
On the Formal Verification of
Open Multi-agent Systems

F. Belardinelli1

1Laboratoire IBISC
Université d’Evry
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Overview

1 Background:
I plenty of work on model checking Multi-agent Systems [LQR09, GvdM04, KNN+08]:

1 MAS are composed of a finite number of agents given at design time . . .
2 and they are described at propositional level (CTL, LTL, ATL, + epistemics, etc.)

2 Main task: formal verification of open MAS
I given a model MS of system S and a formula φP for property P, does MS |= φP ?
I open: agents can enter and leave the MAS at run-time [JMS13]

F model checking is appropriate for control-intensive applications...
F ...but less suited for data-intensive applications (data typically range over infinite domains)

[BK08]

3 Motivation:

I auctions, markets, etc.
I (non-probabilistic) diffusion phenomena (how information, ideas, behaviors spread in

networks of agents similarly to epidemics)
F SIR model for epidemics

I Social Network Analysis (SNA) [Jac08, EK10]

4 Key contribution:
I verification of open MAS is decidable . . .
I . . . whenever the system is bounded
I application to the case study – SIR model for epidemics
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The SIR Model

• Influential network diffusion model [EK10, Jac08]

• Individuals are liable to go through three different stages during an epidemic:

I first, each agent is susceptible to be infected
I she may actually get infected at a certain point
I finally she will eventually recover

• Verifiable behaviours:
1 every agent either remains susceptible or will eventually become infected if she is

continuously in contact with someone infected
2 if an agent knows that she is connected to some infected agent, then she will part at

some point in the future
3 if an agent gets infected, then all agents that are connected to her will eventually

know this fact.

• Results:
I (non-stochastic) SIR model can be captured within open MAS
I specifications such as (1)-(3) above can be (expressed and) model-checked
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Challenges & Research Questions

Challenges:

• Multi-agent System, but . . .

• . . . the number of agents is potentially infinite

• the system is open: agents can join in or leave at run-time

• states have a relational structure

• the state space is infinite in general!

⇒ the model checking problem cannot be tackled by standard techniques.

Research questions:

1 is the verification of open MAS decidable?

2 if not, can we identify relevant fragments that are reasonably well-behaved?
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Open Multi-agent Systems
Technical Results

1 Open Multi-agent Systems (OMAS) as a flexible and rich framework for SNA.

Intuition: encoding an agent’s information structure as a database.

2 FO-CTLKx as a specification language:

∀x , y(Kx (Inf (y) ∧ N(x , y))→ AF¬N(x , y))

if an agent knows that she is connected to some infected agent, then she will part at some
point in the future

I epistemic operators indexed to terms in the language
I quantification on those indexes

3 We leverage on recent results on data-aware systems to tackle model checking
[BPL14, HCG+13, MCD14].

Main result: abstraction techniques to reduce the MC problem to the finite case.

4 Case study: modelling and verification of the SIR model.
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Data-aware Systems
Preliminaries on databases

• Recent paradigm in Service-Oriented Computing [CH09].

• Motto: let’s give data and processes the same relevance!
I the data content shapes the actions of processes

• Agents’ local states are represented as databases.

I a database schema is a finite set D = {P1/q1, . . . ,Pn/qn} of relation symbols Pi with
arity qi ∈ N

I a (database) instance on a domain U is a mapping D associating each symbol Pi with
a finite qi -ary relation on U

I the active domain adom(D) is the set of all elements u ∈ U appearing in some D(Pi )

I the disjoint union D ⊕ D′ of D-instances D and D′ is the (D ∪D′)-instance s.t.
F D ⊕ D′(P) = D(P)
F D ⊕ D′(P′) = D′(P)

I D(U) is the set of all D-instances on U

• Intuition: networks (graphs on agents) are represented as first-order structures
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Open Multi-agent Systems
Agents

Hereafter we assume
• a finite number of agent types T0, . . . ,Tk

I as well as a possibly infinite set AgT of agent names for each type T
I the interpretation domain U includes Ag =

⋃
type T AgT

Definition (Agent)

An agent aT = 〈DT ,ActT ,PrT 〉 of type T
I records information according to the local database schema DT

F including a dedicated unary predicate N to represent the network structure

I and performs the actions α(~x) in ActT . . .

I . . . according to the local protocol function PrT : DT (U) 7→ 2ActT (U)

• the number of agent types is finite:
⇒ typically it is possible to specify the relevant agent types at design time.

• the number of agents is infinite:
I it is much more difficult to know how many agents of each type will appear during the

system’s execution.
• the setting is reminiscent of the interpreted system semantics for MAS [FHMV95], . . .

. . . but here the local state of each agent is relational.
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Example: the SIR Model I

In the basic setting we have a unique type of agent.

• the interpretation domain is U = Ag .

• an agent a includes
I a local db schema

Da = {Sus/1, Inf/1,Rec/1,N/1}
I a set of actions

Acta = {con(ag), disc(ag), skip}
I the protocol Pra is such that

F disc(b) ∈ Pra(la) whenever b ∈ la(N)
F {skip, con(b)} ⊆ Pra(la) for all la ∈ Da(U)

We might want to assess the impact of health workers on epidemics.

• we consider a new type TH and set AgH of agent names
• a health worker h has database Dh and actions Acth defined as for standard agents.

I while the protocol Prh is such that
F disc(b) ∈ Prh(lh) only if b ∈ lh(N) and Inf(h) ∈ lh

The framework is rich enough to accommodate several versions of the SIR model.
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Open Multi-agent Systems
OMAS

Agents interact, thus generating OMAS.

Definition (Global State)

Given a finite subset A ⊆ Ag of agents ai = 〈Di ,Acti ,Pri 〉, for i ≤ n, a global state is a tuple
s = 〈l0, . . . , ln〉 of instances li ∈ Di (U).

• at every state only finitely many agents are active
I if s = 〈la0 , . . . , lan 〉 then ag(s) = {a0, . . . , an} is the set of agents active in s

• key difference w.r.t. interpreted (parametric) systems: global states may be tuples of
different lengths

Definition (OMAS)

An OMAS P = 〈Ag ,U, I ,→〉 describes

• the evolution of a possibly infinite group Ag of agents . . .
• from an initial global state s0 ∈ I . . .

• according to the transition relation s
α(~u)−−−→ s′

I where α(~u) contains an action for each agent active in s

OMAS are infinite-state systems in general
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Example: the SIR Model II

The SIR OMAS P = 〈Ag ∪ AgH , I , τ〉 with health workers is defined as

• I is the set of states where at least one agent is infected (this rules out trivial models).

• → is the transition relation s.t. s
α(~u)−−−→ s′ whenever

I a susceptible agent a might get infected if she is in contact with an infected agent:
if Sus(a) ∈ la and for some b ∈ la(N), Inf(b) ∈ lb, then either Sus(a) ∈ l ′a or Inf(a) ∈ l ′a

I an infected agent a non-deterministically recovers:
if Inf(a) ∈ la, then either Inf(a) ∈ l ′a or Rec(a) ∈ l ′a

I a recovered agent a does not fall ill again:
if Rec(a) ∈ la then Rec(a) ∈ l ′a

I the consistency of the agents’ information is assumed to be preserved.

I . . .
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The Specification Language: FO-CTLKx

• First-order version of CTL + knowledge:

ϕ ::= R(t1, . . . , tc ) | t = t′ | ¬ϕ | ϕ→ ϕ | ∀xϕ | AXϕ | AϕUϕ | EϕUϕ | Kaϕ | Kxϕ

Epistemic operators indexed to terms in the language.

• OMAS P satisfies formula ϕ in state s for assignment σ, iff

(P, s, σ) |= R(~t) iff 〈σ(t1), . . . , σ(tc )〉 ∈ Ds (R)
(P, s, σ) |= t = t′ iff σ(t) = σ(t′)
(P, s, σ) |= ∀xϕ iff for all u ∈ adom(s), (P, s, σx

u ) |= ϕ
(P, s, σ) |= AXϕ iff for all runs r , r(0) = s implies (P, r(1), σ) |= ϕ
(P, s, σ) |= AϕUϕ′ iff for all runs r , r(0) = s implies (P, r(k), σ) |= ϕ′ for some k ≥ 0,

and (P, r(k ′), σ) |= ϕ for all 0 ≤ k ′ < k
(P, s, σ) |= EϕUϕ′ iff there exists r s.t. r(0) = s, (P, r(k), σ) |= ϕ′ for some k ≥ 0,

and (P, r(k ′), σ) |= ϕ for all 0 ≤ k ′ < k
(P, s, σ) |= Kaϕ iff for all states s′, s ∼a s′ implies (P, s′, σ) |= ϕ
(P, s, σ) |= Kxϕ iff for all states s′, s ∼σ(x) s′ implies (P, s′, σ) |= ϕ

where s ∼a s′ iff a ∈ ag(s), a ∈ ag(s′), and sa = s′a.

• Active-domain semantics, but...
I ...we can refer to individuals that no longer exist
I the number of states is infinite in general
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The Specification Language: FO-CTLKx

1 each agent goes through the susceptible-infected-recovered cycle

∀xA(Sus(x)UA(Inf(x)URec(x)))

2 if an agent knows that she is connected to some infected agent, then she will part at some
point in the future

∀x, y(Kx(Inf (y) ∧ N(x, y))→ AF¬N(x, y))

3 if an agent gets infected, then all agents that are connected to her will eventually know this
fact.

∀y(Inf (y)→ (AF∀x(N(x, y)→ KxInf (y))))

• ∀xKxφ expresses dynamically the joint knowledge of φ for all active agents in a given state,
i.e., the standard, static epistemic formula Eφ =

∧
a∈Ag Kaφ.

• epistemic formulas are vacuously true for agents not in the active domain of the state
considered:

I a /∈ ag(s) implies (P, s, σ) |= Kaφ for all formulas φ
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Verification of AC-MAS

• Model-checking problem: given
I an OMAS PS (for a system S)
I an FO-CTLKx sentence φP (representing property P)

we check that

PS |= φP

• Problem: the infinite domain U may generate infinitely many states!

• Investigated solution: can we simulate the concrete values in U with a finite set of
abstract symbols?

13



Abstraction: Isomorphism and Bisimulation

• two states s, s ′ are isomorphic, or s ' s ′, if they share the same relational
structure

D(R)
A1 a b
A2 b c
A3 d e

'

D ′(R)
A1 1 2
A2 2 3
A3 4 5

• i.e., there is a bijection ι : adom(s) ∪ ag(s) 7→ adom(s′) ∪ ag(s′) such that
I ι preserves the type of agents
I for every tuple ~u and agent ai ∈ ag(s),

~u ∈ Di (P)⇔ ι(~u) ∈ D′
ι(i)(P)

14



Abstraction: Isomorphism and Bisimulation

• two states s, s ′ are bisimilar, or s ≈ s ′, if
1 s ' s′

2 the simulation and transition relations commute

s t

≈

s ′

≈

t ′

I if s → t then there is t′ s.t. s′→ t′, s ⊕ t ' s′ ⊕ t′, and t ≈ t′

I the other direction holds as well
I similar conditions hold for the epistemic relation ∼a
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Uniformity

• the behaviour of OMAS is independent from data not explicitly named in the
system description.

s
a b
b c
d e

t
a f
f c

s′

1 2
2 c
4 5

t′

1 6
6 c

• OMAS are uniform:

I for s, t, s′ ∈ S and t′ ∈ D(U), s → t and s ⊕ t ' s′ ⊕ t′ imply s′→t′

• Uniformity holds in many cases of interest [CH09, BPL14, HCG+13, MCD14].
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Bisimulation and Equivalence w.r.t. FO-CTLKx

Bisimilar OMAS satisfy the same FO-CTLKx formulas (provided some assumption on the
cardinalities of the domains)

Theorem

Consider
• bisimilar OMAS P and P ′

• an FO-CTLKx formula ϕ

If
1 |U′| ≥ 2 · sups∈P{|adom(s) ∪ ag(s)|}+ |vars(ϕ)|
2 for every type T , |Ag ′

T | ≥ 2 sups∈P{|agT (s)|}+ |vars(ϕ)|
3 |U| ≥ 2 · sups′∈P′{|adom(s′) ∪ ag(s)|}+ |vars(ϕ)|
4 for every type T , |AgT | ≥ 2 sups′∈P′{|agT (s′)|}+ |vars(ϕ)|

then

P |= ϕ iff P ′ |= ϕ

Can we apply this result to obtain finite abstraction?
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Bounded Models and Finite Abstractions
• an OMAS P is b-bounded iff for all s ∈ P, |adom(s) ∪ ag(s)| ≤ b.

• bounded systems can still be infinite!

Theorem

Consider

I a b-bounded OMAS P on an infinite domain U

I an FO-CTLKx formula ϕ

Given a finite domain U′ s.t.

1 |U′| ≥ 2b + max{|vars(ϕ)|, b · NAg}
2 for every type T , |Ag ′

T | ≥ 2b + max{|vars(ϕ)|, b · NAg}
there exists a finite abstraction P ′ of P s.t. P ′ is bisimilar to P.
In particular,

P |= ϕ iff P ′ |= ϕ

⇒ Under specific circumstances (namely boundedness), we can model check an infinite-state
OMAS by verifying its finite abstraction.

• Boundedness is a natural assumption on the SIR model.
I For a sufficiently large b, we can simulate a b-bounded SIR model with a domain U′

s.t. |U′| = 3b.
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Conclusions

• Results:
I bisimulation and finite abstraction for open Multi-agent Systems
I we are able to model check OMAS w.r.t. FO-CTLKx . . .
I . . . however, our results hold only for bounded systems
I this class covers many interesting systems (AS programs, [CH09, HCG+11, BPL14])
I including the SIR model

• Future Work:
I constructive techniques for finite abstraction
I model checking techniques for finite-state systems are effective on OMAS?
I how to perfom the boundedness check?
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Questions?
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