

Preventing Coercion in E-Voting: Be Open and Commit

Wojtek Jamroga, Polish Academy of Sciences (joint work with Masoud Tabatabaei and Peter Y. A. Ryan)

> LAMAS Seminar on INteraction Gdansk 24th of September 2015

Tabatabaei, Jamroga, and Ryan · Preventing Coercion in E-Voting

Gdansk, 24/09/2015 1/26

<u>Outline</u>

1 Introduction

- 2 Interaction as a Game
- 3 Game Model of Coercion Resistance
- 4 Conclusions

Tabatabaei, Jamroga, and Ryan · Preventing Coercion in E-Voting

- Desirable properties of voting schemes: privacy, anonymity, receipt-freeness, coercion resistance
- In this work, we focus on coercion resistance

- Desirable properties of voting schemes: privacy, anonymity, receipt-freeness, coercion resistance
- In this work, we focus on coercion resistance
- Standard definition:

Coercion resistance: The voter cannot cooperate with a coercer to prove to him that she voted in a certain way.

- We look at a more fundamental property
- CR \approx voter's ability to... well, resist coercion $\boldsymbol{\mathcal{C}}$

- We look at a more fundamental property
- **CR** \approx voter's ability to... well, resist coercion \mathcal{C}

Coercion resistance: The system should provide good prerequisites for the voter to cast her vote according to her free intent, despite potential efforts of the coercer.

We will model coercion as a game where different participants have possibly conflicting interests

- We will model coercion as a game where different participants have possibly conflicting interests
- In general: very complex
- An exhaustive model should include the incentives of: multiple voters, multiple coercers, possibly also social groups, business conglomerates, government agencies, etc.
- ...Also, we would have to define the interaction between incentives and behaviors of different groups (competition, collusion, etc.)

- In this work, we settle for something much simpler
- We see coercion resistance as a game between:
 - 1 a single voting authority (approximating the interests of the society as a whole),
 - 2 and a single coercer (approximating the interests of potential coercers and their groups)

- In this work, we settle for something much simpler
- We see coercion resistance as a game between:
 - 1 a single voting authority (approximating the interests of the society as a whole),
 - 2 and a single coercer (approximating the interests of potential coercers and their groups)

 \sim We look at 2-player games with largely conflicting interests

Note:

We do **not** propose a new coercion resistant voting scheme, but a model of interaction that involves coercion!

Outline

1 Introduction

- 2 Interaction as a Game
- 3 Game Model of Coercion Resistance
- 4 Conclusions

Tabatabaei, Jamroga, and Ryan · Preventing Coercion in E-Voting

Game Models: Strategic Games

Definition 1 (Strategic game)

A strategic game *G* is a tuple $(N, \{\Sigma_i | i \in N\}, o, W)$ that consists of a nonempty finite set of players *N*, a nonempty set of strategies Σ_i for each player $i \in N$, a nonempty set of outcomes *W*, an outcome function $o : \prod_{i \in N} \Sigma_i \to W$ which associates an outcome with every strategy profile, and a utility function $o : N \times W \to \mathbb{R}$ which assigns agent's payoffs (or: utility values) to each possible outcome.

Example: "Twisted" Battle of Sexes

$Bob \backslash Sue$	Bar	Th
Bar	2, 1	0, 0
Th	3,0	1,2

Tabatabaei, Jamroga, and Ryan · Preventing Coercion in E-Voting

Gdansk, 24/09/2015 10/26

Solution Concepts

- Solution concepts define which collective behaviors are rational
- Formally, a solution concept is modelled as a subset of strategy profiles (= cells in the payoff table)

Solution Concepts

- Solution concepts define which collective behaviors are rational
- Formally, a solution concept is modelled as a subset of strategy profiles (= cells in the payoff table)
- We will use two solution concepts: Nash equilibrium and Stackelberg equilibrium

Tabatabaei, Jamroga, and Ryan · Preventing Coercion in E-Voting

Nash Equilibrium

We look for strategy profiles which are stable under unilateral deviations

$Bob \backslash Sue$	Bar	Th
Bar	2, 1	0,0
Th	3,0	1,2

Nash Equilibrium

We look for strategy profiles which are stable under unilateral deviations

$Bob \backslash Sue$	Bar	Th
Bar	2,1	0,0
Th	3,0	1,2

$Bob \backslash Sue$	Bar	Th
Bar	2,1	0, 0
Th	3,0	1,2

$Bob \backslash Sue$	Bar	Th
Bar	2 , 1	0, 0
Th	3,0	1,2

$Bob \backslash Sue$	Bar	Th
Bar	2,1	0, 0
\mathbf{Th}	3,0	1 , 2

$Bob \backslash Sue$	Bar	Th
Bar	2 , 1	0, 0
Th	3,0	1 , 2

$Bob \backslash Sue$	Bar	Th
Bar	2 , 1	0, 0
Th	3,0	1,2

$Bob \backslash Sue$	Bar	Th
Bar	2 , 1	0,0
Th	3,0	1,2

Nash vs. Stackelberg

Nash equilibrium captures the outcome of mutual long-run adaptation of players to each others' strategies

Nash vs. Stackelberg

- Nash equilibrium captures the outcome of mutual long-run adaptation of players to each others' strategies
- Stackelberg equilibrium captures the outcome in games where one player (the *leader*) exposes her strategy first

Nash vs. Stackelberg

- Nash equilibrium captures the outcome of mutual long-run adaptation of players to each others' strategies
- Stackelberg equilibrium captures the outcome in games where one player (the *leader*) exposes her strategy first
- Applicability of Stackelberg: the leader must be able to
 either complete her strategy before the other players start,
 or irrevocably commit to her strategy in advance.

$Bob \backslash Sue$	H	T
H	1, 0	0, 1
T	0,1	1, 0

$Bob \backslash Sue$	H	T
H	1, 0	0, 1
T	0, 1	1, 0

No pure Nash equilibrium

Tabatabaei, Jamroga, and Ryan · Preventing Coercion in E-Voting

$Bob \backslash Sue$	H	T
H	1, 0	0, 1
T	0, 1	1, 0

- No pure Nash equilibrium
- Unique mixed Nash equilibrium (everybody plays at random, with equal probabilities), promising each player the expected payoff of 0.5

$Bob \backslash Sue$	H	T
H	1, 0	0 , 1
T	0 , 1	1, 0

- No pure Nash equilibrium
- Unique mixed Nash equilibrium (everybody plays at random, with equal probabilities), promising each player the expected payoff of 0.5
- Two Stackelberg equilibria, each promising Bob the payoff of 0

Outline

1 Introduction

2 Interaction as a Game

3 Game Model of Coercion Resistance

4 Conclusions

Tabatabaei, Jamroga, and Ryan · Preventing Coercion in E-Voting

Main idea:

Coercion resistance comes at a cost

Main idea:

- Coercion resistance comes at a cost
- The society should balance the cost of anti-coercion measures vs. damage from successful coercion attacks

Main idea:

- Coercion resistance comes at a cost
- The society should balance the cost of anti-coercion measures vs. damage from successful coercion attacks
- Coercer: costs vs. benefits of coercion

Main idea:

- Coercion resistance comes at a cost
- The society should balance the cost of anti-coercion measures vs. damage from successful coercion attacks
- Coercer: costs vs. benefits of coercion

Question:

Should society invest in anti-coercion measures?

Coercion as a Game

Main idea:

- Coercion resistance comes at a cost
- The society should balance the cost of anti-coercion measures vs. damage from successful coercion attacks
- Coercer: costs vs. benefits of coercion

Question:

Should society invest in anti-coercion measures? If so, how much?

Tabatabaei, Jamroga, and Ryan · Preventing Coercion in E-Voting

Gdansk, 24/09/2015 17/26

Coercion as a Game

Main idea:

- Coercion resistance comes at a cost
- The society should balance the cost of anti-coercion measures vs. damage from successful coercion attacks
- Coercer: costs vs. benefits of coercion

Question:

Should society invest in anti-coercion measures? If so, how much? ...And, in what way?

2 players:

■ A: the honest election authority

2 players:

- A: the honest election authority
- C: the coercer

2 players:

- *A*: the honest election authority
- C: the coercer

Strategies:

• A: choose one of anti-coercion measures a_0, \ldots, a_m

2 players:

- *A*: the honest election authority
- C: the coercer

Strategies:

- A: choose one of anti-coercion measures a_0, \ldots, a_m
- C: choose how many voters to coerce c_0, \ldots, c_n

Utility of the Society

$$u_A(a_i, c_i) = v_A(c_i) - imp(a_i) - \delta \cdot c_i$$
, where:

■ $v_A(c_i)$: "quality" of the election outcome (v_A^* if undisturbed, $v_A^* - \epsilon_A$ if disturbed)

Tabatabaei, Jamroga, and Ryan · Preventing Coercion in E-Voting

Gdansk, 24/09/2015 19/26

Utility of the Society

$$u_A(a_i, c_i) = v_A(c_i) - imp(a_i) - \delta \cdot c_i$$
, where:

- $v_A(c_i)$: "quality" of the election outcome (v_A^* if undisturbed, $v_A^* \epsilon_A$ if disturbed)
- $imp(a_i)$: cost of implementing the anti-coercion measure

Utility of the Society

$$u_A(a_i, c_i) = v_A(c_i) - imp(a_i) - \delta \cdot c_i$$
, where:

- $v_A(c_i)$: "quality" of the election outcome (v_A^* if undisturbed, $v_A^* \epsilon_A$ if disturbed)
- $imp(a_i)$: cost of implementing the anti-coercion measure
- δ : corruption damage per coerced voter

Utility of the Coercer

$$u_C(a_i, c_i) = v_C(c_i) - \beta(a_i) \cdot c_i$$
, where:

■ $v_C(c_i)$: "quality" of the election outcome (v_C^* if disturbed, $v_C^* - \epsilon_C$ if undisturbed)

Tabatabaei, Jamroga, and Ryan · Preventing Coercion in E-Voting

Gdansk, 24/09/2015 20/26

Utility of the Coercer

$$u_C(a_i, c_i) = v_C(c_i) - \beta(a_i) \cdot c_i$$
, where:

- $v_C(c_i)$: "quality" of the election outcome (v_C^* if disturbed, $v_C^* \epsilon_C$ if undisturbed)
- $\beta(a_i)$: Cost of coercion per voter (bribery, disclosure of votes, etc.)

Coercion Game

Note: from the coercer's point of view, it suffices to consider only the actions of no coercion (c_0) and bribing the minimal amount of voters that would swing the result of the election (c^*)

Tabatabaei, Jamroga, and Ryan · Preventing Coercion in E-Voting

Gdansk, 24/09/2015 21/26

For

$$m = 1, v_A^* = 5, \epsilon_A = 3, imp(a_0) = 0, imp(a_1) = 1, \delta = 1$$
$$c^* = 1, v_C^* = 5, \epsilon_C = 2, \beta = 3$$

we get

$$\begin{array}{c|ccc} A \backslash C & c_0 & c^* \\ \hline a_0 & 5, 3 & 1, 4 \\ a_m & 4, 3 & 0, 2 \\ \end{array}$$

For

$$m = 1, v_A^* = 5, \epsilon_A = 3, imp(a_0) = 0, imp(a_1) = 1, \delta = 1$$
$$c^* = 1, v_C^* = 5, \epsilon_C = 2, \beta = 3$$

we get

For

$$m = 1, v_A^* = 5, \epsilon_A = 3, imp(a_0) = 0, imp(a_1) = 1, \delta = 1$$
$$c^* = 1, v_C^* = 5, \epsilon_C = 2, \beta = 3$$

we get

For

$$m = 1, v_A^* = 5, \epsilon_A = 3, imp(a_0) = 0, imp(a_1) = 1, \delta = 1$$
$$c^* = 1, v_C^* = 5, \epsilon_C = 2, \beta = 3$$

we get

Playing Stackelberg is much more profitable than Nash!

Tabatabaei, Jamroga, and Ryan · Preventing Coercion in E-Voting

Gdansk, 24/09/2015 22/26

Coercion Game: General Result

Theorem 2

Under some mild assumptions, we get the following:

- **1** The coercion game has a unique Nash equilibrium in (a_0, c^*) ,
- **2** The Stackelberg equilibrium is (a_m, c_0) , and
- 3 Stackelberg equilibrium is preferred to Nash equilibrium, i.e., $u_A(a_0, c^*) < u_A(a_m, c_0)$.

Coercion Game: General Result

Theorem 2

Under some mild assumptions, we get the following:

- **1** The coercion game has a unique Nash equilibrium in (a_0, c^*) ,
- **2** The Stackelberg equilibrium is (a_m, c_0) , and
- **3** Stackelberg equilibrium is preferred to Nash equilibrium, i.e., $u_A(a_0, c^*) < u_A(a_m, c_0)$.

Note: the society enforces the coercer not to coerce (c_0) by publicly committing to high-security policy (a_m)

Tabatabaei, Jamroga, and Ryan · Preventing Coercion in E-Voting

Gdansk, 24/09/2015 23/26

<u>Outline</u>

1 Introduction

- 2 Interaction as a Game
- 3 Game Model of Coercion Resistance
- 4 Conclusions

The work is very preliminary, but...

- The work is very preliminary, but...
- ...our analysis suggests that the society should not adapt to what it expects from the bad guys

- The work is very preliminary, but...
- ...our analysis suggests that the society should not adapt to what it expects from the bad guys
- Committing publicly to an anti-coercion policy prevents coercing attempts

The work is very preliminary, but...

- ...our analysis suggests that the society should not adapt to what it expects from the bad guys
- Committing publicly to an anti-coercion policy prevents coercing attempts

No coercion resistance through obscurity!

Thank you for your attention

Tabatabaei, Jamroga, and Ryan · Preventing Coercion in E-Voting

Gdansk, 24/09/2015 26/26