Game-Theoretic Network Centrality

Tomasz P. Michalak Department of Computer Science, University of Oxford Institute of Informatics, University of Warsaw

Plan of the Talk

- **1. Introduction to the Shapley value & its computation**
- **2. The Shapley value as a game-theoretic network centrality measure**
- **3. Applications and computations**

Shapley value & its computational aspects

Characteristic Function Games

Given 3 agents, the **set of agents** is:

$$
N = \{a_1, a_2, a_3\}
$$

STABILITY

Characteristic Function Games

Given 3 agents, the **set of agents** is:

$$
N = \{a_1, a_2, a_3\}
$$

The possible **coalitions** are:

Characteristic Function Games

Given 3 agents, the **set of agents** is:

$$
N = \{a_1, a_2, a_3\}
$$

The possible **coalitions** are:

A **solution** of a coalitional game:

FAIRNESS SHAPLEY VALUE

24 <? ? ?> <8 8 8> **A unique division of payoff That meets fairness criteria (axioms)** $a_1 a_2 a_3$

Fairness criteria:

- \Box Symmetry
- **Q** Null-player
- \Box Additivity
- **Efficiency**

Shapley Value – Definition

Shapley Value – Definition

Shapley Value – Befinition

Shapley Value – Formulas

all π

Marginal contribution of to coalition made of agents in the left part of the permutation

n!

The part of the permutation before agent (left part of permutation)

 $SV_i(v) = \frac{1}{n!} \sum_{\text{all } n} [v(C_{\pi}(i) \cup \{a_i\}) - v(C_{\pi}(i))]$

Shapley Value – Formulas

n!
$$
SV_i(v) = \frac{1}{n!} \sum_{\text{all } \pi} \left[v(C_{\pi}(i) \cup \{a_i\}) - v(C_{\pi}(i)) \right]
$$

$$
2^{n} \tSV_{i}(v) = \sum_{C \subseteq N \setminus \{a_{i}\}} \frac{|C|! (n - |C| - 1)!}{n!} [v(C \cup \{a_{i}\}) - v(C)]
$$

→ Computational Challenge<

Circumventing intractability of the Characteristic Function

New, more concise representations of coalitional games:

Circumventing intractability of the Characteristic Function

New, more concise representations of coalitional games:

Note: There are, of course, other representations – for specific types of games See more G. Chalkiadakis, E. Elkind, and M. Wooldrdidge. *Computational Aspects of Cooperative Game Theory***. Morgan & Claypool Publishers, 2011**

Induced Subgraph Representation Deng and Papadimitriu (1994)

agethts variale ordes conditioneds the price dutition and the value of the operations between hy other socialition is

Induced Subgraph Representation Deng and Papadimitriu (1994)

Let us consider the following intuition for the Shapley value formula under this representation

Marginal Contribution Nets Ieong and Shoham (2005)

Marginal Contribution Nets Ieong and Shoham (2005)

Logical Pattern \rightarrow Value

 Such spectacular computational properties were initially shown for very simple rules, where only ˄ and ¬ are allowed.

Such representation is called simple MC-Nets.

But what about more complex rules?

 Elkind, Wooldridge, Goldberg and Goldberg (2009) proposed MC-Nets with arbitrary logical connectives but which are read-once. Still, polynomial computation of the Shapley value.

Algebraic Decision Diagrams Aadithya Michalak Jennings (2011)

ADDs are, in essence, highly optimized representations for ordered decision In general, a decision tree is of size exponential in the number of decision trees on boolean decision variables. variables.

However...

Algebraic Decision Diagrams

Algebraic Decision Diagrams

Not only the Shapley value…

the Shapley value:

$$
2^{n} \tSV_{i}(v) = \sum_{C \subseteq N \setminus \{a_{i}\}} \frac{|C|! (n - |C| - 1)!}{n!} [v(C \cup \{a_{i}\}) - v(C)]
$$

the Banzhaf index

$$
2^{n} \qquad SV_i(v) = \sum_{\substack{C \subseteq N \setminus \{a_i\}}} \frac{1}{2^n} \left[v(C \cup \{a_i\}) - v(C) \right]
$$

Semivalues = {Shapley, Banzhaf, …}

$$
2^{n} \tSV_{i}(v) = \sum_{\substack{C \subseteq N \setminus \{a_{i}\} \\ \text{the Nowak & Radzik value:}} \frac{\beta(k)}{2^{n}} [v(C \cup \{a_{i}\}) - v(C)]
$$
\n
$$
NRV_{i}(v) = \frac{1}{n!} \sum_{\text{all } \pi} \left[v(\overrightarrow{C_{\pi}}(i) \cup \{a_{i}\}) - v(\overrightarrow{C_{\pi}}(i)) \right]
$$

Myerson's game

What if the cooperation is restricted by a graph?

If a coalition C is connected then players in C **can communicate and create an arbitrary value added**

If a coalition C **is disconnected then players in** C **cannot communicate; hence, creating value added is restricted to connected components**

 $v({1,3}) + v({7,8})$

 $v/G(C) = \begin{cases} v(C) & \text{if } C \text{ is connected} \\ \sum_{K \in C} v(K) & \text{otherwise} \end{cases}$

Myerson's graph-restricted game

The Myerson value

There exist the unique value that satisfies:

 Axiom 1: *fairness* **- any two agents connexted with an edge profit from this connection equally Axiom 2:** *efficiency* **- the value of any connected component is distributed among the agents within this components**

MV_i(*v*, *G*) = *SV_i*(*v*/*G*)
\nthe Myerson value
\n
$$
v/G(C) = \begin{cases} v(C) & \text{if } C \text{ is connected} \\ \sum_{K \in C} v(K) & \text{otherwise} \end{cases}
$$

Game-theoretic Network Centrality

Informal definition: methods to determine the role played by a node in the network.

They differ depending on the application. Three, mostly used are:

Informal definition: methods to determine the role played by a node in the network.

They differ depending on the application. Three, mostly used are:

1. Degree centrality – how many adjacent edges node v has 4

Informal definition: methods to determine the role played by a node in the network.

They differ depending on the application. Three, mostly used are:

- **1. Degree centrality** how many adjacent edges node v has
- 2. Closeness centrality how many edges, on overage, one needs to traverse to reach from other nodes in the network $\frac{1}{1}$ $\frac{1}{1} + \frac{1}{3}$ 3 **+ …**

Informal definition: methods to determine the role played by a node in the network.

They differ depending on the application. Three, mostly used are:

- **1. Degree centrality** how many adjacent edges node v has
- **2. Closeness centrality** how many edges, on overage, one needs to traverse to reach \boldsymbol{v} from other nodes in the network
- **3. Betweenness centrality** what proportion of the shortest paths between any two nodes traverse through node ν

A Problem with Standard Measures

The common feature of all standard centrality measures is that they assess the importance of a node = the role that a node plays by itself

However, they may exist synergies if functioning of the nodes is considered in groups

Epidemiology: who to vaccinate in the society in case of epidemics?

The common feature of all standard centrality measures is that they assess the importance of a node = the role that a node plays by itself

However, they may exist synergies if functioning of the nodes is considered in groups

Epidemiology: who to vaccinate in the society in case of epidemics?

The common feature of all standard centrality measures is that they assess the importance of a node = the role that a node plays by itself

However, they may exist synergies if functioning of the nodes is considered in groups

Epidemiology: who to vaccinate in the society in case of epidemics?

If we ask: who can we individually vaccinate to stop the epidemics, we may fail? Vaccinataing v_6 or v_7 or v_8 individually **cannot** stop the **epidemics!**

The common feature of all standard centrality measures is that they assess the importance of a node = the role that a node plays by itself

However, they may exist synergies if functioning of the nodes is considered in groups

Epidemiology: who to vaccinate in the society in case of epidemics?

But vaccinating v_6 , v_7 and v_8 together can achieve our goal!

Thus, in terms of spread of epidemics these three nodes individually has no value but together they do! → Group Centrality

Introduced by Everett and Borgatti (1999)

Intuitively, these centralities measure the role player in the network by a given group of nodes (group degree, closeness, betweenness)

It is a nice solution, but it has disadvantages:

- How can we know on which group of nodes we should focus?

- Even if we study all groups of nodes, how can we derive a ranking of individual nodes based on this information?

Game-theoretic centrality: bird's-eye view

Seminal paper: Grofman & Owen (1982), A game-theoretic approach to measuring degree of centrality in social networks. Social Networks, 4, 213–224. Banzhaf index Somewhat forgotten…

Key advantages of Game-Theoretic Centrality

- **1. Game-theoretic centrality takes into account group performance of nodes in a structured way (using extensively studied solution concepts from game theory)**
- **2. The approach is very flexible and can be adapted to particular application by choosing a game (characteristic function, generalized char. fun., games with externalities, etc.)**
	- **by choosing a value function**
	- **by choosing a solution concept (SV, BI, Semivalues, MV, etc.)**
- **3. Potential drawback computation?**

Literature Overview

Top k-node Problem

Introduced by Domingos and Richardson (2001), ACM SIGKDD.

How to find a set of nodes with an a-priori given cardinality k that can maximize the infor-mation cascade in a viral marketing campaign

The authors proposed some predictive models to show that selecting the right set of users for a marketing campaign can make a big difference.

In an influential paper, Kempe, Kleinberg and Tardos (2003), ACM SIGKDD, showed that the problem is NP-Hard and they proposed greedy approximation algorithm (which is now a standard approach in the literature).

Suri and Narahari (2008,2010) proposed to use the Shapley-value based centrality to more efficiently approximate the k-node problem

We will call the game proposed by them: Game 1

Let *C* **be an arbitrary coalition of nodes in the graph The nodes in the coalition do not have to be connected**

Let *C* **be an arbitrary coalition of nodes in the graph The nodes in the coalition do not have to be connected**

$$
\mathbf{C}=\{\boldsymbol{v}_3,\boldsymbol{v}_5,\boldsymbol{v}_8\}
$$

is a valid coalition

Let *C* **be an arbitrary coalition of nodes in the graph The nodes in the coalition do not have to be connected**

Definition of the characteristic function:

Let *C* **be an arbitrary coalition of nodes in the graph The nodes in the coalition do not have to be connected**

Definition of the characteristic function:

 $C = \{v_3, v_8\}$

Let *C* **be an arbitrary coalition of nodes in the graph The nodes in the coalition do not have to be connected**

Definition of the characteristic function:

$$
\mathcal{C}=\{\boldsymbol{v}_3,\boldsymbol{v}_8\}
$$

Let *C* **be an arbitrary coalition of nodes in the graph The nodes in the coalition do not have to be connected**

Definition of the characteristic function:

$$
v(C) = \begin{cases} 0 & \text{if } C = \emptyset \\ fringe(C) & \text{otherwise} \end{cases}
$$

Number of nodes in C
number of all their neighbours

 $C = \{v_3, v_8\}$

 $v(C) = |\{v_3, v_8\}| +$
+|N({v₃, v₈})|

Let *C* **be an arbitrary coalition of nodes in the graph The nodes in the coalition do not have to be connected**

Definition of the characteristic function:

$$
v(C) = \begin{cases} 0 & \text{if } C = \emptyset \\ fringe(C) & \text{otherwise} \end{cases}
$$

Number of nodes in C
number of all their neighbours

 $C = \{v_3, v_8\}$

 $v(C) = |\{v_3, v_8\}| +$
+|N({v₃, v₈})|

How to compute the Shapley value in our game?

Suri and Narahari (2008, 2010) proposed to use Monte Carlo technique.

How does it perform?

Data for Monte Carlo simulations:

- **Western States Power Grid**
- **4940 nodes**
- **6954 edges**

Time (ms)

Can we do any better than the Monte Carlo sampling?

Game 1 is the first game out of 5 considered in Michalak et al. (2013), JAIR (Earlier version Aadithya et al. (2010), WINE)

This games are all about the influence in the network

Before we proceed let us compare computational challenge to representations of coalitional games

Computation of SV-based centrality vs. concise representations

Can we do any better than the Monte Carlo sampling?

The key <u>question</u> to ask is:

What is the necessary and sufficient condition

for node v_5 to "marginally contribute" node
 $v_i \in N(v_5)$ to $frinae({y_3, y_8})$ "? **What is the necessary and sufficient condition** What is the necessary and sufficient conditic
for node v_5 to "marginally contribute" node $\mathbf{y}_j \in N(v_5)$ to $fringe(\lbrace v_3, v_8 \rbrace)$ "?

Clearly, this happens if and only if neither v_i nor **any of its neighbours are present in** *C***.**

Thus, v_5 will contribute v_2 and v_4 , if he joins $\{v_3, v_8\}$

$$
C=\{\nu_3,\nu_8\}
$$

The key <u>question</u> to ask is:

What is the necessary and sufficient condition

for node v_5 to "marginally contribute" node
 $v_1 \in N(v_5)$ to $fringe(\lbrace v_3, v_8 \rbrace)$ "? **What is the necessary and sufficient condition What is the necessary and sufficient condition** for node v_5 to "marginally contribute" node $\mathbf{y} \in N(v_5)$ to $fringe(\lbrace v_3, v_8 \rbrace)$ "?

Clearly, this happens if and only if neither v_i **nor any of its neighbours are present in** *C***.**

Thus, v_5 will contribute v_2 and v_4 , if he joins $\{v_3,v_8\}$ But v_5 does not contribute v_6

> Let us now find a **permutation** in which v_5 **contributes to fringe of a coalition with**

Let us consider the following **permutation:**

Is this one of the permutations we are looking for?

i.e. where v_5 contributes to fringe of *C* (here $C = \{v_3, v_8\}$)

with v_2 **Is this one of the permutations we are looking for? i.e.** where v_5 contributes to fringe of C (here $C = \{v_3, v_8\}$) **with** v_2

YES

Because and all its neighbours are in the permutation after (thus, they are not members of C)

$$
\mathbf{\mathbf{\mathbf{\mathcal{C}}}=\{\mathbf{\mathbf{\mathcal{v}}_3},\mathbf{\mathbf{\mathcal{v}}_8}\}\mathbf{\mathbf{\mathcal{V}}_8}\mathbf{}
$$

Let us now compute the number of permutations in which contributes to any *C* **with i.e. such permutations** where v_2 and all its neighbours are after v_5

AIM: number of permutations where v_2 and all its $\qquad \qquad$ 3 **neighbours are after**

AIM: number of permutations where v_2 and all its (3) (6) (8) **neighbours are after**

We have 8 agents in any random permutation:

For agents v_5 , v_2 , v_1 , and v_4 we choose randomly 4 positions in the permutation \rightarrow this can be done in $\begin{pmatrix} 0 \\ 4 \end{pmatrix}$ ways

AIM: number of permutations where v_2 and all its (3) (6) (8) **neighbours are after**

We have 8 agents in any random permutation:

For agents v_5 , v_2 , v_1 , and v_4 we choose randomly 4 positions in the permutation \rightarrow this can be done in $\begin{pmatrix} 0 \\ 4 \end{pmatrix}$ ways

Node v_5 is places first in the selection

Then we place v_2 and all its neighbours randomly after v_5 $→$ **this can be done in 3! ways**

The remaining players can be places in 4! ways

AIM: number of permutations where v_2 and all its (3) (6) (8) **neighbours are after**

We have 8 agents in any random permutation:

$$
\left(\begin{array}{cc} - & - & - \\ - & - \\ - & - \end{array} \right) \left(\begin{array}{cc} - & - & - \\ - & - \\ - & - \end{array} \right) \left(\begin{array}{cc} - & - & - \\ - & - \\ - & - \end{array} \right) \left(\begin{array}{cc} - & - & - \\ - & - \end{array} \right) \left(\begin{array}{cc} - & - & - \\ - & - \end{array} \right)
$$

For agents v_5 , v_2 , v_1 , and v_4 we choose randomly 4 positions in the permutation \rightarrow this can be done in $\binom{8}{4}$ ways

Node v_5 is places first in the selection

Then we place v_2 and all its neighbours randomly after v_5 $→$ **this can be done in 3! ways The remaining players can be places in 4! ways**

General formula:

 $\left(\begin{array}{c} \mathbf{r} \ \mathbf{r} \end{array} \right)$ - for \mathbf{v}_j and all its neighbours we choose **random places among**

 $(\textbf{de} \textbf{g}(v_i))$! – we place v_i at the first position and v_i with his **neighbours randomly later on**

 $(n - (1 + \text{deg}(v_i)))!$ – we arrange the remaining agents at random

Overall, the number of permutations, where v_i contributes to any C with v_j , is:

 $\boldsymbol{n}!$ $\overline{1 + \deg(v_i)}$

Thus, the probability that one of such permutations is randomly chosen is:

$$
\frac{1}{1 + \deg(v_j)} = E(B_{v_i, v_j})
$$
\nBernoulli random variable that v_i marginally contributes v_j

1 5 7

3 6 8

2 4

Since the Shapley value is the expected marginal contribution of v_i , we have:

$$
SV_i(\text{Game 1}) = \sum_{v_j \in \{v_i\} \cup N(v_i)} E(B_{v_i, v_j})
$$

$$
SV_i(\text{Game 1}) = \sum_{v_j \in \{v_i\} \cup N(v_i)} \frac{1}{1 + \text{deg}(v_j)}
$$

Running time: $O(|V| + |E|)$

Since the Shapley value is the expected marginal contribution of v_i , we have:

$$
SV_i(\text{Game 1}) = \sum_{v_j \in \{v_i\} \cup N(v_i)} E(B_{v_i, v_j})
$$

$$
SV_i(\text{Game 1}) = \sum_{v_j \in \{v_i\} \cup N(v_i)} \frac{1}{1 + \text{deg}(v_j)}
$$

- **It is possible to derive some intuition from the above formula.**
- **If a node has a high degree the number of terms in** $\sum(.)$ **above is also high.**
- **But the terms themselves will be inversely related to the degree of neighboring nodes.**
- **This gives the intuition that a node will have high centrality not only when its degree is high, but also whenever its degree tends to be higher in comparison to the degree of its neighboring nodes.**
- **In other words, power comes from being connected to those who are powerless, a fact that is well-recognized by the centrality literature (e.g., Bonacich, 1987).**