Multiwinner Elections: Theory and Experiments

Piotr Faliszewski
AGH University
Kraków, Poland

Multiwinner Elections?

How to choose a parliament?

Single-winner districts

How to choose a parliament?

25% support sufficient to form a majority government

How to choose a parliament?

Single-winner districts

Party lists

|Our focus: $\overline{\mathrm{A}}$ single $\overline{7}$

Agenda

1. Introduction
2. Multiwinner elections

- Election model
- Basic rules and how they work

3. Committee scoring rules

- Analogues of single-winner scoring rules
- Important subclasses of CSRs
- Complexity results
- Example of an axiomatic approach

4. Conclusions

Election Model

- Election E = (C, V)
- C - set of candidates
- V - set of voters
- Parameter k
- k - the committee size
- ... and a voting rule...

$$
v_{6}: \ggg \gg \text { 最 }
$$

$$
\begin{aligned}
& \mathrm{V}=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{6}\right)
\end{aligned}
$$

Main Families of Multiwinner Rules

Election Model

- Election $\mathrm{E}=(\mathrm{C}, \mathrm{V})$
- C - set of candidates
- V - set of voters
- Parameter k
- k - the committee size
- ... and a voting rule...

$$
v_{6}: \hat{M}, \hat{2}, \hat{a}
$$

$$
\begin{aligned}
& \mathrm{V}=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{6}\right)
\end{aligned}
$$

Election Model

- Election E = (C, V)
- C - set of candidates
- V - set of voters
- Parameter k
- k - the committee size
- ... and a voting rule...

Bloc

$$
\begin{aligned}
& \mathrm{V}=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{6}\right)
\end{aligned}
$$

"

Election Model

- Election E = (C, V)
- C - set of candidates
- V - set of voters
- Parameter k
- k - the committee size
- ... and a voting rule...

k-Borda

$$
\mathrm{v}_{4}: 1, \boldsymbol{y}, \mathrm{P}, \mathrm{M}, \mathrm{M}
$$

$$
\mathrm{v}_{6}:, 2, \mathrm{M}, \mathrm{M}, \mathrm{Q}
$$

$$
\begin{aligned}
& \mathrm{V}=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{6}\right)
\end{aligned}
$$

Proportional Representation Rule of Chamberlin-Courant

Choosing a parliament is a resource allocation problems

Candidates $=$ Resources

Voting rule assigns candidates to the voters

Proportional Representation Rule of Chamberlin-Courant

Choosing a parliament is a resource allocation problems

Chamberlin-Courant Pick k candidates and assign them to the voters to maximze the score that the voters give to their representatives

How Do These Rules Work: k-Borda

How Do These Rules Work: Bloc

How Do These Rules Work: Chamberlin-Courant

Single-Winner Scoring Rules

A single-winner scoring function:

$$
f(i)=\text { score for position } i
$$

The candidate with the highest sum of scores is the winner

Examples:

Borda score

$$
B(i)=m-i
$$

t-Approval score

$$
A_{t}(i)=1 \text { if } i \leq t \text { and } 0 \text { otherwise }
$$

Committee Scoring Rules

Consider a preference order:

winning committee
Position of the winning committee $=(1,3,4)$
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=$ the score of the committee
Assuming $\mathrm{i}_{1}<\mathrm{i}_{2}<\ldots<\mathrm{i}_{\mathrm{k}}$

Committee Scoring Rules

Committee scoring function:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=$ score for pos. ($\left.i_{1}, i_{2}, \ldots, i_{k}\right)$
The committee with the highest sum of scores is the winner

Examples:
$\mathrm{f}_{\text {SNTV }}\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{k}\right)=\mathrm{A}_{1}\left(\mathrm{i}_{1}\right)+\ldots+\mathrm{A}_{1}\left(\mathrm{i}_{\mathrm{k}}\right)$

$$
\mathrm{v}_{3}: 1 / 2,2,1
$$

$$
\begin{aligned}
& \mathrm{V}=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{6}\right)
\end{aligned}
$$

Committee Scoring Rules

Committee scoring function：
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=$ score for pos．$\left(i_{1}, i_{2}, \ldots, i_{k}\right)$
The committee with the highest sum of scores is the winner

Examples：
$\mathrm{f}_{\text {SNTV }}\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{k}\right)=\mathrm{A}_{1}\left(\mathrm{i}_{1}\right)+\ldots+\mathrm{A}_{1}\left(\mathrm{i}_{\mathrm{k}}\right)$
$f_{k \text {－Borda }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=B\left(i_{1}\right)+\ldots+B\left(i_{k}\right)$

$$
\begin{aligned}
& C=\{\text {, 衾, 雷, 思 }\} \\
& V=\left(v_{1}, \ldots, v_{6}\right)
\end{aligned}
$$

$$
v_{4}: \sqrt{2} \ggg 1
$$

Committee Scoring Rules

Committee scoring function:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=$ score for pos. $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$
The committee with the highest sum of scores is the winner

Examples:
$\mathrm{f}_{\text {SNTV }}\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{k}}\right)=\mathrm{A}_{1}\left(\mathrm{i}_{1}\right)+\ldots+\mathrm{A}_{1}\left(\mathrm{i}_{\mathrm{k}}\right)$
$f_{k-\text { Borda }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=B\left(i_{1}\right)+\ldots+B\left(i_{k}\right)$
$f_{\text {Bloc }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=A_{k}\left(i_{1}\right)+\ldots+A_{k}\left(i_{k}\right)$

$$
\begin{aligned}
& \mathrm{V}=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{6}\right)
\end{aligned}
$$

Committee Scoring Rules

Committee scoring function:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=$ score for pos. ($\left.i_{1}, i_{2}, \ldots, i_{k}\right)$
The committee with the highest sum of scores is the winner

Examples:
$\mathrm{f}_{\text {SNTV }}\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{k}\right)=\mathrm{A}_{1}\left(\mathrm{i}_{1}\right)+\ldots+\mathrm{A}_{1}\left(\mathrm{i}_{\mathrm{k}}\right)$
$f_{k-B o r d a}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=B\left(i_{1}\right)+\ldots+B\left(i_{k}\right)$
$f_{\text {Bloc }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=A_{k}\left(i_{1}\right)+\ldots+A_{k}\left(i_{k}\right)$
$\mathrm{f}_{\mathrm{cc}}\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{k}}\right) \quad=\mathrm{B}\left(\mathrm{i}_{1}\right)$

$$
\begin{aligned}
& \mathrm{V}=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{6}\right)
\end{aligned}
$$

Committee Scoring Rules

Committee scoring function:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=$ score for pos. $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$
The committee with the highest sum of scores is the winner

Examples:
$\mathrm{f}_{\text {SNTV }}\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{k}\right)=\mathrm{A}_{1}\left(\mathrm{i}_{1}\right)+\ldots+\mathrm{A}_{1}\left(\mathrm{i}_{\mathrm{k}}\right)$
$f_{k-B o r d a}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=B\left(i_{1}\right)+\ldots+B\left(i_{k}\right)$
$f_{\text {Bloc }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=A_{k}\left(i_{1}\right)+\ldots+A_{k}\left(i_{k}\right)$
$\mathrm{f}_{\mathrm{cc}}\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{k}}\right) \quad=\mathrm{B}\left(\mathrm{i}_{1}\right)$

Basic classes of CSRs

Separable rules:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=g\left(i_{1}\right)+\ldots+g\left(i_{k}\right)$
Weakly separable rules:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=h_{k}\left(i_{1}\right)+\ldots+h_{k}\left(i_{k}\right)$
Representation focused rules:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=q\left(i_{1}\right)$

Committee Scoring Rules

Committee scoring function:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=$ score for pos. $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$
The committee with the highest sum of scores is the winner

Examples:
$\mathrm{f}_{\text {SNTV }}\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{k}\right)=\mathrm{A}_{1}\left(\mathrm{i}_{1}\right)+\ldots+\mathrm{A}_{1}\left(\mathrm{i}_{\mathrm{k}}\right)$
$f_{k-B r d a}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=B\left(i_{1}\right)+\ldots+B\left(i_{k}\right)$
$f_{\text {Bloc }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=A_{k}\left(i_{1}\right)+\ldots+A_{k}\left(i_{k}\right)$
$\mathrm{f}_{\mathrm{cc}}\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{k}}\right) \quad=\mathrm{B}\left(\mathrm{i}_{1}\right)$

Basic classes of CSRs

Separable rules:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=g\left(i_{1}\right)+\ldots+g\left(i_{k}\right)$
Weakly separable rules:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=h_{k}\left(i_{1}\right)+\ldots+h_{k}\left(i_{k}\right)$
Representation focused rules:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=q\left(i_{1}\right)$

Committee Scoring Rules

Committee scoring function:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=$ score for pos. $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$
The committee with the highest sum of scores is the winner

Examples:
$\mathrm{f}_{\text {SNTV }}\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{k}\right)=\mathrm{A}_{1}\left(\mathrm{i}_{1}\right)+\ldots+\mathrm{A}_{1}\left(\mathrm{i}_{\mathrm{k}}\right)$
$f_{k-B r o r d a}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=B\left(i_{1}\right)+\ldots+B\left(i_{k}\right)$
$f_{\text {Bloc }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=A_{k}\left(i_{1}\right)+\ldots+A_{k}\left(i_{k}\right)$
$\mathrm{f}_{\mathrm{cc}}\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{k}}\right) \quad=\mathrm{B}\left(\mathrm{i}_{1}\right)$

Basic classes of CSRs

Separable rules:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=g\left(i_{1}\right)+\ldots+g\left(i_{k}\right)$
Weakly separable rules:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=h_{k}\left(i_{1}\right)+\ldots+h_{k}\left(i_{k}\right)$
Representation focused rules:

$$
f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=q\left(i_{1}\right)
$$

Committee Scoring Rules

Committee scoring function:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=$ score for pos. $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$
The committee with the highest sum of scores is the winner

Examples:
$\mathrm{f}_{\text {SNTV }}\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{k}\right)=\mathrm{A}_{1}\left(\mathrm{i}_{1}\right)+\ldots+\mathrm{A}_{1}\left(\mathrm{i}_{\mathrm{k}}\right)$
$f_{k-B o r d a}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=B\left(i_{1}\right)+\ldots+B\left(i_{k}\right)$
$f_{\text {Bloc }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=A_{k}\left(i_{1}\right)+\ldots+A_{k}\left(i_{k}\right)$
$\mathrm{f}_{\mathrm{cc}}\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{k}\right) \quad=\mathrm{B}\left(\mathrm{i}_{1}\right)$

Basic classes of CSRs

Separable rules:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=g\left(i_{1}\right)+\ldots+g\left(i_{k}\right)$
Weakly separable rules:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=h_{k}\left(i_{1}\right)+\ldots+h_{k}\left(i_{k}\right)$
Representation focused rules:

$$
f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=q\left(i_{1}\right)
$$

Committee Scoring Rules

Committee scoring function:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=$ score for pos. $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$
The committee with the highest sum of scores is the winner

Examples:
$\mathrm{f}_{\text {SNTV }}\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{k}\right)=\mathrm{A}_{1}\left(\mathrm{i}_{1}\right)+\ldots+\mathrm{A}_{1}\left(\mathrm{i}_{\mathrm{k}}\right)$
$f_{k-B o r d a}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=B\left(i_{1}\right)+\ldots+B\left(i_{k}\right)$
$f_{\text {Bloc }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=A_{k}\left(i_{1}\right)+\ldots+A_{k}\left(i_{k}\right)$
$\mathrm{f}_{\mathrm{cc}}\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{k}\right) \quad=\mathrm{B}\left(\mathrm{i}_{1}\right)$

Basic classes of CSRs

Separable rules:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=g\left(i_{1}\right)+\ldots+g\left(i_{k}\right)$
Weakly separable rules:
$f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=h_{k}\left(i_{1}\right)+\ldots+h_{k}\left(i_{k}\right)$
Representation focused rules:

$$
f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=q\left(i_{1}\right)
$$

OWA-Based Committee Scoring Rules

An OWA operator is a sequence of k numbers

$$
W=\left(w_{1}, \ldots, w\right)
$$

Given a single-winner scoring rule g and OWA opertor W, we define CSR:

$$
f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=w_{1} g\left(i_{1}\right)+w_{2} g\left(i_{2}\right)+\ldots+w_{k} g\left(i_{k}\right)
$$

Examples of OWA－Based Rules

Approval scores

	（m）	\Rightarrow		j
2	0	0	1	1
寝	1	1	0	0
\％	1	0	1	0
罍	0	1	0	1

Borda scores

	（m）	\Rightarrow	5	
2	0	1	2	3
P	2	3	0	1
\％	2	1	3	0
㙰	1	0	2	3

$]$
The „easiest＂case
Still NP－hard，but very good approximations possilbe（PTASes in many cases）
Le．g．，for OWAs with a fixed number of nonzero entries

Examples of OWA－Based R\＆escial OWA families

Approval scores				
	（r）	\Rightarrow	0	
2	0	0	1	1
寝	1	1	0	1
\％	1	0	1	0
楽	0	0	0	1

Borda scores

	（n）	\Rightarrow		
2	0	1	2	3
显	2	3	0	1
\％	2	1	3	0
蝜	1	0	2	3

－t－Best OWA
$\underbrace{(1, \ldots, 1}_{\mathrm{t}}, 0, \ldots, 0)$
－k－Best OWA
－（k－1）－Best OWA（1，．．．，1，0）
－t－Median OWA $\underbrace{0, \ldots 0}_{(-1}, 1,0, \ldots 0)$
－k－Median OWA（0，．．．，0，1） （minimum）
－Hurwicz OWA（x，0，．．．，0，1－x）
－geometric OWA（ $p^{0}, p^{1}, p^{2}, \ldots, p^{k-1}$ ）
－arithmetic OWA（ $k-1, k-2, \ldots, 0$ ）
－nonincreasing OWAs

Special OWA families

\longrightarrow	t-Best OWA	$(1, \ldots, 1,0, \ldots, 0)$
-		
P-time algorithm \leftarrow	k-Best OWA	($1,1, \ldots, 1$)
	(k-1)-Best OWA	$(1, \ldots, 1,0)$

(even for Borda)
PTAS for Borda $\leftarrow \mathbf{t} / k$-approximation
\downarrow
(k-1)/k-approximation (PTAS)
 approximation

- t-Median OWA $\underbrace{0, \ldots 0}_{\mathrm{t}-1}, 1,0, \ldots 0)$ k-Median OWA ($0, \ldots, 0,1$) (minimum) Hurwicz OWA (x, 0, ..., 0, 1-x)

PTAS for Borda
(1-1/e)-approximation through submodular functions

Borda versus Approval

Why is Borda easier to deal with than approval?

Special OWA families

\longrightarrow	t-Best OWA	($1, \ldots, 1,0, \ldots, 0$)
P-time algorithm \leftarrow	k-Best OWA	(1, 1, ..., 1)
	(k-1)-Best OWA	$(1, \ldots, 1,0)$

(even for Borda)
PTAS for Borda $\leftarrow t / k$-approximation
\downarrow
(k-1)/k-approximation (PTAS)
 approximation

- t-Median OWA $\underset{\mathrm{t}-1}{(\underbrace{, \ldots}_{0} 0}, 1,0, \ldots 0)$ k-Median OWA ($0, \ldots, 0,1$) (minimum) Hurwicz OWA (x, 0, ..., 0, 1-x)

PTAS for Borda
geometric OWA $\left(p^{0}, p^{1}, p^{2}, \ldots, p^{k-1}\right)$

- arithmetic OWA ($k-1, k-2, \ldots, 0$) nonincreasing OWAs

PTAS for Borda Utilities, 1-Best OWA $=(1,0, \ldots, 0)^{*}$

${ }^{*}$) Achieving Fully Proportional Representation: Approximability Results, P. Skowron, P. Faliszewski, A. Slinko, Artificial Intelligence, Vol. 222, pp. 67--103, 2015.

Goal: pick K winners among m candidates, to get the highest utility

Initialize: Forget about the whole profile beyond rank x :
$x=m w(K) / K \quad(w(K)$ is Lambert's W function, $\mathrm{O}(\log K))$

Loop: Keep picking the candidate that appears in the „available" part of the profile most frequently.

PTAS for Borda Utilities, 1-Best OWA $=(1,0, \ldots, 0)^{*}$

${ }^{*}$) Achieving Fully Proportional Representation: Approximability Results, P. Skowron, P. Faliszewski, A. Slinko, Artificial Intelligence, Vol. 222, pp. 67--103, 2015.

Goal: pick K winners among m candidates, to get the highest utility

Initialize: Forget about the whole profile beyond rank x :
$x=m w(K) / K \quad(w(K)$ is Lambert's W function, $\mathrm{O}(\log K))$

Loop: Keep picking the candidate that appears in the „available" part of the profile most frequently.

PTAS for Borda Utilities, 1-Best OWA $=(1,0, \ldots, 0)^{*}$

${ }^{*}$) Achieving Fully Proportional Representation: Approximability Results, P. Skowron, P. Faliszewski, A. Slinko, Artificial Intelligence, Vol. 222, pp. 67--103,

Goal: pick K winners among m candidates, to get the highest utility

Initialize: Forget about the whole profile beyond rank x :
$x=m w(K) / K \quad(w(K)$ is Lambert's W function, $\mathrm{O}(\log K)$)

Loop: Keep picking the candidate that appears in the „available" part of the profile most frequently.

Guarantee: $\cdot(m-H)(1-2 w(K) / K)$ utihity

PTAS for Borda Utilities, 1-Best OWA $=(1,0, \ldots, 0)$

PTAS of OWA-Winner: Borda Utilities, Fixed Number of Top

 Nonzero Positions in the OWA VectorOWA α with t top positions that are nonzero Select: k winners

Main idea:

- Select t groups of k / t winners

Technical idea:

- Use the PTAS for 1-Best-OWA-Winner (from literature)
- Look at some top guys of all agents
- Pick k/t winners to „cover" as many of agents
- Most of the voters can be covered
- Repeat for a following small group of „,second to top preferences"

PTAS of OWA-Winner: Borda Utilities, Fixed Number of Top

 Nonzero Positions in the OWA VectorOWA α with t top positions that are nonzero Select: k winners

Geometric OWAs

But... what with the geometric OWA ($\left.\mathbf{p}^{\mathbf{0}}, \mathbf{p}^{\mathbf{1}}, \mathbf{p}^{\mathbf{2}}, \ldots, \mathbf{p}^{\mathbf{k}-1}\right)$? Simple! If $\mathrm{p}<1$, then already for very small t, $p t$ is negligible. Use:

$$
\text { OWA }=\left(p^{0}, p^{1}, p^{2}, \ldots, p^{t-1}, 0, \ldots, 0\right) .
$$

This OWA satisfies the assumption of out theorem. Done!

- Most of the voters can be covered
- Repeat for a following small group of „second to top preferences"

Change of Focus: Axiomatic Approach

Single-winner plurality rule: Pick whoever is ranked first most often

Is there a multiwinner plurality rule?
$f_{\text {SNTV }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=A_{1}\left(i_{1}\right)+\ldots+A_{1}\left(i_{k}\right)$
$f_{k-\text { Borda }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=B\left(i_{1}\right)+\ldots+B\left(i_{k}\right)$
$f_{\text {Bloc }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=A_{k}\left(i_{1}\right)+\ldots+A_{k}\left(i_{k}\right)$
$f_{c c}\left(i_{1}, i_{2}, \ldots, i_{k}\right) \quad=B\left(i_{1}\right)$

$$
\begin{aligned}
& \mathrm{V}=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{6}\right)
\end{aligned}
$$

Change of Focus: Axiomatic Approach

Fixed-Majority Consistency

A multiwinner rule is fixed-majority consistent if it always elects a committee that a majority of voters ranks among top k positions.

$$
\begin{aligned}
& f_{\text {SNTV }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=A_{1}\left(i_{1}\right)+\ldots+A_{1}\left(i_{k}\right) \\
& f_{k-\text { Borda }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=B\left(i_{1}\right)+\ldots+B\left(i_{k}\right) \\
& f_{\text {Bloc }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=A_{k}\left(i_{1}\right)+\ldots+A_{k}\left(i_{k}\right) \\
& f_{c C}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=B\left(i_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{6}\right)
\end{aligned}
$$

Fixed-Majority Consistency

A multiwinner rule is fixed-majority consistent if it always elects a committee that a majority of voters ranks among top k positions.
$f_{\text {SNTV }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=A_{1}\left(i_{1}\right)+\ldots+A_{1}\left(i_{k}\right)$
$\mathrm{f}_{\mathrm{k} \text {-Borda }}\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{k}}\right)=\mathrm{B}\left(\mathrm{i}_{1}\right)+\ldots+\mathrm{B}\left(\mathrm{i}_{\mathrm{k}}\right)$
$f_{\text {Bloc }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=A_{k}\left(i_{1}\right)+\ldots+A_{k}\left(i_{k}\right)$
$f_{c c}\left(i_{1}, i_{2}, \ldots, i_{k}\right) \quad=B\left(i_{1}\right)$

$$
\begin{aligned}
& C=\{\hat{M}, ~ \text { 令 }, ~ \\
& V=\left(v_{1}, \ldots, v_{6}\right)
\end{aligned}
$$

Fixed-Majority Consistency

A multiwinner rule is fixed-majority consistent if it always elects a committee that a majority of voters ranks among top k positions.

$$
\begin{aligned}
& f_{\text {SNTV }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=A_{1}\left(i_{1}\right)+\ldots+A_{1}\left(i_{k}\right) \\
& f_{\text {k-Borda }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=B\left(i_{1}\right)+\ldots+B\left(i_{k}\right) \\
& f_{\text {Bloc }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=A_{k}\left(i_{1}\right)+\ldots+A_{k}\left(i_{k}\right) \\
& f_{\text {CC }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=B\left(i_{1}\right) \\
& f_{\text {Perf }}\left(i_{1}, i_{2}, \ldots, i_{k}\right)=A_{k}\left(i_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{6}\right)
\end{aligned}
$$

Fixed-Majority Consistent CSRs

Theorem: Every fixed-majority consistent CSR is an OWA-based, with k-Approval rule:

$$
\begin{aligned}
f\left(i_{1}, i_{2}, \ldots, i_{k}\right)= & w_{1} A_{k}\left(i_{1}\right)+w_{2} A_{k}\left(i_{2}\right) \\
& +\ldots+w_{k} A_{k}\left(i_{k}\right)
\end{aligned}
$$

where function values $w_{1}, w_{1}+w_{2}$, $\mathrm{w}_{1}+\mathrm{w}_{2}+\mathrm{w}_{3}, \ldots$ satisfy a convexity-like property.

Interpretation: Such rules are top-kcounting rules. There is a function g such that:

$$
f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=g\left(\#\left\{t: i_{t} \leq k\right\}\right)
$$

Fixed-Majority Consistent CSRs

Theorem: Every fixed-majority

$f\left(i_{1}, i_{2}\right.$ - If the counting function is convex, we have fixed majority consistency, but rules are often hard to approximate

- If the counting function is concave, we have approximability and FPT algorithms (parametrized by the number of voters)
- If the number of candidates is o(k2), we have a PTAS Interpr (non-finicky utilities) countins such that:

$$
f\left(i_{1}, i_{2}, \ldots, i_{k}\right)=g\left(\#\left\{t: i_{t} \leq k\right\}\right)
$$

Summary

- A new, very general, family of multiwinner election rules:
- Borda, Chamberlin—Courant, ...
- Turns out to model rules we did not think of!
- Proportional Approval Voting (PAV): OWA (1, 1/2, 1/3, 1/4, ...)
- NP-hardness even if each aggent „approves" at most two candidates, and if each candidate is „approved" by at most three voters
- Discussed in more detail by: H. Aziz, S. Gaspers, J. Gudmundsson, S. Mackenzie, N. Mattei, T. Walsh: Computational Aspects of Multi-Winner Approval Voting.
- Broad NP-hardness results
- Examples of approximation results
- Developing axiomatizations

Thank you!

