Interactions of Knowledge and Strategies

Francesco Belardinelli

Laboratoire IBISC, Université d'Evry

LAMAS SING, Gdańsk - 24 September 2015

Motivation and Background

- Perfect Information: fixed-point characterisations of ATL operators

$$
\begin{array}{rll}
\langle\langle\Sigma\rangle\rangle G \phi & \leftrightarrow & \phi \wedge\langle\langle\Sigma\rangle\rangle X\langle\langle\Sigma\rangle\rangle G \phi \\
\langle\langle\Sigma\rangle\rangle F \phi & \leftrightarrow & \phi \vee\langle\langle\Sigma\rangle\rangle X\langle\langle\Sigma\rangle\rangle F \phi \\
\langle\langle\Sigma\rangle\rangle\left(\phi \cup \phi^{\prime}\right) & \leftrightarrow & \phi^{\prime} \vee\left(\phi \wedge\langle\langle\Sigma\rangle\rangle X\langle\langle\Sigma\rangle\rangle\left(\psi \cup \phi^{\prime}\right)\right) \tag{3}
\end{array}
$$

- Useful Validities: techniques for satisfiability [GS09] and model checking [AHK02, BDJ10]
- The Problem: (1)-(3) do not hold in the imperfect information semantics!

The Problem

- Bob chooses secretly between 0 and 1
- at the next step Anne also chooses between 0 and 1
- Anne wins the game iff the values provided by the two players coincide
- the dotted line indicates epistemic indistinguishability

The Problem

- Bob chooses secretly between 0 and 1
- at the next step Anne also chooses between 0 and 1
- Anne wins the game iff the values provided by the two players coincide
- the dotted line indicates epistemic indistinguishability

The Problem

- Bob chooses secretly between 0 and 1
- at the next step Anne also chooses between 0 and 1
- Anne wins the game iff the values provided by the two players coincide
- the dotted line indicates epistemic indistinguishability

The Problem

- Bob chooses secretly between 0 and 1
- at the next step Anne also chooses between 0 and 1
- Anne wins the game iff the values provided by the two players coincide
- the dotted line indicates epistemic indistinguishability

The Problem

- Bob chooses secretly between 0 and 1
- at the next step Anne also chooses between 0 and 1
- Anne wins the game iff the values provided by the two players coincide
- the dotted line indicates epistemic indistinguishability
- Anne knows that there exists a strategy to win the game...
... however, she is not able to point this strategy out
\Leftarrow Anne has imperfect information of the game

The Problem

ATL with Imperfect Information

It looks like it's a question of knowledge

The Problem

ATL with Imperfect Information

It looks like it's a question of knowledge

- Anne knows that there is some strategy to win (knowledge de dicto)

The Problem

It looks like it's a question of knowledge

- Anne knows that there is some strategy to win (knowledge de dicto)
- but there is no strategy known to her to guarantee a win (knowledge de re)

The Problem

It looks like it's a question of knowledge

- Anne knows that there is some strategy to win (knowledge de dicto)
- but there is no strategy known to her to guarantee a win (knowledge de re)

Is there any way of combining ATL and epistemic operators so as to obtain something similar to (1)-(3)?

References

Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman.
Alternating-time temporal logic.
J. ACM, 49(5):672-713, 2002.

Nils Bulling, Jurgen Dix, and Wojciech Jamroga.
Model checking logics of strategic ability: Complexity*.
In Mehdi Dastani, Koen V. Hindriks, and John-Jules Charles Meyer, editors, Specification and Verification of Multi-agent Systems, pages 125-159.
Springer US, 2010.
V. Goranko and D. Shkatov.

Tableau-based decision procedures for logics of strategic ability in multiagent systems.
ACM Trans. Comput. Log., 11(1), 2009.

