multi-agent programming frameworks use asynchronous
semantics where activities of different agents are interleaved. Moreover, unlike
in ATL, our agent programs do not have perfect information about the current
global state of the system. They are not appropriate subjects of modal epistemic
logic either (since they do not know the global model of the system). This paper
presents our first attempt at adapting the semantics of ATL to reasoning about
asynchronous multi-agent programs.

1 Introduction

Specification and verification of agent-based systems is a key problem in multi-agent
research and development [13,28]. More recently, there has been a shift focusing on
the verification of multi-agent programming languages and multi-agent programs, i.e.,
programs that are developed to implement multi-agent systems [14, 20, 9]. These works
aim at verifying safety and liveness properties in terms of the internals of individual
agent programs such as beliefs, goals, and plans [8, 7, 1, 5]. Examples of such properties
are realism, various kinds of commitment strategies, and communication abilities.
This paper concentrates on reasoning about (and verification of) BDI-based multi-
agent programs that consist of a finite set of BDI-based individual agent programs oper-
ating in a shared environment and executed concurrently. We propose a framework that
allows the developers of multi-agent programs to check if (a subset of) individual agent
programs can cooperate to achieve a specific state of the shared environment. In partic-
ular, the paper focuses on reasoning about properties related to possible cooperations
between individual agent programs. One may for example be interested in checking if
a specific subset of individual agent programs, developed to operate in a blockworld



environment, can cooperate to achieve a state where they have built a certain tower of
blocks.

In order to develop such a framework, the logic used for reasoning about multi-agent
programs must be grounded in the computation of these programs. In this paper, we first
present an APL-like multi-agent programming language which is a simplified and mod-
ified version of an existing multi-agent programming language called 2APL [14]. It is
simplified because we focus on ingredients that also appear in other APL-like program-
ming languages (e.g., [20, 9]), and it is modified because all actions are now specified
with respect to both agents’ internals as well as the shared environment. We then present
a logic for APL-like multi-agent programming languages, that can be used to reason
about the execution of multi-agent programs and possible cooperations between agents
in those programs. Among other things, the logic allows for specification and verifica-
tion of safety and liveness properties related to the cooperation and strategic abilities of
the agents.

We begin by presenting the multi-agent version of 2APL in Section 2. Then, we
discuss the choice of a formalism for specification and verification of properties for
2APL multi-agent programs. There are many logics that can be used for this purpose.
Likewise, we can choose among several different semantics of program execution. We
list some options and make (sometimes tentative) choices in Section 3. In essence, we
choose alternating-time temporal logic with uniform strategies, with semantics defined
over labeled interpreted systems that arise from an asynchronous model of program ex-
ecution. Sections 4 and 5 present the formal framework that implements the choices.
That is, in Section 4 we present an operational semantics for 2APL that generates ap-
propriate models of multi-agent programs, and in Section 5 we propose a variant of
alternating-time temporal logic that seems suitable for reasoning about their properties.
We also briefly discuss the verification problem for the setting: we establish preliminary
complexity results and speculate how the complexity of the procedure can be reduced
to make verification feasible.

2 A Programming Language for Multi-Agent Systems

In this section we present the syntax of a fragment of the BDI-based multi-agent pro-
gramming language 2APL [14]. This fragment contains the core features of 2APL and
allows the implementation of individual agents with beliefs, goals, actions, plans, and
planning rules. For the purpose of this paper, we assume that a multi-agent program
consists of a set of BDI-based programs for individual agents and a shared environment
in which all agents can perform actions. The shared environment is represented by a set
of atoms. In consequence, it suffices to present the syntax of the programming language
for individual agent programs, which we do in the following subsections.

2.1 Beliefs and Goals

The beliefs of an agent represent its information about its environment of action, while
its goals represent situations the agent wants to bring about (not necessary all at once).*

* Note that this means that we only deal with so called achievement goals here.



For simplicity, we represent an agent’s beliefs as a set of atoms and goals as a set of
literals. We also assume the closed world principle with respect to beliefs: the agent
believes that —p iff p is not in its current belief base. The initial beliefs and goals of an
agent are specified by its program. The beliefs and goals of an agent are related to each
other: if an agent believes p, then it will not pursue p as a goal (since p has already been
achieved).

2.2 Basic Actions

Basic actions specify the capabilities an agent has to achieve its goals. In this paper and
in contrast to previous expositions of 2APL, we consider basic actions of an agent as
being specified in terms of both the agent’s beliefs as well as properties of the external
environment. In particular, we assume that each basic action of an agent is specified
in terms of a set of pairs, each of which consists of two pre-conditions and two post-
conditions. One of the pre-conditions is a condition on the agent’s beliefs and the second
is condition on the environment. The pre- and post-conditions are sets of literals. One
post-condition determines the update of the agent’s beliefs and the second determines
the update of the environment. For example, consider the specification of basic action
put _X_Y, which consists of two tuples of pre- and post-conditions:

[-on_X_Y]{ free_Y} put_X Y {-free_Y}[ on_X Y]
[-on_X Y] {-free_Y} put_X Y { free_X}[floor_X]

In this specification, the pre- and post-conditions on the agent’s beliefs are placed within
curly brackets { } and the pre- and post-conditions on the agent’s environment are placed
within square brackets []. The belief pre-condition of the first pair indicates that the
action can be executed if the agent believes block Y is free. Its corresponding post-
condition indicates that after the execution of the action the agent will believe block Y is
not free anymore. The environment pre- and post-conditions indicate that the execution
of the action will put block X on block Y if it was not already the case.

In general, a basic action can be executed only if one of its belief pre-conditions is
derivable from the agent’s beliefs (based on the closed world assumption as the agent’s
belief base is a set of atoms). In such a case, we call the basic action executable. If none
of the belief pre-conditions is derivable from the agent’s beliefs, then the execution of
the action blocks. The execution of an executable action will update the agent’s beliefs
with the corresponding belief post-condition of the action. Basic actions maintain con-
sistency of the agent’s beliefs. We assume different belief pre-conditions of one basic
action cannot be satisfied in one state.

The environment pre- and post-condition pairs are to specify the effect of an ex-
ecutable action on its environment. If the environment pre-condition of an executable
action holds in the environment, then the corresponding environment post-condition
of the action will be used to update the environment. If none of the environment pre-
conditions of an executable basic action holds, then the agent can execute the action
but the environment will not be updated. This means that basic actions can be executed
even if none of its environment pre-conditions holds in the environment. In the above
example, if the agent believes ~freeY, then the action can be executed and its effect



will be determined based on the second pre- and post-condition pair. In particular, if
block X was not on block Y, then the execution of the action results is a state where
block X is on the floor. Otherwise the basic action can be executed without any envi-
ronment effect. We assume that different environment pre-conditions of a basic action
cannot be satisfied in one state. A basic action « is specified as follows:

a = { ((eprecy,bprecy), (bposty, eposty) )

( (eprecy, bprecy,), (bpost,,, epost,,) )

}

In the following, we use prec(a) and post(«) to indicate the set of all pre-conditions
and post-conditions of action «, respectively. Moreover, we use eprec(a), bprec(a),
epost(a) and bpost(«) to denote the environment pre-condition, the belief pre-condition,
the environment post-condition and belief post-condition of «, respectively. Thus:

prec(a) = { (eprecy, bprecy), . .., (eprec,, bprecy,) }
post(a) = { (eposty, bposty), ..., (epost,, bpost,,) }
bprec(a) = {bprecy, ..., bprec, }
eprec(a) = {eprecy, ..., eprec, }
bpost(a) = {bposty, ..., bposty}
epost(a) = {eposty, ..., epost,}

Note that the same action may have different preconditions and/or effects when
executed by different agents. For example, a humanoid robot must have its hands empty
in order to lift an object, while an Aibo should rather have its mouth empty instead. We
will add the agent’s name as a subscript in functions prec, post, etc. if the agent is
not clear from the context. We also observe that the agent’s perception can be encoded
as the interplay between its environment pre-conditions and belief post-conditions. In
particular, one can define action perceive with the following specification:

[ pl{} perceive { p}l[]
[-pl{} perceive {-p}l[]

where p expresses an atomic property observable to the agent.

2.3 Plans

A plan consists of basic actions composed by sequence, conditional choice and con-
ditional iteration operators. The sequence operator ; takes two plans as arguments and
indicates that the first plan should be performed before the second plan. The conditional
choice and conditional iteration operators allow branching and looping and generate
plans of the form if ¢ then {m} else {m2} and while ¢ do {} respec-
tively. The condition ¢ is evaluated with respect to the agent’s current beliefs. For ex-
ample, the following plan causes the agent to first put block b on ¢, and then put block
aonb.

put_b_c;put_a_b



2.4 Planning Goal Rules

Planning goal rules are used to select a plan based on current goals and beliefs. A
planning goal rule consists of three parts: an (optional) goal query, a belief query, and
the body of the rule. The goal query specifies the state(s) to be achieved by the plan,
and the belief query denotes the states in which the plan is believed to be executable.
Firing a planning goal rule results in adoption of the plan which forms the body of the
rule. For example, consider the following planning goal rules.

buildTower <- free_X and free Y | grasp_X;put_X_ Y
buildTower <- free_X and —-free_y | grasp_X;put_X_f1l

The first rule states that “if the goal is to build a tower of blocks and it is believed
that blocks X and Y are free, then block X should be grasped and put on block Y”. A
plan can also be generated independently of goals but based on current beliefs only. This
allows the implementation of reactive agents (agents without any goals). For example,
the following reactive planning rule.

<- -battery | goToStation;chargeBattery

This rule states “if the battery is low, then go to the loading station and charge the
battery”. For simplicity, we assume that agents do not have initial plans, i.e., plans can
only be generated during the program execution by planning goal rules.

The syntax of the programming language is given below in EBNF notation. We
assume a set of belief update actions and a set of propositions, and use (atoms) to
denote a sequence of atoms, (literal) to denote a literal, and (aliteral) to denote the
name of a belief update action.

(APL_Prog) :="Actions:" (updatespecs)
| "Beliefs:" {atoms)
| "Goals™: (literals)
| "PG rules:" (pgrules)

(updatespecs) ::= [{updatespec) (", " (updatespec))* ]

(updatespec) =" (literals) "1 "{" (literals) "} "
(aliteral)

n{(literals)"}m v (literals) " 1"

(literals) = [(literal) (v, (literal))*]
{plan) = (baction) | (sequenceplan) | {ifplan) | {whileplan)
(baction) = (aliteral) | (testbelief) | (testgoal)
(testbelief) = (bquery) "2"
(testgoal) = (gquery) " "
(bquery) = (literal) | (bquery) "and" (bquery) | (bquery) "or" (bquery)
(gquery) u:= (literal) | (gquery) "and" (gquery) | (gquery) "or" (gquery)
< = {plan) *; " (plan)

( "if" (bquery) "then {" (plan) "}" ["else {" (plan) "}"]
( ="while" (bquery) "do {" (plan) "}"
(pgrules) == [(pgrule) (", " (pgrule))*]
(pgrule) == [(gquery)] "<=" (bquery) " | " (plan)
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3 Choosing Logic and Semantics

There are plenty of formal framework that can be used for modeling, reasoning about,
and verification of multi-agent programs. In this section, we enumerate some of the op-
tions, and justify our choices for the rest of the paper. Some of the choices are tentative;
we plan to explore the other possibilities in future work.

First, let us discuss the semantics of program execution. Three major options are:

1. Synchronous models: each transition corresponds to simultaneous execution of ac-
tions by all the agents,

2. Asynchronous models based on interleaving: each transition corresponds to an ac-
tion executed by a single agent; action sequences from multiple agents are inter-
leaved,

3. Asynchronous models with interleaving and synchronization by common action
names.

Since the formal semantics of multi-agent 2APL has been already based on the asyn-
chrony assumption, and the fragment of 2APL studied here does not include synchro-
nization, we choose option 2. However, both other options are very interesting, and we
plan to study them in the future.

Fairness assumptions are a closely related issue. In this preliminary study, we do
not assume fairness of the program execution.

Components of a system. Do we need a model of the external world, i.e., of the
environment of action, shared by all agents? And, if so, what is the required relationship
between agents’ beliefs and the actual properties of the environment? We consider the
following possibilities:

1. No environment, agents’ beliefs are correct by definition,
2. With environment, beliefs are correct by definition,
3. With environment, beliefs can be correct or not.

As we already suggested in Section 2, we choose option 3. The first option is sometimes
used in frameworks for programming single agents, but for a multi-agent program we
need a medium for agents’ interaction. Moreover, we must take into account incorrect
beliefs for a very simple reason: there is no way of ensuring that the programmer has
programmed agents’ beliefs so that they are consistent with each other.

The choice of logic is crucial for what we can express and what kind of reasoning
it facilitates. There are many logics of computation that can be used:

1. Dynamic logic [18] used primarily for reasoning about the end result of actions or
(sequential) programs;

2. A variety of temporal logics based on the linear (LTL [27]) and branching model
of time (CTL [10]), or logics that embed both perspectives (CTL* [15]);

3. Combinations of dynamic and temporal logic that allow to reason about tempo-
ral patterns that result from executing programs: Process Logic [17], DLTL [19],
DCTL*[25];

4. Strategic logics with various degrees of expressivity: coalition logic [26], alternating-
time temporal logic ATL [3,4] and its more expressive variant ATL* [4]; variants
of the stit logic [6] also fall into this category;



5. The above logics can be combined with epistemic (resp. doxastic) logic when the
agents’ knowledge (resp. beliefs) are important. The combination is non-trivial es-
pecially in the case of strategic logics (cf. [21] for details).

In this work, we want to reason about what temporal patterns of execution can be trig-
gered by which agent(s), hence the choice of ATL/ATL* seems most natural (it is much
more expressive than coalition logic, whereas stif has a very complicated semantics and
no immediate computational flavor). Beliefs are important for our setting, but our agents
are not appropriate subjects of modal epistemic/doxastic logic since we cannot assume
that they know the whole model of the system (they are not even aware of existence of
other agents!). Thus, doxastic operators Bel; are applied to propositional formulae only
(the same holds for reasoning about goals).

Models of the logic: the action/time structure follows in a natural way from the
operational semantics of the programming language presented in Section 4. Essentially,
we deal with labeled transition systems with nodes representing global states of the sys-
tem, and transitions labeled with the action that generates the transition and the agent
that executes the action. Global system states combine local states of all the compo-
nents. Moreover, in order to define the set of agents’ strategies appropriately, we use
an implicit epistemic structure by assuming that each agent can observe only its own
local state (and thus a strategy of agent ¢ must specify the same choices in global states
that share the local state of 7). In consequence, we use multi-modal Kripke models that
come very close to interpreted systems [16].

Finally, an important semantic choice concerns capabilities of agents (perfect vs.
imperfect information, perfect vs. imperfect memory/recall, cf. [30,24]). Since we ex-
plicitly model agents’ beliefs about the current state of the world, it does not make sense
to assume perfect information (otherwise beliefs are redundant as identical with the cur-
rent state of the environment). Moreover, the belief base is assumed to encapsulate all
that the agent knows (or thinks) about the world, which corresponds to the notion of
memoryless agents (i.e., ones that have no extra memory outside their current state).

In the following sections, we present an implementation of the choices outlined
above.

4 Operational Semantics of Multi-Agent Programs

We define the formal semantics of the agent programming language in terms of a tran-
sition system. Each transition corresponds to a single execution step and takes the sys-
tem from one configuration to another. Configurations consist of the beliefs, goals, and
plans of the agent. Which transitions are possible in a configuration depends on the
agent program execution strategy. We have chosen asynchronous semantics of program
execution, which means that transitions of different agents are interleaved rather than
executed synchronously. Still, the scope of interleaving can be defined in at least two
different ways. We can assume that each action (even a complex one, i.e., a plan) is
treated as a whole and executed without interruption from another agent, or we can al-
low for interleaving of composite actions. Likewise, two execution strategies are also
possible for execution of multiple plans by a single agent: one where the selected plan
is executed to completion before choosing another plan, and another which interleaves



the execution of multiple plans, possibly also with adoption of new plans. Out of the
four combinations, we consider the two extremes here: complete execution of plans on
both inter- and intra-agent levels vs. interleaving of plans on both inter- and intra-agent
levels.

4.1 Configurations

A local state of an agent consists of the current beliefs, goals, and plans of the agent. A
global state of program execution collects the current local states of all agents, plus the
current state of the environment.

Definition 1. The configuration of a multi-agent program is defined as (A1, . .., An, X),
where A; is the configuration of an individual agent and x is the state of the shared en-
vironment. The configuration of an individual agent A; is defined as (i, 0,~y, II) where
1 is an agent identifier, o is a set of atoms representing the agent’s beliefs, v is a set of
literals representing the agent’s goals, and II is a set of plan entries representing the
agent’s current active plans.

The initial beliefs and goals of individual agent are specified by their programs. The
agents are assumed to have no initial plans. The initial state of the shared environment is
assumed to be given by the system developer. Executing a multi-agent program modifies
its initial configuration in accordance with the transition rules presented below.

4.2 Executing Actions of Different Agents

General Execution Rule. The following transition rule specifies the transition of multi-
agent programs based on interleaving of the decisions generated by executing individual
agents programs.

| 7
<A1,. --;Ai7~-~»An7X> 1_7>r <A1,...,A;,.. .,An,XI>
The condition of this transition rule indicates that the individual agent program i
generates decision 7 in state A; (changing the state to A}) and the environment realizes

the effect of that decision in its state y (changing the state to x’). The actual interleaving
strategy depends on the way individual actions can be selected, cf. Section 4.3.

Execution of Shared Environment. Let i be an agent, o be a basic action and y be a state
of the environment. We assume that an environment update function Update E(a, x) =
X’ for basic actions is given beforehand. In this paper, we use an update function that
consists in adding and removing atoms from the environment specified by the appropri-
ate pre- and post-conditions:

. neg(epost;(a))) U pos(epost;(a)) if cwa |\ eprec(a
UpdateE(Z’a’X):{;x\ g(eposti(a))) U pos(epost;(a)) otffer)jvise Neprec(a)

where neg(X) = {p| —p € X} and pos(X) = {p | p € X} for each set of literals X,
and |=cy, 1s the entailment relation based on closed-world assumption.



The update function is extended to complex actions (plans) as follows:
UpdateE (i, a;m, x) = Update E(m, update E(a, X))
The following transition rule specifies the effect of agent ¢’s actions in the shared

environment.
UpdateE(i,7,x) = X'

o
T /

X — X

4.3 Execution of Individual Agent Programs

The execution of an individual agent program generates decisions based on the agent’s
beliefs, goals, and planning goal rules. There are various strategies to execute an in-
dividual agent program. For example, when in a configuration with no plan, choose a
planning goal rule non-deterministically, apply it, execute the resulting plan; repeat.

In this paper, we consider two execution strategies. In the first execution strategy,
one PG-rule is applied only if there is no plan to execute, i.e., a PG-rule is applied and
its plan is executed before another PG-rule is applied. The execution of a plan is atomic
in the sense that different plans cannot be generated and executed in the interleaving
mode. In the second strategy, different PG-rules can be applied before plans can be
executed. Moreover, different plans can be executed in the interleaving mode.

Non-interleaving Execution Strategy. The effect of executing a basic action for an agent
program state is that it updates the beliefs and goals. A basic action « can be executed
if its precondition is entailed by the agent’s beliefs, i,e., 0 |[Fcwa ¢. Executing the
action adds the positive literals of its post-condition to the agent’s beliefs and removes
atoms of the negative literals. Let Update B(a,0) = o’ be a belief update function
and UpdateB(«;m,0) = Update B(w, update B(a, o)). This update function can be
defined based on belief pre- and post-condition of the basic action as follows.

[ (o \ neg(bpost())) U pos(bpost(a)) if o |=cwa N bprec(a)
UpdateB(a, 0) = { UpdateB(a,0) = L otherwise

The following transition rule specifies the effect of the execution of plan on the state
of an individual agent program.

7€l UpdateB(m,o)=0"#1L ~' =v\{p €| Ecwa ¢}
(0,7 AT 5 (o' ()

Note that the set of goals is changed as a consequence of the belief update. In fact,
those goals that are derivable from the updated beliefs are considered as achieved and
removed from the set of goals.

The transition rules for belief and goal test actions as well as for composite plans
by sequence and conditional choice and loops can be defined in standard way [14].

In order to generate plans, PG-rules should be applied. Let R be the set of PG-rules
of an agent program. The following transition rule specifies the application of a PG-rule.




kK—fB|mTER KEY 0Fcwal
(0,7, {3) = {o",7 {7})

Note that this transition rule does not allow the application of more than one PG-rule
as it requires that the set of plans should be empty before a PG-rule can be applied.

Interleaving Execution Strategy. In this execution strategy, only atomic actions are ex-
ecuted such that actions of different plans can be interleaved. Note that this execution
strategy makes it possible that different plans of different agents are executed in the
interleaving mode. Let 7 be a plan (possibly empty). The execution strategy is defined
by the following rule:

a;m €Il UpdateB(a,0)=0d" 4L ' =~4\{p €7 |0 Ecwa ¢}
<J,7,H> i!) <U/7A//7{7T}>

In order to generate more plans so that the execution of their actions can be in-
terleaved, we need to allow the application of multiple PG-rules. This is done by the
following transition rule. Let R be the set of PG-rules of an agent program.

I{<—ﬁ|7T€R K ey U):cwaﬁ
(0,7, ) — (o', 1T U {r})

Note that the set of plans is not required to be empty.

5 Strategic Logic for Multi-Agent 2APL Programs

In order to reason about multi-agent programs, we use a variant of alternating-time
temporal logic ATL [3,4]. ATL generalizes the branching time logic CTL [10] by re-
placing path quantifiers E, A with so called cooperation modalities {(A)). Informally,
{(A)y expresses that agents A have a collective strategy to enforce temporal property
~. ATL formulae include temporal operators: “O” (“in the next state”), “0” (“always
from now on”), “4” (“now or sometime in the future”), U (strong “until”), and W
(weak “until”).

Our treatment of the logic is non-standard, though. First, we assume that agents
have imperfect information and imperfect recall, which limits their available strategies
to uniform memoryless strategies. In this sense, our logic can be seen as constructive
strategic logic CSL [21] without epistemic operators. Second, we use asynchronous
models to define the semantics, whereas only synchronous semantics has been used so
far for ATL and its variants (aside from a discussion in [4] on how asynchronous sys-
tems can be “simulated” by synchronous models). Third, we include statements about
agents’ beliefs and goals, but they can refer only to objective properties of the world,
just like in the syntax of 2APL. We call the resulting logic 2ATL for lack of a more
ingenious idea.



5.1 Syntax

Let Agt be the set of all agents, and II the set of atomic propositions occurring in
a multi-agent program. The language of 2ATL is formally defined by the following
grammar:

wo ==p | 7o | o A po,
@ == o | Belipo | Goalipo—p | o A | (A),
vi=@ [y [y AY [ Oy [ By [vU~,

where i € Agt is an agent, A C Agt is a group of agents, and p € II is an atomic
proposition. We also define Gy = T U . Formulae g are propositional formulae and
refer to simple facts about the current state of the system. Formulae  are called state
formulae and refer to (possibly more complex) properties of states. Finally, v are path
formulae that describe temporal patterns of particular execution paths.

Example properties that can be expressed include: ((1,2)<tower (agents 1 and 2
have a joint strategy to build a tower eventually), (1, 2))Oclean (agents 1 and 2 have a
joint strategy to keep the floor always clean), and ((1,2))(Oclean A Otower): agents 1
and 2 have a joint strategy to to build a tower while keeping the floor clean all the time.

We consider two variants of 2ATL (in accordance with the CTL and ATL tradition).
The full language is denoted by 2ATL*, whereas a restricted version in which every
occurrence of a cooperation modality is immediately followed by exactly one temporal
operator is called “vanilla” 2ATL (or simply 2ATL if it does not cause any confusion).
Note that, for 2ATL*, operator O is redundant since it can be defined as Oy = = —y.

5.2 Semantics

We use the asynchronous labeled transition systems constructed in Section 4 as models
of 2ATL. We recall that states of a system correspond to combinations (A1, ..., A,, x)
of agent configurations A; = (i, bels(A;), goals(A;), plans(A;)) of individual agents,
and the state of the shared environment ). Transitions are labeled by ¢ : o where « is an
action and ¢ is the agent that executes the action. We denote the set of 7’s configurations
by St;, the set of environment states by Stg, and the set of all global states of the
system by St C St; x --- x Sty x Stg. Likewise, for a global state ¢ € St, ¢; will
denote the 7’s configuration in ¢, and ¢g the state of the environment in g. The set of all
actions occurring in transition labels is denoted by Act.

In order to present semantic clauses for formulae of the logic, we need to first
define the notions of a strategy and its outcome. A strategy of agent ¢ is a plan that
specifies what 7 is going to do in every configuration, i.e., s; : St; — Act such
that bels(A;) Fcwa bpreci(si(A;)). A collective strategy for a group of agents A =
{a1,...,a,.} C Agt is simply a tuple s4 = (Sq,,-.., Sq,) Of strategies, one per agent
from A.

We define a path as a full® sequence of states interleaved with transitions. For path
A, we will denote the jth state on A by A%'[j] and the jth transition on A by \*“![j].
Function out(q, s 4) returns the set of all paths that may occur when agents A execute
strategy s 4 from state ¢ onward:

5 Le., either infinite or ending in a deadlock state



out(q,s4) = {\ = qolip : @)qi(i1 : @1)g2... | go = ¢ and for each j = 0,1, ...
there is a transition from A%'[j] to A**[j + 1] labeled with \*“*[j] = i : «, and if
i € Athen a = s;(A*'[j];)}.

The semantics of 2ATL* can be now given by the following clauses:

Maq ): plfqu ):cwa p;

]\17 q ): Beligoo iff bels()\St [0]1) |:cwa $os

M, q = Goal;pq iff goals(A**[0];) Ecwa o3

M,q = —piff M, q = ¢;

a1 A iff Mg = @1 and M, q |= o

q | {(A))y iff there is a collective strategy s for agents A such that for each
path A € out(sa,q), we have M, A = ;

N @iff M) = s

N = oy fF M 3
A
A

F 1 Ay iff M, A =1 and M, A = 73

E O~iff M, \[1,00] = ~; and
A |E v1U 9 iff there is k € Ny such that M, Ak, o] = v2 and M, \[j, 00] E m
forall0 < j < k.

M
M
M
M
M
M
M

Formula ¢ is valid in program P if it holds in every state g of the model of P. The
formula is valid for 2APL if it is valid in every 2APL program. Formula ¢ is satisfiable
if there is a program and a state ¢ in its model so that ¢ holds in q.

We observe that the universal path quantifier A of CTL can be expressed with ().
Note also that ((A))y does not mean that the agents in A know how to play to enforce
~ (they cannot, since each a € A does not even have to be aware of existence of the
other agents). It only means that A have an executable collective strategy so that if they
execute it then + will be the case.

5.3 Verification

Let P be a multi-agent program, M the model of the program, q a state in M, and ¢
a state formula of 2ATL. The model checking problem asks whether M, ¢ = ¢. The
following theorems are straightforward extensions of the results from [30, 23, 22]:

Theorem 1. Model checking “vanilla” 2APL is AY -complete with respect to the num-
ber of transitions in model M and the length of formula .

Theorem 2. Model checking 2APL* is PSPACE-complete with respect to the number
of transitions in M and the length of .

Theorem 3. Model checking 2APL* and “vanilla” 2ATL is PSPACE-complete with
respect to the size of program P and the length of .

That is, the complexity of verification with 2ATL is rather prohibitive. This, how-
ever, is not due to our choice of logic: the same complexity results have been obtained
for model checking “bare” temporal logics LTL, CTL, and CTL* with respect to any
kind of concurrent programs (cf. [29]). Several techniques can be applied to reduce the
complexity of models and facilitate model checking — most notably, abstraction [11]
and partial order reduction [12]. None of the techniques have been applied to strategic
logics yet; we plan to study this issue in our future work.



6 Conclusions

In this paper, we present an adaptation of the strategic logic ATL to reasoning about
multi-agent 2APL programs. We carefully outline possible choices regarding the model
of execution, specification language, and semantics of formulae. Then, we use a vari-
ant of alternating-time temporal logic with imperfect information and imperfect recall,
and interpret its formulae over asynchronous labeled transition systems that arise from
the operational semantics of 2APL. Initial complexity results for the model checking
problem suggest that verification is feasible only for relatively small programs.

This is a preliminary study, and the solutions we use in this paper are not necessarily
final. Several other modeling and semantic choices are worth exploring; in particular,
modeling and reasoning about fair executions of programs should be studied, as well
as execution strategies that impose fairness. We also plan to investigate techniques that
can help to reduce the practical complexity of verification, especially abstraction and
partial order reduction.
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