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Abstract

A standard approach to negation in logic programming is negation as
failure. Its major drawback is that it cannot produce answer substitutions
to negated queries. Approaches to overcoming this limitation are termed
constructive negation. This work proposes an approach based on construction
of failed trees for some instances of a negated query. For this purpose a
generalization of the standard notion of a failed tree is needed. We show that
a straightforward generalization leads to unsoundness and present a correct
one.

The method is applicable to arbitrary normal programs. If finitely failed
trees are concerned then its semantics is given by Clark completion in 3-
valued logic (and our approach is a proper extension of SLDNF-resolution).
If infinite failed trees are allowed then we obtain a method for the well-founded
semantics. In both cases soundness and completeness are proved.

1 Introduction

A standard way of dealing with negation in logic programming is negation as failure.
Its major drawback is that the only answers it is able to give are “yes” and “no”. In
other words it cannot produce answer substitutions to negated queries. This results
in floundering: for some queries negation as failure is inapplicable.

A generalization that avoids this drawback is presented in this paper. It is based
on constructing finitely failed trees. The method is applicable to every normal
program. For example, it makes it possible to obtain answers

x = s(0), x = s3(0), x = s5(0), . . .
for the goal:
← ¬even(x).

and either of the following programs:

even(0)
even(s2(x))← even(x)
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and

even(0)
even(s(x))← ¬even(x)

The basic idea of our method is that in order to answer a query ← ¬A with
respect to a program P a fail answer for P ∪ {← A} is found. A fail answer
is a substitution θ such that P ∪ {← Aθ} finitely fails. Since ¬Aθ is a logical
consequence of the Clark completion comp(P ) of the program, θ is given as an
answer to ← ¬A. This approach was proposed by Ma luszyński and Näslund in
[MN89] (and by Shepherdson in [She89]). For definite (“positive”) programs the
definition of a goal finitely failing is obvious (finite SLD tree with no success leaf)
and was used in [MN89]. A straightforward generalization suggested there for normal
programs (i.e. programs with negation) is, unexpectedly, incorrect. Also the method
of [She89] does not allow recursive usage of constructive negation. This problem is
discussed and solved in section 3.

Our treatment of normal goals is similar to that in SLDNF-resolution [Llo87].
(SLDNF-resolution is a standard abstract computational mechanism for normal pro-
grams.) We introduce SLDFA-resolution (FA for fail answers) which is a proper ex-
tension of SLDNF-resolution. Its semantics is given by Clark completion. SLDFA-
resolution is sound with respect to the Clark completion in the standard 2-valued
logic. It is sound and complete for the 3-valued completion semantics of Kunen
[Kun87]. There are indications that it can be implemented with a reasonable effi-
ciency.

We also present a variant of our method that is sound and complete for the
well-founded semantics [GRS91]. Up to our knowledge this is the first constructive
negation approach for this semantics1.

There are two other principal approaches to constructive negation. The first of
them is represented by the work of Khabaza [Kha84], Chan [Cha88] and Przymusin-
ski [Prz89a]. In this approach an answer to ← ¬A is obtained by negating (the
disjunction of) the answers to ←A. This approach fails if the number of answers is
infinite. It also fails if the search space (eg. SLD-tree) is infinite (except for [Prz89a]
where the perfect model semantics is used).

The second principal approach can be understood as using the Clark completion
of a program instead of the program itself. The basic concept is, roughly speaking,
that in a derivation step for ← ...,¬p(t), ... the completed definition of predicate p
is used: literal ¬p(t) is replaced by the negated right hand side of the completed
definition (with an appropriate mgu applied). The resulted formula is then trans-
formed into a form that facilitates a next derivation step. This approach is used
in the work of Wallace [Wal87], Lugiez [Lug89], Chan and Stuckey [Cha89, Stu91],
Sato and Motoyoshi [SM91] and Plaza [Pla92].

In the second method of Chan [Cha89, Stu91], when ¬p(t) is selected in a current
goal, ← p(t) is first treated with what amounts to partial evaluation; the resulting
set of clauses constitutes a definition of p whose completion is used in the derivation

1As the well-founded semantics is not recursively enumerable, using the word “constructive”
may seem strange here. We follow the standard logic programming terminology where “constructive
negation” means approaches to overcome the restrictions of negation as failure.
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step. Another extension in [Cha89, Stu91] is that not only literals can be selected
but also some other negated formulae.

The transformational approach to negation (Barbuti et al. [BMPT90], Sato and
Tamaki [ST84]) does not use the program completion explicitly. Instead it introduces
new predicates to a program in order to express the negative information. The idea is
to construct a definite program that defines both the original and the new predicates.
However in many cases the resulting program contains a construct equivalent to
universal quantification which causes substantial implementation problems. The
approach works only if the functor set of the underlying language (see Section 2.2)
is finite. It seems to be impractical unless the set of functors of the language is
small. (Auxiliary predicates are also used in the approach of [Pla92]).

All these approaches are strongly related to the completion semantics ([Prz89a] is
an exception). In a sense they were constructed “with Clark completion in mind”.
None of them employs a notion of failure which is fundamental to the standard
treatment of negation in logic programming. Our approach is different. It stems
from a syntactical concept of a failed tree. As a result this approach is not “bound”
to a unique semantics. A natural modification (allowing infinite failed trees) results
in a constructive negation method for the well-founded semantics.

The paper is organized as follows. Section 2 contains some preliminary defini-
tions. In section 3, SLDFA-resolution is introduced; the next two sections contain
proofs of its soundness and completeness. Section 6 is devoted to computing fail
answers by constructing finitely failed SLDFA-trees. It also contains comparisons
with other approaches. Section 7 presents SLSFA-resolution, a constructive negation
approach for the well-founded semantics.

We assume that the reader is familiar with basics of logic programming, including
SLDNF-resolution and Clark completion semantics [Llo87]. To understand Section
5 on completeness of SLDFA-resolution, some familiarity with 3-valued completion
semantics [Kun87] is preferable. Familiarity with the well-founded semantics would
simplify reading Section 7.

2 Preliminaries

2.1 Notational conventions

When referring to syntactic objects of the underlying first order language(s), s, t, u
will usually stand for terms, v, x, y for variables, a, b, c for constants and p, q for
predicate symbols. Sub- and superscripts may be used if necessary. A bar will be
used to denote a (finite) sequence of objects, e.g. x is an abbreviation for x1, . . . , xn
for some integer n ≥ 0, p(t) abbreviates p(t1, . . . , tm), where m is the arity of p.

An equation is a formula of the form s = t. Negation of an equation (a dis-
equation) will be written as s 6= t. If s and t are term sequences of the same
length n then by s = t we denote the corresponding conjunction of equations, i.e.
s1=t1 ∧ . . . ∧ sn=tn. The symbol = is used both as a syntactic symbol in equations
and as an equality symbol of the metalanguage. We take care that this does not
lead to ambiguity. We assume that = does not occur in programs.
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The set of free variables occurring in a syntactic construct (formula, term etc.)
F is denoted by FV (F ). Restriction F |S of a formula F to a set S of variables is
the formula ∃x1, . . . , xnF where {x1, . . . , xn} = FV (F ) \ S. Sometimes we do not
distinguish between a sequence and the corresponding set (and for instance write
x for {x1, . . . , xn}). As usual in logic programming we often use a comma instead
of ∧.

We use the standard logic programming terminology and definitions. However,
normal programs are just called programs. We prefer term “selection rule” of [Apt90]
to “computation rule” of [Llo87] for the function selecting a literal in a goal. The
reader is referred to [Llo87] and to [Apt90] for definitions and explanations not
present in this paper.

2.2 Semantics

Logic programs are written in first order languages that differ only by their sets of
predicate symbols and functors (including constants). We do not assume a fixed
language for all programs, nor do we define a program’s language as that of exactly
the functors and predicate symbols occurring in the program. Instead we assume
that, for every program under consideration, the set of functors and of predicate
symbols of the underlying language L is known. We will say that L is (in)finite if
its set of functors is (in)finite.

In this paper we are mainly interested in the semantics given by the Clark com-
pletion of a program. However in Section 6 the well-founded semantics is considered.

Roughly speaking the Clark completion comp(P ) of a program P consists of
“iff” counterparts of the clauses of P and some axioms for equality. The “iff”
counterparts of the clauses of P can be defined as follows. Let p be a predicate
symbol of L, distinct from =. Let

Q = { p(ti)←Li | i = 1, . . . ,m }

be the set of clauses of P that begin with p. (If the i-th clause is unary, we assume

that L
i

is true). Let y be the variables occuring in Q. The completed definition of
p in P is

∀x p(x)↔
m∨
i=1

∃y (x=t
i ∧ Li)

where x is a tuple of new variables (of the length equal to the arity of p). If m = 0
then the completed definition reduces to ∀x p(x)↔ false.

Completion comp(P )of program P consists of the completed definitions (of the
predicate symbols of L) in P and of the axioms of the free equality theory CET.

The axioms consist of equality axioms

x = x,
x = y → f(x) = f(y) for each functor f ,
x = y → (p(x)→ p(y)) for each predicate symbol p, including =,

4



and freeness axioms

f(x) = f(y)→ x = y for each functor f,
f(x) 6= g(y) for each pair of distinct functors f, g (including constants),
x 6= t for each variable x and term t such that x occurs in t and x and t

syntactically differ.

If the underlying language L is finite then we add the (weak) domain closure axiom
WDCA (sometimes called DCA). Informally, the axiom ensures that in the interpre-
tation domain of any model of the theory every object is a value of a non-variable
term (under some variable valuation). The WDCA is defined as follows

∀x(
∨

f is a functor

∃y1, . . . , yα(f)(x = f(y1, . . . , yα(f))))

where α(f) is the arity of f , α(f) ≥ 0 [MMP88].

2.3 Constraints

In standard logic programming answers are given in the form of idempotent substi-
tutions. This is not feasible when answers to negative queries are required. Some
generalization of the concept of a substitution is needed to conveniently express
inequality.

Out of the approaches mentioned in the Introduction only [BMPT90] uses sub-
stitutions, but this results in an infinite number of answers in apparently simple
cases (e.g. {eq(x, x)←}∪{←¬eq(x, y)}). The other approaches, in addition to sub-
stitutions (or equations) use disequations.

In order not to restrict ourselves to a particular form of answers, we will use
arbitrary first order formulae built out of equality and disequality literals. Such
formulae will be called constraints and denoted by θ, σ, ρ, δ, γ (possibly with sub- and
superscripts). Note that an idempotent substitution {x1/t1, . . . , xn/tn} corresponds
to a constraint x1=t1 ∧ . . . ∧ xn=tn.

A constraint θ is called satisfiable iff CET |= ∃θ. θ is more general than σ iff
CET |= σ → θ. θ and σ are equivalent iff CET |= σ ↔ θ. Conjunction of θ and
σ will often be denoted by θ,σ or by θσ (as we use it instead of composition of
substitutions).

From the practical point of view it is important to solve constraints, i.e. to
transform them into some intelligible form. Many papers are devoted to this subject,
see [She91], [CL89], [Mah88], [Cha88] and the references therein. First, CET is a
complete theory (for every closed equality formula θ either θ or ¬θ is a logical
consequence of the theory). This holds both for infinite and finite L, due to WDCA
added in the latter case. Then, there exist algorithms that reduce any constraint to
an equivalent one in some disjunctive normal form. The normal form may be, for
instance, a disjunction of “simple” constraints of the form

∃ y (x1=t1 ∧ . . . ∧ xn=tn ∧ ∀...(v1 6=s1) ∧ . . . ∧ ∀...(vm 6=sm))

where n,m ≥ 0, {x1/t1, . . . , xn/tn} is an idempotent substitution, the xi’s do not oc-
cur elsewhere in this formula, some (maybe none) variables of the si’s are universally
quantified and y may contain any variables but xi’s.
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The choice of actual normal form and of a reduction algorithm is an important
implementation decision which is outside of the scope of this paper. There is no
agreement in the papers on constructive negation on which normal form to use.
Our method is independent from this choice, we allow arbitrary constraints. How-
ever a restriction can be imposed that every constraint used in SLDFA-resolution
(a computed answer, a fail answer, the constraint in a goal, etc.) is a “simple” con-
straint. (Any notion of simple constraints can be applied here. The only requirement
is that there exists an algorithm transforming every constraint into an equivalent
disjunction of simple constraints). Definitions and theorems of the next sections
remain correct with such a restriction.

3 SLDFA-resolution

This section introduces a method of deriving answers for normal queries and normal
programs, called SLDFA-resolution. As an important contribution of this section
we consider the explanation of the concept of (finite) failure in the context of con-
structive negation. After some preliminary definitions our motivations and some
explanation of the method are given. Then SLDFA-resolution is presented formally
followed by some examples. We conclude with discussing some variants of the notion
of a finitely failed tree.

Basic notions of SLDFA-resolution are SLDFA-refutation and finitely failed
SLDFA-tree. They may be seen as counterparts of the corresponding concepts
of SLDNF-resolution [Llo87]. In fact, SLDFA-resolution is a proper extension of
SLDNF-resolution. Every SLDNF-refutation is an SLDFA-refutation (with the dif-
ference that the latter uses constraints instead of substitutions); the same for finitely
failed trees. This holds also for SLDNF-resolution with weak safeness condition (a
non ground ¬A fails iff A succeeds with empty substitution, ¬A succeeds iff A fails).

SLDFA-resolution is also an extension of SLDNFS-resolution [She89]. The latter
allows selecting non ground negated atoms and using fail answers for them, but only
in derivations, not in failed trees. The negated atoms selected in such a tree are
ground (or, in an extension of the method, succeed with empty answers).

Similarly to SLDNFS-resolution, SLDFA-resolution does not specify how to con-
struct finitely failed trees. It only defines them. Constructing such trees is discussed
later.

3.1 Preliminary definitions

We begin with a modification of the concept of a goal. An adjustment is needed
due to usage of constraints instead of substitutions.

Definition 3.1 A goal is a formula of the form ¬(θ∧L1∧ . . .∧Lm) usually written
as

←θ, L1, . . . , Lm

(or just ←θ, L) where θ is a satisfiable constraint and L1, . . . , Lm (m ≥ 0) are
literals. We will omit θ if it is (equivalent to) true.
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Now a formalization of a common notion of a goal with a literal selected.

Definition 3.2 An s-goal is a pair of a goal and a literal position 〈←θ, L1, . . . , Lm; i〉
(where 1 ≤ i ≤ m orm = 0 = i), usually written as←θ, L1, . . . , Li−1, Li, Li+1, . . . , Lm
(or as ←θ, L, Li, L′ where L = L1, . . . , Li−1 and L′ = Li+1, . . . , Lm).

Li is called the selected literal of the above s-goal (if i ≥ 1). G is called the
goal part of an s-goal 〈G; i〉. If it does not lead to ambiguity we usually do not
distinguish between an s-goal and its goal part.

Definition 3.3 Let G be an s-goal ←θ, L, p(t1, . . . , tn), L′ and C a clause

p(s1, . . . , sn)←M . An s-goal G′ is positively derived from G using C iff the following
holds:

• FV (G) ∩ FV (C) = ∅,

• (the goal part of) G′ is ←θθ′, L,M,L′ where θ′ is the constraint (t1 = s1 ∧
· · · ∧ tn = sn).

By the definition of a goal, θθ′ above is satisfiable. We will say that a clause C is
applicable to a goal G if there exists a goal positively derived from G using a variant
of C (i.e. C with the variables renamed).

3.2 Informal explanation

Before introducing SLDFA-resolution, some rationale has to be given. In this section
we discuss the notion of finite failure in the context of constructive negation. First
we show unsoundness of a straightforward approach. Then we present an informal
explanation of our definition of SLDFA finitely failed trees and conclude with an
example. The formal definition is the subject of the next section.

Our approach is based on the notion of a fail answer. In order to construct
derivations that may provide computed answers to goals, SLD-resolution is extended
by “negative derivation steps”. Roughly speaking, goal←θ,M is negatively derived
from ← ¬A,M iff θ is a fail answer for ← A. A fail answer to a goal ← A is a
constraint θ such that←θ, A finitely fails. Thus the notion of finite failure of a goal
is crucial in our approach.

It seems that finite failure of a goal G could have been defined as follows. Con-
sider the tree built out of all the derivations for G under some selection rule. Let us
call such a tree an SLDNF + tree [MN89]. If the tree is of finite depth and has no
success leaves then G finitely fails.

As the following examples show, for normal programs such a definition leads to
unsoundness.

Example 3.4 Consider a program { p←¬q; q← q }. The SLDNF+ tree for ←p
consists of one branch ←p; ←¬q. Node ←¬q does not have a son as ←q does not
finitely fail. According to the above-mentioned definition ← p fails. On the other
hand ←p should not be treated as failed because comp({ p←¬q; q←q }) 6|= ¬p. 2
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Example 3.5 Let P be the program

p← ¬q(x), r(x)
q(a)← q(a)
r(a)

The following is an SLDNF+ tree for ←p:

←p
|

←¬q(x), r(x)

|
←x 6=a, r(x)

Goal←x 6=a, r(x) is derived from←¬q(x), r(x) since←x 6=a, q(x) finitely fails. The
branch of the tree subsumes every derivation for←p because if←θ, q(x) finitely fails
then x 6=a is more general than θ. According to the above-mentioned definition ←p
fails but ¬p is not a logical consequence of comp(P ) (as ¬q(a), r(a) is true in some
models of comp(P )). 2

This unsoundness should not be surprising. There are three possibilities:
(1) comp(P ) |= p, (2) comp(P ) |= ¬p and (3) neither (1) nor (2). Under an appro-
priate completeness assumption, lack of success in a finite depth SLDNF+ tree for
←p implies that (1) does not hold. But this only means that (2) or (3) holds; (2) is
not implied.

In the next section we present a definition of finitely failed SLDFA-trees that gives
sound results. The main difference from SLDNF- (and SLDNF+-) failed trees is that
the branches of our trees are not necessarily SLDFA-derivations. In SLDNF+- and
SLDNF-trees the answer(s) for←¬A are used to construct the son(s) of←...,¬A, ... .
In a failed SLDFA-tree, roughly speaking, negation of some answers for ←A is used
instead. However the two concepts of failed trees are still similar, in fact ours
subsumes that of SLDNF-resolution.

Finitely failed SLDFA-trees may be intuitively seen as proofs of their roots w.r.t.
the assumed semantics. (Remember that truth of a goal means falsity of its body).
They are constructed as follows.

Consider a root G and assume that the selected literal is positive. Then G is
treated as in SLDNF-resolution: to prove G it is enough to prove the goals that
are positively derived from G. So these goals are made the children of G and failed
subtrees for them are constructed.

Now assume that the selected literal is negative, say G is ← θ,¬A,L . The
proof is by cases, we show that θ → (A ∨ ¬L). Let δ1, . . . , δn (n ≥ 0) be some
computed answers for←A. Thus each δj implies A (with respect to the completion
semantics, i.e. comp(P ) |= δj → A). If δ1, . . . , δn “cover” θ, i.e. θ → δ1 ∨ · · · ∨ δn
(under the underlying equality theory) then we have proven G and no children of
G need to be built. Otherwise θ is “split” into δ1, . . . , δn and some σ1, . . . , σm (i.e.
σ1, . . . , σm are found such that θ → δ1 ∨ · · · ∨ δn ∨ σ1 ∨ · · · ∨ σm). Now the goals
←σi, L (i = 1, . . .m) are made the children of G. By building a failed subtree
for every such goal it is shown that each σi implies ¬L. This completes the proof
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of G. Note that an unsound failed SLDNF+-tree (such as those in Examples 3.4,
3.5) corresponds to an erroneous proof where not all the cases are proven due to
θ 6→ δ1 ∨ · · · ∨ δn ∨ σ1 ∨ · · · ∨ σm for any choice of n, δ1, . . . , δn.

Before coming to a formal definition of SLDFA-resolution, an example:

Example 3.6 (SLDFA finitely failed tree, SLDFA-refutation)
Consider a program
p(a)← p(a)
p(b)
q(b).

The following is a finitely failed tree for ← ¬p(x), q(x):

← ¬p(x), q(x)

| (x=b is a computed answer for ←p(x) and σ1 = x 6=b)
← x 6=b, q(x)

(no clause is applicable)

The tree exemplifies a way of constructing the children of a node with a negative
literal selected: to obtain σ1, . . . , σm satisfying θ → δ1 ∨ · · · ∨ δn ∨ σ1 ∨ · · · ∨ σm, put
m = 1 and σ1 = θ,¬δ1, . . . ,¬δ1 (here θ = true and δ1 = x=b). Note that the tree
is not an SLDNF+-tree since x 6=b is not a fail answer for ←p(x).

Assume that a and b are not the only functors of the underlying language. The
following is a successful SLDFA-derivation (a refutation):

← ¬p(x),¬q(x); ← x 6=a, x6=b,¬q(x); ← x 6=a, x6=b

as x 6=a, x6=b is a fail answer for ← p(x) and for ← x 6=a, x6=b, q(x). So x 6=a, x6=b is
an SLDFA-computed answer for ←¬p(x),¬q(x). 2

3.3 Definition

The definition of SLDFA resolution consists of mutually recursive Definitions 3.7, 3.8
and 3.9. To assure correctness of the definition, the concept of ranks is used, as in
the definition of SLDNF-resolution [Llo87]. Ranks are natural numbers. Refutations
are defined in terms of negative derivation steps of the same rank. These are, in
turn, defined in terms of failed trees of a lower rank. Failed trees are defined in
terms of refutations of a lower rank. The base case is the definitions for rank 0 (of
a refutation and a failed tree).

Definition 3.7 Let P be a program and k ≥ 0. If k > 0 then assume that the
notion of “negatively derived” is defined for rank k. An SLDFA-refutation of rank
k is a sequence of s-goals G0, . . . , Gn such that Gn is ←θ and, for i = 1, . . . , n,

• Gi is positively derived from Gi−1 using a variant C of a program clause from
P such that FV (C) ∩ FV (G0, . . . , Gi−1) = ∅

• or k > 0 and Gi is rank k negatively derived from Gi−1.
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The constraint θ|FV (G0) is a called a rank k SLDFA-computed answer for (the goal
part of) G0.

Definition 3.8 Let P be a program, k > 0 and assume that finitely failed trees of
ranks < k are already defined. Let

G =←θ, L,¬A,L′

be an s-goal with a negative literal selected. G′ is rank k negatively derived from G
if, for some θ′,

• G′ =←θθ′, L, L′,

• ←θθ′, A finitely fails and is of rank <k,

• FV (θ′) ⊆ FV (A);

Constraint θθ′ is called a fail answer for ←θ, A.

Definition 3.9 Let P be a program, k ≥ 0 and G be a goal. Assume that SLDFA-
refutations of ranks < k are already defined. Then G finitely fails and is of rank k iff
there exists a tree (called rank k finitely failed SLDFA-tree) satisfying the following
conditions:

1. each node is an s-goal and the goal part of the root node is G;

2. the tree is finite;

3. if H is a node in the tree with a positive literal selected then for every clause
C of P applicable to H there exists exactly one child of H that is positively
derived from H using a variant of C;

4. a node H with a negative literal selected, of the form

←θ, L,¬A,L′

has children

←σ1, L, L′; . . . ; ←σm, L, L′ where m ≥ 0

provided that there exist

δ1, . . . , δn where n ≥ 0

that are (some of the) SLDFA-computed answers for ←θ, A of rank < k such
that

CET |= θ → δ1 ∨ · · · ∨ δn ∨ σ1 ∨ · · · ∨ σm.

5. no node of the tree is of the form ←θ.

The condition in part 4 of the definition is called safeness condition. (Note that
it is a generalization of that of SLDNF-resolution). A node H satisfying it will be
called correct. A tree satisfying the definition without parts 2 and 5 will be called
an SLDFA pre-failed tree.
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3.4 Comments and examples

This section augments the preceding definitions with some explanations and exam-
ples. Then we discuss some technical properties of SLDFA-refutations and failed
trees.

Note that a refutation with no negative literal selected is of rank 0. A refutation
(failed goal, failed tree) of rank k is also of any higher rank.

A definition of an SLDFA-derivation can be obtained from Definition 3.7 by
removing the requirements for the form of the last goal and of the finiteness of the
sequence. A derivation will be called complete if it is not a prefix of any other
derivation. There exist infinite derivations that do not have a rank. However every
finite derivation is of some (finite) rank.

Note that a branch in a rank k failed tree may not be an SLDFA-derivation, due
to the children of the nodes with negative literals selected. These children are not
necessarily negatively derived from their fathers. The branches are in some sense
more general than derivations: if H has children ←σ1, ...; . . . ;←σm, ... and, on the
other hand, ←σ, ... can be negatively derived from H then σ → σ1 ∨ · · · ∨ σm.

The children of a node ←θ, . . . ,¬A, . . . can be constructed by negating (some)
answers δ1, . . . , δn for ←θ, A. More precisely, it is sufficient to take any m ≥ 0
and any σ1, . . . , σm such that CET |= (σ1 ∨ . . . ∨ σm) ↔ θ ∧ ¬(δ1 ∨ . . . ∨ δn). The
children obtained in such a way are in a sense minimally general. (A standard way
of computing m,σ1, . . . , σm is by transforming θ ∧ ¬(δ1 ∨ . . . ∨ δn) to a disjunctive
normal form).

As in SLDNF-resolution, finitely failed (pre-failed) tree may be not unique for
a given goal. This is due to selecting literals in the goals but also to choosing the
answers δj’s and the constraints σi’s when a negative literal is selected. Obviously,
improper choosing of these answers (“too few answers”) may result in nonexistence
of a failed subtree for some child ←σi, ... due to σi being too general. On the other
hand, some finite set of answers is sufficient as the completeness theorem shows.

Note that every finitely failed SLDNF- (and SLDNFS-) tree is also an SLDFA-
tree of the same rank (modulo using equalities instead of substitutions). The same
holds for refutations and derivations.

Example 3.10 It is easy to check that Example 3.6 is compatible with the definition
of SLDFA-resolution and that a finitely failed tree for ← p does not exist for the
programs from Examples 3.4 and 3.5. 2

Example 3.11 Remark: for convenience, some constraints in our examples may be
replaced by equivalent ones.

Consider the program:
even(0)
even(s(x))← ¬even(x).

Then for i = 1, 2, . . . and for any constraint θ (including true) satisfying the condi-
tions below the tree consisting of a single branch

←θ, x=s2i−1(0), even(x)
|

←θ, x=s2i−1(0), x=s(x′),¬even(x′)

11



is a finitely failed tree of rank 2i− 1 and

←θ, even(x); ←θ, x=s(x′),¬even(x′); ←θ, x=s(x′), x′=s2i−1(0)

is a refutation of rank 2i with the computed answer θ, x=s2i(0). The conditions on
θ are as follows. For proper standardization apart it is required that x′ 6∈ FV (θ).
For the satisfiability of the constraints in the goals, θ, x=s2i−1(0) (respectively
θ, x=s2i(0)) has to be satisfiable. 2

Example 3.12 Consider the following program
r ← ¬p(x),¬q(x).
p(x)← p(x).
p(a).
q(a)← q(a).
q(x)← ¬s(x).
s(a).

and assume that a is not the only functor of the underlying language. With respect
to comp(P), p(x) is true for x = a and q(x) for x 6= a; r is false.

The following is a finitely failed tree for ←r of rank 2:

← r
|

← ¬p(x),¬q(x)

| (←p(x) succeeds with x = a)
← x 6= a,¬q(x).

The last node does not have children since x 6=a is a computed answer for←x 6=a, q(x)
obtained from the following refutation of rank 1: ← x 6=a, q(x); ← x 6=a,¬s(x);
←x 6=a. 2

Now we mention some, rather technical, properties of SLDFA-resolution. Note
that if ←σ,M is a goal in a derivation beginning with ←θ, L then σ is of the form
θθ′ where FV (θ) ∩ FV (θ′,M) ⊆ FV (L). Any computed answer for ←θ, L is of
the form (θθ′)|V (where V = FV (←θ, L)) which is equivalent to θ(θ′|V ) and to
θ(θ′|FV (L)).

Let x 6∈ FV (L). It can be proven that θδ is (equivalent to) a computed answer
for ←θ, L iff (∃xθ)δ is (equivalent to) a computed answer for ←(∃xθ), L and that
←θ, L finitely fails iff←(∃xθ), L finitely fails. This makes it possible to use simpler
constraints at lower ranks: if ¬A is selected in←θ, ... then it is sufficient to compute
fail answers and answers for←θ|FV (A), A instead of←θ, A. For instance, in the case
of the derivation in Example 3.11 this means computing a fail answer for←even(x′)
instead of ←θ, x=s(x′), even(x′).

The following two properties are also useful in simplifying the constraints in
derivations and (pre-) failed trees.

Consider a node ←σ,M of an SLDFA pre-failed tree and a variable x occurring
free in σ and not occurring in M . By the previous property,←σ,M can be replaced
in the tree by ←∃xσ,M together with the corresponding replacement for its de-
scendant nodes (←σ′,M ′ by←∃xσ′,M ′.) Obviously, the obtained tree is finite and
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without a “success” node iff the original tree is finitely failed. (Usually the obtained
tree is not an SLDFA pre-failed tree but its modified subtree is).

For example, the pre-failed tree for { p(s(x))←p(x) } ∪ {←p(x) } has nodes
←x=s(x1), . . . , xi−1=s(xi), p(xi), for i > 0. Multiple application of the last property
makes it possible to replace them by ←x=si(xi), p(xi) respectively.

Similarly, let ←θθ′,M be a goal in a refutation for ←θ, L with the last goal
←θθ′θ′′. Let x ∈ FV (θθ′) and x 6∈ FV (θ, L) ∪ FV (M). Then ←θθ′,M can be
replaced by ←∃x(θθ′),M (together with the corresponding replacement of its suc-
cessors) without changing the answer. (The new answer is (∃x(θθ′)θ′′)|FV (θ,L) which
is equivalent to (θθ′θ′′)|FV (θ,L).)

SLDFA-resolution also works for goals (and clauses) in the style of [Cha89] where
not only atoms can be negated but also formulae of the form ∃x(σ,M). Extension
(along the lines of [Llo87]) to clause (and goal) bodies being arbitrary first order
formulae seems obvious.

3.5 Variants of SLDFA-resolution

Here we present two variants of the notion of finitely failed tree.

1. It is possible to introduce a sound notion of a failed tree where branches are
derivations. However the safeness condition (from Def. 3.9.4) is still necessary
for soundness. So the corresponding definition is obtained from Definition
3.9 by adding a requirement that a child of a node with a negative literal
selected is negatively derived from its father. This variant is incomplete; for
the program from Example 3.12 there does not exist such a finitely failed tree.
The version from Definition 3.9 is also simpler because the failed trees refer
only to refutations of a lower rank and not to failed trees.

2. The children of a node H with a negative literal selected in Definition 3.9 may
be of the form

← σj, L,¬A,L′

(¬A is not removed) for j = 1, . . . ,m. This modification may simplify con-
structing failed trees. If a tree from Definition 3.9 is built top-down then all
the necessary answers for←θ, A are to be found before building the children of
←θ, ...,¬A, ... . This modification makes it possible to delay computing some
of these answers.

Note that with this modification part 4 of Definition 3.9 may be simplified by
using only one answer δ1 for ←θ, A (n = 1).

Soundness of these variants follows from the proof of soundness of SLDFA-
resolution, see below (with obvious minor modifications for case 2).

4 Soundness of SLDFA resolution

In this section we prove soundness of SLDFA-resolution. We begin with a lemma
that is an extension of Lemma 15.3 of [Llo87].
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Lemma 4.1 Let P be a program and G an s-goal with a positive literal selected.
Let {G1, . . . , Gn}, where n ≥ 0, be the set of goals positively derived from G. Then

comp(P ) |= G↔ ∀x(G1 ∧ . . . ∧Gn).

where x = FV (G1 ∧ . . . ∧Gn) \ FV (G).
(Hence comp(P ) |= ∀G↔ ∀(G1 ∧ . . . ∧Gn). If n = 0 then comp(P ) |= G).

PROOF
Without lack of generality we assume that the first atom, say p(s), is selected

in G. Let the set Q of clauses of P that begin with p be as in section 2.2. We
may assume that the variables of Q are renamed in the same way as they had been
renamed to derive G1, . . . , Gn from G.

Let G be ← θ, p(s),M and y be the variables of Q. Then, by the definition of
the completed definition of p in P , G is equivalent (with respect to comp(P )) to

← [θ ∧ (
∨m
i=1 ∃y(s=t

i
, L

i
)) ∧M ] and to

∀y
m∧
i=1

← θ, s=t
i
, L

i
,M.

as variables y are distinct from those occurring in G. By removing from the conjunc-
tion every element in which θ, s=t

i
is unsatisfiable we obtain an equivalent formula

∀y(G1 ∧ . . . ∧Gn). Removing from y the variables that do not occur in G1, . . . , Gn

results in ∀x(G1 ∧ . . . ∧Gn). 2

Theorem 4.2 (Soundness of SLDFA resolution)
Let P be a program and G =←θ, L a goal.

1◦ If δ is an SLDFA computed answer for G then

comp(P ) |= δ → L

(and also comp(P ) |= δ → θ, L ).

2◦ If G finitely fails then
comp(P ) |= G

(or, equivalently, comp(P ) |= θ → ¬L).

PROOF
Induction on the rank. Let k ≥ 0. If k 6= 0 then assume that 1◦ holds for every

G and δ obtained from a refutation of rank < k and that 2◦ holds for every G of
rank < k. We show that 1◦ and 2◦ hold for rank k.

To simplify the presentation of the proof we write the selected literal as the first
in the goal. The necessary generalization is trivial.

To prove 1◦ consider a rank k refutation for G with an answer δ. Its last goal is
then ←δ′, where δ is δ′ restricted to the free variables of G. Let

←σ, p(t̄), H
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(where H is a possibly empty sequence of literals) be an element of the refutation
with a positive literal selected. Then there exists a variant p(ū)← B of a clause of P
such that←σ, ū=t̄, B,H is the next goal in the refutation. Note that P |= B → p(ū)
and CET |= ū=t̄, p(ū)→ p(t̄). Hence

comp(P ) |= (σ, ū=t̄, B,H)→ (σ, p(t̄), H) (1)

Consider a “negative SLDFA step”; let

←σ,¬A,H

be an element of the refutation with a negative literal selected. Then the next goal
in the refutation is ←σρ,H and ←σρ,A finitely fails and is of rank < k. Hence by
the inductive assumption on 2◦ for lower ranks comp(P ) |= σρ→ ¬A. Thus

comp(P ) |= σρ,H → σ,¬A,H (2)

From (1) and (2) it follows that if ←Qi+1 is (positively or rank k negatively)
derived from ←Qi then comp(P ) |= Qi+1 → Qi. Hence by simple induction on the
length of the refutation we obtain comp(P ) |= δ′ → θ, L and

comp(P ) |= δ → θ, L

since δ is δ′ with existential quantification of variables that do not occur in θ, L.
Hence 1◦ holds for refutations of rank k, QED(1◦).

2◦ will be proved by induction on the depth of the tree which is referred to in the
definition of finite failure. Let l ≥ 0. If l > 0 then assume that 2◦ holds for every
finitely failed H of rank k such that there exists a finitely failed SLDFA tree for H
of depth < l.

Consider a finitely failed SLDFA tree for G of depth l. There are two possibilities.

1. A positive literal is selected in G. By lemma 4.1:

If G has no children then comp(P ) |= G, QED.

IfG has childrenG1, . . . , Gn then comp(P ) |= ∀G↔ ∀(G1∧. . .∧Gn). By the in-
ductive assumption for smaller depths, for every i = 1, . . . , n, comp(P ) |= ∀Gi.
Hence comp(P ) |= G, QED.

2. A negative literal is selected in G. Let G =←θ,¬A,H. There exist bindings
δ1, . . . , δm, σ1, . . . , σn where m,n ≥ 0 such that

(a)
CET |= θ → δ1 ∨ . . . ∨ δm ∨ σ1 ∨ . . . ∨ σn (3)

(b) G has n children ← σj, H, j = 1, . . . , n,

(c) for every j = 1, . . . ,m, δj is an answer for ←θ, A obtained from a refu-
tation of rank < k.
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By 2c and the inductive assumption on 1◦ for lower ranks, for every j =
1, . . . ,m, comp(P ) |= δj→A. Thus

comp(P ) |= δj → ¬(¬A,H) (4)

By 2b and the inductive assumption on 2◦ for trees of lower depth, for every
j = 1, . . . , n, comp(P ) |= σj → ¬(H) Thus

comp(P ) |= σj → ¬(¬A,H) (5)

Now, by (3), (4), (5),

comp(P ) |= θ → ¬(¬A,H)

which proves 2◦ for goals of rank k and trees of depth l, QED.

2

5 Completeness of SLDFA-resolution

It is a well-known fact that SLDNF-resolution is incomplete. Introducing SLDFA-
resolution removes the problem of floundering. However, floundering is not the
only reason for incompleteness w.r.t. Clark completion. Possible inconsistency of
the program completion and, using the terminology of [Cav88], the problem with
excluded middle remain. These two problems do not occur with strict programs. For
arbitrary programs they can be solved by using three-valued logic or by introducing
another form of completion, the strict completion [DM91] (called double completion
in [Wal93]).

In this section we use 3-valued completion semantics introduced by Kunen [Kun87].
The meaning of a program is given by logical consequences of its completion in a
3-valued logic [Fit85]. The third truth value, added to t and f, is u (“undefined” or
“unknown”). The logical connectives (but ↔) are interpreted as in Kleene’s logic.
(Their truth functions are extensions of those of the standard logic, obtained by set-
ting ¬u to be u, u∨ t and t∨u to be t, u∨ f , u∨u and f ∨u to be u. Conjunction
may be defined by α ∧ β := ¬(¬α ∨ ¬β) and implication by α → β := ¬α ∨ β).
F ↔ F ′ is true if both F and F ′ have the same truth value, otherwise it is false.
The existential quantifier is treated as an infinite disjunction (∃F is t in an inter-
pretation if F is t in this interpretation for some variable valuation; it is f if for all
variable valuations F is f; otherwise it is u). Similarly the universal quantifier is
treated as an infinite conjunction. The notions of a model and of logical consequence
(denoted by |=3) are obvious modification of those of the standard logic. However
it is assumed that = is always 2-valued (i.e. never takes value u).

We prove completeness of SLDFA-resolution and its independence from selection
rule. Selection rule is a function selecting a literal in a goal. For generality we assume
that the selected literal in a goal in a derivation (branch of a pre-failed tree) is a
function of the preceding part of the derivation (branch) [Apt90]. A selection rule is
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fair iff in any infinite branch of a pre-failed tree every literal is eventually selected.
(Obviously a fairness requirement is not needed for derivations).

In the case of SLD-resolution the completeness property states that if θ is a
correct answer substitution then there exists a computed answer that is more gen-
eral that θ. This does not hold for SLDFA-resolution. (Neither it holds for SLD-
resolution when the completion semantics with WDCA is employed [MMP88]). Let
P be { p(a)←; p(x)←¬q(x); q(a)←}. Then comp(P ) |= p(x) but true is not a com-
puted answer to ←p(x). (The answers are x=a and x 6=a). Hence for our purposes
a completeness property has to be formulated in another way. A correct answer is
to be “covered” by a finite set of computed answers.

Theorem 5.1 (Completeness of SLDFA-resolution and independence from selec-
tion rule)

Let P be a program, G =←θ, L a goal. Then for any fair selection rule

• if comp(P ) |=3 G then G finitely fails and

• if there exists δ such that comp(P ) |=3 δ → θ, L then there exist SLDFA-
computed answers δ1, . . . , δn for G such that CET |= δ → δ1,∨ . . . ∨ δn.

The proof is preceded by a technical lemma. In what follows the prefix SLDFA-
will be omitted.

Lemma 5.2 Assume that ←θ, L finitely fails and is of rank k. If CET |= σ → θ
then ←σ, L finitely fails and is of rank k.

Assume that δ is a computed answer for ←θ, L. For any constraint σ, if σδ is
satisfiable then σδ is (equivalent to) a computed answer for ←σθ, L.

PROOF
Without loss of generality it may be assumed that any variable occurring in a

failed tree (respectively refutation) for ←θ, L and not occurring in ←θ, L does not
occur in σ. (Otherwise the variables in the tree (refutation) may be renamed).

By induction on the rank we obtain the following. Adding σ to every node of
a finitely failed tree for ←θ, L results in a finitely failed tree with the root ←σθ, L
(some nodes may have been removed as the conjunction of σ and the constraint in
the node may be unsatisfiable). Adding σ to every goal of the derivation that gives
the answer δ results in a derivation that gives an answer equivalent to σδ. 2

From the proof it follows that the same literals are selected in any pair of corre-
sponding goals of the corresponding failed trees for ←θ, L and ←σ, L (respectively
of the corresponding refutations for ←θ, L and ←σθ, L).

PROOF (of the theorem)
We use a characterization of logical consequences of comp(P ) given by Shep-

herdson [She91]. For any formula F without↔ and for any natural number n a pair
of constraints Tn(F ) and Fn(F ) is defined. The definition is by induction on n and
on the structure of F . If F is an equation s=t then Tn(F ) is s=t and Fn(F ) is s 6=t.
Let F be an atom p(s). Let p(t

i
) ← M

i
(i = 1, . . . , l) be the clauses of P with the
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heads unifiable with p(s) (and with the variables standardized apart). Both T0(F )
and F0(F ) are false and

Tn+1(p(s)) is
l∨

i=1

∃yi(s=ti ∧Tn(M
i
))

Fn+1(p(s)) is
l∧

i=1

∀yi(s=ti → Fn(M
i
))

where yi are the free variables of p(t
i
)←M

i
.

For non atomic formulae Tn(F ) and Fn(F ) are defined in an obvious way:

Tn(¬F ) = Fn(F ) Fn(¬F ) = Tn(F )

Tn(F ∧G) = Tn(F ) ∧Tn(G) Fn(F ∧G) = Fn(F ) ∨ Fn(G)

Tn(F ∨G) = Tn(F ) ∨Tn(G) Fn(F ∨G) = Fn(F ) ∧ Fn(G)

Tn(F → G) = Fn(F ) ∨Tn(G) Fn(F → G) = Tn(F ) ∧ Fn(G)

Tn(∀xF ) = ∀xTn(F ) Fn(∀xF ) = ∃xFn(F )

Note that for a constraint θ, Tn(θ) and Fn(θ) are just (equivalent to) θ and ¬θ
respectively. If F is a closed formula so are Tn(F ) and Fn(F ).

The characterization of Kunen semantics is given by the following property es-
tablished by Theorem 6 and Lemma 4.1 of [She91]. For a closed F

comp(P ) |=3 F iff CET |= Tn(F ) for some n

comp(P ) |=3 ¬F iff CET |= Fn(F ) for some n

(Lemma 4.1 provides a characterization of the 3-valued immediate consequence op-
erator [Fit85] in terms of Tn and Fn. Theorem 6 relates the immediate consequence
operator and 3-valued logical consequences of comp(P); it is a generalization of The-
orem 6.3 of [Kun87] for languages other than those with infinitely many function
symbols of all arities.)

As Tn(∀(←θ, L)) is ∀(θ → Fn(L)), comp(P ) |=3 ←θ, L implies that Fn(L) is
more general than θ for some n. Thus, by Lemma 5.2 to prove the first clause of
the theorem it is sufficient to show that
(1) for any fair selection rule, n and L the goal ←Fn(L), L finitely fails (or Fn(L)
is unsatisfiable).

As Tn(∀(δ → θ, L)) is ∀(δ → θ,Tn(L)), to prove the second clause of the theorem
it is sufficient to prove that
(2) for any fair selection rule, n and L there exist computed answers δ1, . . . , δk
(k ≥ 0) for ←L such that CET |= Tn(L)→ δ1 ∨ . . . ∨ δk (because θδi, if satisfiable,
is a computed answer for ←θ, L by Lemma 5.2, i = 1, . . . , k).

Now we introduce some auxiliary notation.

F(n1,...,nm)(L1, . . . , Lm) = Fn1(L1) ∨ · · · ∨ Fnm(Lm)

T(n1,...,nm)(L1, . . . , Lm) = Tn1(L1) ∧ · · · ∧Tnm(Lm)

Obviously Fn(L) = F(n,...,n)(L) and Tn(L) = T(n,...,n)(L).
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To prove (1) and (2) we prove a pair of stronger properties. For any fair selection
rule, for any L and for any nonempty sequence of natural numbers n of the same
length as L
(1’) G′ =←Fn(L), L,M finitely fails for any M (or Fn(L) is unsatisfiable)
and
(2’) There exist computed answers δ1, . . . , δk for ←L such that CET |= Tn(L) →
δ1 ∨ . . . ∨ δk.

Notice that (1’) implies that for any fair selection rule ←Fn(L), N finitely fails
for any permutation N of L,M .

The proof is by induction on n with respect to a kind of multiset ordering defined
as follows [Kun89]. Let pre-ordering ≤ be the least transitive and reflexive relation
such that m ≤ n whenever m is a subsequence of a permutation of n, or m results
from replacing some component ni of n by an arbitrary finite sequence of numbers
less than ni. The induction uses the corresponding strict partial ordering < ; so
m < n iff m ≤ n and m is not a permutation of n.

The base case, n = (0), is trivial as F(0)(L) and T(0)(L) are false. Consider
some n and assume that (1’) and (2’) hold for any m < n. Let n = (n1, . . . , nm),
n′ = (n2, . . . , nm), L = L1, . . . , Lm and L′ = L2, . . . , Lm.

We prove (2’) first. To simplify the presentation of the proof we assume that L1

is selected in ←L. For any other selected literal the proof is identical. For n1 = 0
Tn(L) is false and (2’) obviously holds. Let n1 > 0. There are two cases.

1. L1 = p(s). Let p(t
i
) ← M

i
(i = 1, . . . , l) be the clauses of P with the

heads unifiable with p(s) (and with the variables standardized apart). For i =

1, . . . , l, goal ←s=t
i
,M

i
, L
′

is positively derived from ←L. By the inductive

assumption, for any fair selection rule there are answers δi1, . . . , δ
i
ki

for←M
i
, L
′

such that CET |= Tm(M
i
, L
′
)→ δi1 ∨ . . . ∨ δiki

where m = (n1 − 1, . . . , n1 − 1,
n2, . . . , nm).

By Lemma 5.2, for j = 1, . . . , ki constraint s=t
i
, δij is a computed answer for

←s=ti,M i
, L
′
. We may assume that it is obtained from a refutation that

uses clause variants which do not contain any variable from L. Adding ←L
in front of the refutation results in a refutation for ←L with the computed
answer (s=t

i
, δij)|FV (L).

By the definition, Tn1(p(s)) is
∨l
i=1(s = t

i ∧ Tn1−1(M
i
))|FV (s). Thus Tn(L)

is (equivalent to)
∨l
i=1(s = t

i ∧ Tm(M
i
, L
′
))|FV (L). Hence, Tn(L) implies∨l

i=1(s=t
i∧(δi1∨. . .∨δiki

))|FV (L) which is equivalent to a disjunction of computed

answers for ←L, namely to
∨l
i=1

∨ki
j=1(s=t

i
, δij)|FV (L).

2. L1 is a negative literal ¬A. So Tn(L) is Fn1(A) ∧ Tn′(L
′
). By the inductive

assumption (1’)←Fn1(A), A fails and←Fn1(A), L
′
is negatively derived from

←L. By the inductive assumption (2’) for L
′
and n′, in a way similar as above

we obtain computed answers for L satisfying (2’).

Now we prove (1’). First we construct a tree T which is a “top part” of a pre-
failed tree for G′. Each node of T is of the form ←Fn(L), ρ, L,N . If its selected
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literal is from L then the node is a leaf, otherwise it has (zero or more) children
built according to Definition 3.9. T is finite as the selection rule is fair.

We show that T can be extended to a finitely failed tree for G′ by building a
finitely failed tree for every leaf of T with a selected literal from L. By Lemma 5.2 it
is sufficient to prove that for any fair selection rule and any N there exists a finitely
failed tree for H =←Fn(L), L,N provided a literal of L is selected in H.

To simplify technical details, we can assume as before that the selected literal
of L is L1. Consider first the case of Fn1(L1) being unsatisfiable. Then Fn(L) is
Fn′(L

′
) and H fails by the inductive assumption. So we can assume that Fn1(L1) is

satisfiable (hence n1 > 0) and consider two cases.

1. Let L1 = p(s). Let us denote the matching clauses of P as previously.
The only goals that can be positively derived from H are those of Hi =

←Fn(L), s=t
i
,M

i
, L
′
, N (i = 1, . . . , l) whose constraints are satisfiable.

By definition Fn1(p(s)) is
∧l
i=1 ∀yi(s=t

i → Fn1−1(M
i
)) where yi are the free

variables of p(t
i
)←M

i
. Thus Fn1(p(s)), s=t

i
implies Fn1−1(M

i
). So Fn(L), s=t

i

implies Fn1−1(M
i
)∨Fn′(L

′
) which is Fm(M

i
, L
′
) where m = (n1−1, . . . , n1−1,

n2, . . . , nm) < n.

As for any fair selection rule ←Fm(M
i
, L
′
),M

i
, L
′
, N finitely fails (by the

inductive assumption), there exists a finitely failed tree for Hi (by Lemma 5.2,
for any fair selection rule). Thus there exists a finitely failed tree for H (and
for the selection rule under consideration).

2. Let L1 = ¬A. Fn1(¬A) is by definition Tn1(A). Thus Fn(L) is Tn1(A) ∨
Fn′(L

′
). A failed tree for H can be built in the following way. H has a single

child←Fn′(L
′
), L

′
, N and the rest of the tree is a finitely failed tree that exists

by inductive assumption (1’) for L
′

and n′. The safeness condition for H is
satisfied by inductive assumption (2’) for A and (n1) and by Lemma 5.2. 2

From the proof it follows that it is sufficient to use failed trees in which a node
with a negative literal selected has at most one child. The completeness theorem
also holds when a restriction is imposed that the sons of a node←θ, . . . ,¬A, . . . are
computed by negating some answers to←θ, A , as described in Section 3.4. To show
this one needs an obvious modification of the last paragraph of the proof. Also the
second variant of SLDFA-resolution from Section 3.5 is complete. We omit a proof
which can be based on transforming any SLDFA-failed tree into a failed tree of the
variant.

In another paper [Dra93a] we show that from the completeness of SLDFA-
resolution it follows that SLDNF-resolution is complete w.r.t. 3-valued completion
semantics for non floundering queries (under appropriate fairness assumptions).

It remains to prove that SLDFA-resolution is sound w.r.t. 3-valued completion
semantics. It could be done by checking that the proofs of Theorem 4.2 and Lemma
4.1 hold in 3-valued logic. A simpler proof can be constructed using the equivalence
of 3-valued completion semantics and strict completion semantics ([Dra93a], this
equivalence is implicit in [Wal93]). Soundness of SLDFA-resolution w.r.t. the strict
completion semantics follows easily from Theorem 4.2. We outline the proof.
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Strict completion of P is the Clark completion of a program P ′ obtained from
P by renaming (some occurrences of) predicate symbols. Similar renaming of a
failed tree (refutation) for P and ←Q results in a a failed tree (refutation) for P ′

and ←Q′ (where ←Q′ is the renamed ←Q). By Theorem 4.2 comp(P ′) |= ¬Q′
(respectively comp(P ′) |= δ → Q′ where δ is the computed answer, the same for
both refutations). This means, by definition, that the strict completion semantics
of P entails ¬Q (respectively δ → Q).

6 Computing fail answers

SLDFA-resolution as presented above does not specify how to construct finitely
failed SLDFA-trees to compute fail answers. In this section we informally describe a
method of constructing such trees. The method stems from [MN89]. The basic idea
is to build a pre-failed tree for a given goal G. If the tree is not finitely failed, due
to an infinite branch or a “success” leaf, then it is pruned by adding an appropriate
constraint to G. For the equality theory with WDCA, constructing finitely failed
trees for definite programs was discussed in [MN89] and for normal programs in
[Näs90] (with failed trees defined as in Section 3.5, version 1).

We begin with defining some concepts. Then we discuss pruning a node of a tree
and constructing a finitely failed tree by pruning a set of nodes. Then the search
for fail answers is briefly discussed. A comparison with the methods of [Cha88] and
[Cha89, Stu91] ends the section.

In what follows we assume a fixed program P . By a successful branch of a pre-
failed tree we mean a branch that is finite and ends at a node of the form ← θ.
Remember that in general θ is not related to a correct answer for the root of the
tree.

A cross-section of a pre-failed tree is any finite set S of nodes of the tree such
that every successful or infinite branch has a node in S.

By instantiating a pre-failed tree T with the root ←θ, L by a constraint σ we
mean changing every node ←θ′,M into ←θ′σ,M if θ′σ is satisfiable or remov-
ing the node otherwise; for technical reasons we require that θσ is satisfiable. If
FV (σ) ∩ FV (T ) ⊆ FV (θ, L) (the variables “introduced” in the tree do not occur
free in σ) then the obtained tree is still a pre-failed tree. Indeed, by Lemma 5.2
the safeness condition holds for the nodes with a negative literal selected; the rest
of the proof is obvious. Thus if the instantiated pre-failed tree is finite and has
no successful branches then the tree is a finitely failed SLDFA-tree provided that
FV (σ) ∩ FV (T ) ⊆ FV (θ, L).

To construct a finitely failed tree from a pre-failed tree T it is sufficient to choose
a cross-section {←θ1, ...; . . . ;←θn, ...} of T and find a constraint σ (satisfying the
above condition) such that instantiating T with σ removes the nodes of the cross-
section from T . The remaining tree is finitely failed by the definition of the cross-
section. (Obviously, the whole pre-failed tree need not to be constructed, it is enough
to build the part “between the root and the cross-section”). As we are interested
in fail answers satisfying Definition 3.8, from now on we require that if σ is used to
instantiate a tree with the root ←θ, A then FV (σ) ⊆ FV (A).
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We begin with pruning a single node, i.e. finding a σ such that instantiating the
tree with σ results in removing a given node from a pre-failed tree.

Consider such a tree with the root ←θ, A and its node ←θ′, L. Pruning boils
down to instantiating the tree with a constraint σ such that θ′σ is not satisfiable.
This condition is equivalent to CET |= σ → ¬(θ′|FV (A)) (since FV (σ) ⊆ FV (A)).
So a most general σ satisfying this is (equivalent to) σpr = ¬(θ′|FV (A)).

If σprθ is unsatisfiable then the required σ does not exist and the node ←θ′, L
cannot be pruned. Otherwise instantiating the tree with σpr (or with a σ less general
than σpr) results in removing ←θ′, L and the subtree rooted at this node from the
tree. Some other nodes may be removed too.

Example 6.1 Consider the following pre-failed tree.

← p(x)
|

← x=y, q(y)
|

← x=y, y=f(z), r(z)
|

← x=y, y=f(z)

The second node of this tree cannot be pruned. A most general constraint prun-
ing the third (or the fourth) node is ¬∃y, z(x=y, y=f(z)) which is equivalent to
¬∃z(x=f(z)). 2

Now we are ready to discuss computing fail answers. Consider a pre-failed
tree with the root ←θ, A. In order to prune all the nodes of a cross-section
{←θ1, ...; . . . ;←θn, ...} (thus obtaining a finitely failed tree) the tree has to be in-
stantiated with a constraint σ such that CET |= σ → σ1

pr ∧ . . . ∧ σnpr where σipr

is ¬(θi|FV (A)) for i = 1, . . . , n. A most general σ satisfying this is (equivalent to)

σpr = σ1
pr ∧ . . . ∧ σnpr. If σprθ is unsatisfiable then the required σ does not exist and

the cross-section cannot be pruned. Otherwise instantiating the tree with σpr results
in a finitely failed tree. Constraint θσpr, equal to

θ ∧ ¬(θ1|FV (A)) ∧ . . . ∧ ¬(θn|FV (A)),

is a fail answer for ←θ, A. Usually it is convenient to transform such a fail answer
to some disjunctive normal form γ1 ∨ . . . ∨ γm and treat γ1, . . . , γm as separate fail
answers. As explained in Section 2.3, the actual methods of transforming constraints
are outside the scope of this paper.

Example 6.2 The following is a pre-failed tree (of rank 1)

← even(x)

,, XX
XXX

← x=0 ← x=s(x1),¬even(x1)
| (← even(x1) succeeds with x1 = 0)

← x=s(x1), x1 6=0

for the program:
even(0).
even(s(x))← ¬even(x).
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The set {←x=0; ←x=s(x1), x1 6=0 } is a cross-section of the tree. Constraint σ1
pr =

x 6=0 prunes←x=0. Constraint σ2
pr = ¬∃x1(x=s(x1), x1 6=0) prunes←x=s(x1), x1 6=0.

Constraint σ1
pr ∧ σ2

pr is a fail answer for ←even(x).
Under CET, σ2

pr is equivalent to x=s(0) ∨ ∀x1(x 6=s(x1)). The fail answer above
is equivalent to x=s(0) ∨ x 6=0,∀x1(x 6=s(x1)). It is often convenient to treat the
elements of such a disjunction as separate fail answers.

If s and 0 are the only functors of the underlying language then, due to WDCA,
σ2

pr is equivalent to x=s(0)∨x=0 and the fail answer above is equivalent to x=s(0).
2

The described method of computing fail answers is not deterministic. First, the
pre-failed tree is not unique for a given goal, even with a fixed selection rule. For
every node ←θ′, ... with a ¬B selected, choosing different sets of computed answers
for ←B results in different trees.

The obtained fail answer depends on the choice of a pre-failed tree and on the
choice of a cross-section. If S and S ′ are cross-sections of the pre-failed tree such
that S is “above” S ′ (there is a node from S in every path between the root and
some node from S ′) then the fail answer θσ′pr obtained by using S ′ is more general
than that obtained from S.

To justify this, let S = {←θ1, ...; . . . ;←θn, ...} and S ′ = {←θ′1, ...; . . . ;←θ′m, ...}
be cross-sections of a pre-failed tree for ←θ, A such that S is “above” S ′. We
have to assume that if ←θ′′, ... is a son of a node ←θ′, ... with a negative literal
selected then θ′′ → θ′. (For example this holds for the way of constructing the
sons of ←θ′, ... described in Section 3.4). The fail answers corresponding to S
and S ′ are respectively θσpr and θσ′pr where σpr = ¬(θ1|FV (A)) ∧ . . . ∧ ¬(θn|FV (A))
and σ′pr = ¬(θ′1|FV (A)) ∧ . . . ∧ ¬(θ′m|FV (A)). For every j = 1, . . . ,m there exists
i, 1 ≤ i ≤ n, such that ←θ′j, ... is a descendant of ←θi, ... . Hence θ′j → θi and
¬(θi|FV (A))→ ¬(θ′j|FV (A)). Thus σpr → σ′pr.

Example 6.3 Consider the program
even(0)
even(s2(x))← even(x)

and the pre-failed tree (of rank 0)

← even(x)

##

← x=0
XX

XXX

← x=s2(x1), even(x1)

�
�

← x=s2(0)
TT

← x=s4(x2), even(x2)
/ \
· · · · · ·

(the constraints are simplified as explained at the end of Section 3.4).
Cross-section S1 = {←x=0; ←x=s2(x1), even(x1) } gives a fail answer σ1 =

x 6=0,∀x1(x 6=s2(x1)). Cross-section S2 = {←x=0;←x=s2(0);←x=s4(x2), even(x2) }
results in σ2 = x 6=0, x6=s2(0), ∀x2(x 6=s4(x2)). Further cross-sections result in
x 6=0, x6=s2(0), . . . , x 6=s2n−2(0),∀xn(x 6=s2n(xn)). 2
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Similarly, let tree T ′ be obtained from a pre-failed tree T by using some additional
computed answers (for ← θ, B, where ¬B is selected in some node ← θ′, ... of the
tree). If S and S ′ are “corresponding” cross-sections of T and T ′ then the fail answer
obtained from S ′ is more general than that obtained from S.

Obviously, in general it is impossible to choose a “lowest” cross-section in a tree
(since the pre-failed tree may be infinite). It may also be impossible to use all
the relevant computed answers while building a pre-failed tree (since there may be
infinitely many such answers associated with a single node). So after obtaining a
fail answer from a cross-section of a pre-failed tree, it may be necessary to modify
the tree and/or choose a “lower” cross-section in order to obtain a more general fail
answer. The need for modifying the tree can be avoided by using the alternative
definition of (pre-) failed trees of Section 3.5, version 2.

The fail answers obtained in this way overlap, any fail answer covers the previous
ones. If required, mutually excluding answers can be obtained by adding the nega-
tion of the previous answers to the current one, obtaining θσ′pr(θ1 ∨ . . . ∨ θn)|FV (A)

instead of θσ′pr (where θ1, . . . , θn are the constraints of the previous cross-section and
θσ′pr is the fail answer obtained from the current cross-section as described above).

Example 6.4 Applying this modification to the previous example results in
mutually excluding fail answers (equivalent to) x 6=0,∀z(x 6=s2(z));
∃y(x=s2(y)), x6=s2(0),∀z(x 6=s4(z)); . . . ; ∃y(x=s2n(y)), x6=s2n(0),∀z(x 6=s2n+2(z)); . . . .

Note that if 0 and s are the only functors then, under WDCA, these answers are
equivalent to x=s(0); . . . ;x=s2n+1(0); . . . .

In this example the mutually excluding fail answers are simpler than the over-
lapping ones obtained previously. This is not a general rule. Removing clause
even(0) from the program leads to an opposite situation. The answers computed
as previously are ∀z(x 6=s2n(z)) for n = 1, 2, . . . . The non overlapping answers are
∃y(x=s2n−2(y)), ∀z(x 6=s2n(z)). 2

6.1 Comparison with the methods of Chan

After having described a way of computing fail answers we are ready for comparisons
with other approaches. We compare our method with that of [Cha88] and that
of [Cha89, Stu91]. They are representative for the first and the second principal
approach referred to in Section 1 and they seem to be the most important among
the methods mentioned there.

First we show how our approach subsumes the first method of Chan (SLD-CNF-
resolution of [Cha88]). In SLD-CNF-resolution, negation is treated by negating (the
disjunction of) all the answers to the corresponding non-negated query. The number
of answers has to be finite; soundness requires that the corresponding SLD-CNF-tree
is finite. It is easy to show by induction w.r.t. ranks that every SLD-CNF-tree is also
a pre-failed tree (where for each node ←θ′...,¬B, ... all the answers for ←θ′, B are
used to compute the sons of the node). Obtaining a fail answer from the cross-section
containing the success nodes of the tree is equivalent to negating the conjunction of
the computed answers given by the tree.

Summarizing, the first method of Chan is an instance of our approach. It is
obtained when (1) all the answers for ←θ, A are used in constructing the sons of
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←θ, ...,¬A, ... in a pre-failed tree and (2) only the “lowest” cross-section of a pre-
failed tree is used (if it exists, it contains the leaves of the form ←δ). Our method
is stronger as there is no requirement on finiteness of the trees.

Now we describe briefly and discuss the second method of Chan [Cha89, Stu91].
In that method, if a negated subgoal ¬A is selected in a goal H =←θ, ...,¬A, ... then
a “lower level” computation begins and a cross-section S = {←θ1, L1; . . . ;←θn, Ln}
of an SLD-tree for ← θ, A is chosen2. No other cross-sections of this tree are used.
The cross-section is converted into a set of “answers” for←θ,¬A as described below.

The difference between the methods may be informally described as follows. In
our method many cross-sections of the tree may be selected and only the constraints
of such cross-section are used to compute answers. In [Cha89, Stu91] only one cross-
section is selected but whole goal bodies of the cross-section are used. (The methods
of [Wal87], [Lug89], [SM91] and [Pla92] are similar, however they always select the
cross-section at depth 1). This results in “answers” that may contain (negative)
subgoals to be resolved by further derivation steps.

Consider the chosen cross-section S. Let W be FV (θ, A). From Lemma 4.1 it
follows that, with respect to comp(P ), (θ,¬A) is equivalent to θ ∧ ¬((θ1, L1)|W ) ∧
. . .∧¬((θn, Ln)|W ). Now ¬((θi, Li)|W ) is equivalent to F 0

i ∨F 1
i where F 0

i = ¬(θi|W )
and F 1

i = (θi|W ) ∧ ¬((θi, Li)|W ). Thus θ,¬A is equivalent to

θ ∧
∨

〈j1,...,jn〉∈{0,1}n
F j1

1 ∧ . . . ∧ F jn
n .

Every F j1
1 ∧ . . . ∧ F jn

n can be used to replace ¬A in goal H in order to obtain its
successor H ′ in a derivation3.

Building (a part of) an SLD-tree and choosing a cross-section is the same as in
our approach (because an SLD-tree is a pre-failed tree). The answer θ∧F 0

1 ∧ . . .∧F 0
n

is equivalent to the fail answer obtained in our approach. The difference between
restricting to W that occurs in F j

i and restricting to FV (A) used in our method
is inessential because θ ∧ ¬((θi, Li)|W ) and θ ∧ ¬((θi, Li)|FV (A)) are equivalent, also

for Li being empty. (This can be shown using the fact that θi is θθ′i where FV (θ)∩
FV (θ′i, Li) ⊆ FV (A). Then, for X being W or FV (A), it holds that ¬((θi, Li)|X) is
equivalent to ¬θ|X ∨¬((θ′i, Li)|X). Also (θ′i, Li)|FV (A) and (θ′i, Li)|W are equivalent.)

All the other “answers” θ ∧ F j1
1 ∧ . . . ∧ F jn

n (where ji = 1 for some i) are not
constraints, they contain other literals than (in)equality.

If ¬((θi, Li)|W ) is selected later on in the computation then it is treated as ¬A
above. This corresponds, in our method, to pruning a cross-section S1 in the subtree
rooted at←θi, Li (in the same SLD-tree for←θ, A). Due to fundamental differences
between the two methods it is difficult to establish a formal relationship between
the (nodes of the) trees constructed by them.

2or for some ←θ′, A where θ → θ′. [Stu91] allows negative literals to be selected in the tree.
3In [Cha89] these formulae are transformed into some disjunctive normal form and the elements

of the disjunctions are used. The transformation is done by converting each F ji

i into a certain
disjunctive form and applying distributivity.
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Example 6.5 Consider a program

p(f(x), y)← q(x)
p(x, g(y))← r(y)
q(a)
r(b).

We show how goal ←¬p(x, y) is treated by the second method of Chan [Cha89].
First a cross-section is selected in the SLD-tree

← p(x, y)

�� @@

← x=f(x′), q(x′) ← y=g(y′), r(y′)
| |

← x=f(a) ← y=g(b)

Assume that it is S = {←x=f(x′), q(x′); ←y=g(y′), r(y′) }. ¬p(x, y) is equivalent
to ¬∃x′(x=f(x′), q(x′)) ∧ ¬∃y′(y=g(y′), r(y′)). The first element of the conjunc-
tion is equivalent to ¬∃x′(x=f(x′)) ∨ ∃x′(x=f(x′),¬q(x′)), the second element is
transformed analogically.

Let ρ = ¬∃x′(x=f(x′)) and σ = ¬∃y′(y=g(y′)). Now ¬p(x, y) is equivalent
to ρ, σ ∨ ∃x′(x=f(x′),¬q(x′)), σ ∨ ρ, ∃y′(y=g(y′),¬r(y′)) ∨
∃x′, y′(x=f(x′),¬q(x′), y=g(y′),¬r(y′)).

From the SLD-trees for ←q(x′) and for ←r(y′) we obtain in a similar way that
¬q(x′) is equivalent to x′ 6=a and ¬r(y′) to y′ 6=b. This leads to four top level refuta-
tions represented in the following tree

←¬p(x, y)

((((
((((

←ρ, σ
   

   

←x=f(x′), σ,¬q(x′)
|

←x=f(x′), x′ 6=a, σ

/
←ρ, y=g(y′),¬r(y′)

|
←ρ, y=g(y′), y′ 6=b

XXX
XX

←x=f(x′), y=g(y′),¬q(x′),¬r(y′)
|

←x=f(x′), y=g(y′), x′ 6=a,¬r(y′)
|

←x=f(x′), y=g(y′), x′ 6=a, y′ 6=b

with the computed answers ρ, σ; ∃x′(x=f(x′), x′ 6=a, σ); ∃y′(ρ, y=g(y′), y′ 6=b) and
∃x′, y′(x=f(x′), y=g(y′), x′ 6=a, y′ 6=b) respectively. Note that ¬q(x′) and ¬r(y′) are
selected twice in the derivations.

In our method the first of these answers is obtained by using the same
cross-section. The remaining three answers prune lower cross-sections (eg.
∃x′(x=f(x′), x′ 6=a, σ) prunes {← x=f(a); ← y=g(y′), r(y′) }). The cross-section at
depth 2 results in answer x 6=f(a), y 6=g(b) which covers all the four answers above.

In our method only one tree (the SLD-tree for ←p(x, y) with 5 nodes) has to be
constructed. In the other method we have the tree of the derivations depicted above
(9 nodes) plus the “top sections” of SLD-trees for ←p(x, y), ←q(x′) and ←r(y′).
The resulted answers are less general. (However, both methods coincide when the
lowest cross-section is chosen instead of S.)
2
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Example 6.6 Such efficiency difference between the methods does not occur for
the program and goal from Example 6.3. For simplicity assume that the method
of [Cha89] always selects the cross-section at depth 1. This leads to refutations
←¬even(x); ←x 6=0,∀x1(x 6=s2(x1)) and

←¬even(x); ←x=s2(x1),¬even(x1); . . . ; ←x=s2n(xn),¬even(xn);
←x=s2n(xn), xn 6=0,∀xn+1(xn 6=s2(xn+1))

for n = 1, 2, . . . . Their computed answers are the same as the mutually excluding
answers in Example 6.4 (and simpler than those obtained in Example 6.3). The
constructed trees of depth 1 are identical to the elementary subtrees of the pre-
failed tree used by our method (conf. Example 6.3). Thus the search spaces are of
the same size, in the sense that for any answer the search to obtain it is of the same
size in both methods. The author does not know any example for which the search
space is smaller in the method of [Cha89]. 2

Example 6.5 suggests that our method may be more efficient, at least for some
programs and some choices of cross-sections done in the other method. This can be
explained as follows.

Consider the goal H, the tree and the n element cross-section S as above. In
the method of [Cha89, Stu91] H is rewritten into 2n successor goals. (This number
may be smaller as some constraints may be unsatisfiable). This creates, in a sense,
2n search spaces. In contrast, the corresponding number in our method is n (as for
every goal in the cross-section one subtree of the pre-failed tree has to be built).

Each F 1
i occurs in 2n−1 successor goals, this usually gives rise to repeated com-

putations. There are no such repeated occurrences of subgoals in our method. The
constraints in F 0

i and in F 1
i are mutually excluding, this leads to many less general

answers. In our method there usually are fewer and more general answers due to
using cross-sections of a single tree.

This argument suggests that our method may have practical advantages. The
search space is smaller, at least in some cases, and the answers are more general.
All the goals are normal goals, the only formulae to be reduced to normal form
are constraints. Work on designing an implementation and computer experiments
should provide better understanding of these issues.

7 Extension for the well-founded semantics

The well-founded semantics [GRS91] (for a definition see also [Prz90], [BNN91],
[AB94] or Section 7.1) is often considered as the most appropriate semantics for
logic programs from the point of view of non-monotonic reasoning and knowledge
representation [Prz91]. A constructive negation approach for the well-founded se-
mantics can be obtained by a simple extension of SLDFA-resolution. It is enough to
remove the finiteness requirement from the definition of finitely failed trees. How-
ever, to achieve completeness it is necessary to allow infinitely many sons for a node
with a negative literal selected. Additionally, the ranks should be allowed to be or-
dinal numbers because an infinite failed tree may refer to infinitely many refutations
and the finite upper bound of their ranks may not exist.
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Definition 7.1 (SLSFA-resolution).
The definition of SLDFA-resolution (Definitions 3.7, 3.8 and 3.9) with the fol-

lowing modifications:

• The rank is a countable ordinal α instead of a natural number k.

• Condition 2 (finiteness of the failed tree) in Definition 3.9 is removed.

• A node H with a negative literal selected, of the form

←θ, L,¬A,L′

has (possibly infinitely many) sons

←σ1, L, L′; ←σ2, L, L′; . . .

provided that there exist (possibly infinitely many) SLSFA-computed answers

δ1, δ2, . . .

of ranks < α for←θ, A such that for every ground substitution τ for FV (θ, A)
if θτ is true in CET then some δiτ or some σiτ is true in CET.

• “Finitely failed” is replaced by “failed” and “SLDFA” by “SLSFA” everywhere
in the definitions.

Obviously SLSFA-resolution subsumes SLDFA-resolution. It also subsumes SLS-
resolution, up to replacing substitutions by equations. (SLS-resolution can be seen
as a natural extension of SLDNF-resolution that permits infinite failed trees. The
reader is referred to [Prz89b] or to [AB94] for a definition.) An SLS-tree [Prz89b]
that is failed is also an SLSFA-failed tree. A successful branch of an SLS-tree is also
an SLSFA-refutation.

Example 7.2 Consider a program
p(a)← ¬p(x)
p(x)← p(x)
p(b)← ¬p(b)

(and assume that a and b are not the only functors of the underlying language). In
the well-founded semantics of the program, p(a) is true, p(b) is undefined and p(x)
is false for x distinct from a and from b. Constraint x 6=a, x6=b is a fail answer for
←p(x) since the following is an infinite SLSFA-failed tree:

← x 6=a, x6=b, p(x)
|

← x 6=a, x6=b, p(x)
|
· · ·

Constraint x=a is a computed answer for ← p(x) since
←p(x); ←x=a,¬p(x′); ←x=a, x′ 6=a, x′ 6=b

is a refutation (of rank 1). For goal ← p(b) neither a refutation nor a failed tree
exists, as a refutation (a failed tree) for p(b) of rank α exists only if a failed tree (a
refutation) for p(b) exists for some rank < α. 2
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Further examples are given in [Dra93b]. The following examples show the need
for infinite ranks and for infinitely branching failed trees.

Example 7.3 Consider a program

even(0) odd(s(0))
even(s(x))← ¬even(x) odd(s2(x))← odd(x)

Assume Prolog selection rule. The failed tree for ←odd(x), even(x) has an infinite
branch with nodes ←x=s2i(yi), odd(yi), even(x), i = 0, 1, . . . and infinitely many
finite branches with leaves equivalent to ←...,¬even(s2i(0)), i = 0, 1, . . . . As in
Example 3.11, a successful derivation for←even(s2i(0)) is of rank 2i. Thus the rank
of the tree is ω. 2

Example 7.4 Atom p is false w.r.t. the well-founded semantics of the program

p← ¬q(x),¬r(x) r(0)
q(x)← ¬r(x) r(s(x))← r(x)

The answers for ←r(x) are δi = x=si(0) for i = 0, 1, . . .. Assume that 0 and
s are not the only functors of the underlying language. Then constraints δ′i =
∃y(x=si(y), y 6=0,∀zy 6=s(z)) for i = 0, 1, . . . are fail answers for ←r(x) and answers
for ←q(x).

An SLSFA-failed tree for ←p (of rank 2) has branches

← p
← ¬q(x),¬r(x)

← δi,¬r(x)

for i = 0, 1, . . .. The safeness condition is satisfied because for every ground instance
xτ of x some δiτ or some δ′iτ is true. There does not exist a finitely branching failed
tree for←p. There does not exist a failed tree for←p in which a finite set of answers
for ←q(x) (or for ←r(x)) is taken into account. 2

SLSFA-resolution is sound and complete in the following sense.

Theorem 7.5 (Soundness, completeness and independence from the selection rule)
Let P be a normal program and WF (P ) its well-founded model.
If δ is an SLSFA-computed answer for a goal ←θ, L then WF (P ) |=3 δ → L. If

there exists an SLSFA-failed tree for a goal G then WF (P ) |=3 G.
If G is a goal such that WF (P ) |=3 G then for any selection rule there exists an

SLSFA-failed tree for G. If WF (P ) |=3 Lτ , where τ is a substitution, Lτ is ground
and θτ is true in CET, then for any selection rule there exists an SLSFA-computed
answer δ for ←θ, L such that δτ is true in CET.

The proof is presented in the following section.
Obviously SLSFA-resolution cannot be implemented, as the well-founded seman-

tics is uncomputable. What is possible is an algorithm that is a sound but incom-
plete approximation of SLSFA-resolution. The approach to constructing failed trees
described in the previous section is in principle applicable here. A definition of
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(SLSFA-) pre-failed tree is obtained from that of SLSFA-failed tree by removing
the requirement 5 from Definitions 7.1, 3.9 thus allowing “success” leaves. A cross-
section of a pre-failed tree is a set S of nodes such that every successful branch has
a node in S. Pruning a single node and computing a fail answer by pruning a finite
cross-section are like discussed previously.

Example 7.6 The failed tree from Example 7.2 can be obtained by pruning the
pre-failed tree

← p(x)

��
� | HH

H

← x=a,¬p(x′) ← p(x) ← x=b,¬p(b)
| / | \ |

← x=a . . . ← x=b

of rank 0, using the cross-section containing all the leaves of the tree. There are
infinitely many leaves but the set of their labels {←x=a; ←x=b } is finite. 2

This approach cannot deal with pruning infinite cross-sections (infinite formulae
may result) and with computing sons of a node←...,¬A, ... if infinitely many answers
for ←A are involved. A subject for future work is developing techniques to finitely
represent (some) infinite pre-failed trees, cross-sections and sets of constraints in
order to strengthen this approach. Methods of tabulation [ST86, SI88, BD93] and
of finite representing of infinite sets of answers [CI93] are relevant here.

7.1 Proof of Theorem 7.5

We begin with a characterization of the well-founded semantics. Then we prove
lemmas that imply soundness, completeness and independence from the selection
rule of SLSFA-resolution (Theorem 7.5).

Consider a language L , the corresponding Herbrand base H and a program P .
By a (3-valued) interpretation we mean a set I of literals, I ⊆ H ∪ ¬H (where
¬H = {¬A | A ∈ H}) such that if A ∈ I then ¬A 6∈ I . A ground atom A is true
in I (I |=3 A) iff A ∈ I , it is false in I iff ¬A ∈ I , otherwise A is undefined in I .

For the purpose of our work we use the following characterization of the well-
founded semantics. The well-founded model WF (P ) of P is the least (with respect
to ⊆) fixpoint of a mapping ΨP (which maps interpretations into interpretations).
ΨP is defined below. There exists a countable ordinal β such that WF (P ) = Ψβ

P (∅).
(Powers of ΨP are defined in a usual way: Ψα+1

P (I) = ΨP (Ψα
P (I)) and, for a limit

ordinal α , Ψα
P (I) =

⋃
γ<α Ψγ

P (I).)
Our characterization of the well-founded semantics is just a variant of character-

izations by iterated fixed point [BNN91, Prz90]. It was proposed independently in
[FD92], for a correctness proof the reader is referred there.

Definition 7.7 (mapping ΨP )
For every predicate symbol p we will treat ¬p as a new distinct predicate symbol.

A normal program can thus be treated as a definite program over Herbrand base
H ∪ ¬H .
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Let I be an interpretation. We define two ground, possibly infinite, definite
programs P/tI and P/tuI .

P/tI is the ground instantiation of P together with ground unary clauses that
show which negative literals are true in I :

P/tI = ground(P ) ∪ {¬A | ¬A ∈ I}

P/tuI is similar but all the negative literals that are true or undefined in I are
made true here:

P/tuI = ground(P ) ∪ {¬A ∈ ¬H | A 6∈ I}
Now P/tI is used to determine which atoms are true in ΨP (I) and P/tuI is used

to determine which are false (by determining which are true or undefined). ΨP is
defined as

ΨP (I) = (MP/tI ∩H) ∪ ¬(H \MP/tuI)

where MQ is the least 2-valued Herbrand model of a positive program Q ; the
standard definitions are used here (an interpretation is a subset of Herbrand base
H ∪ ¬H , etc.).

Note that P/tI ⊆ P/tuI , MP/tI ⊆ MP/tuI , ΨP (I) is an interpretation, ΨP is

monotone, Ψβ
P (∅) ⊆ Ψα

P (∅) for β ≤ α .
To formulate our lemmas, we need a notion of a ground instance of a goal.

Definition 7.8 Let ←θ, L be a goal and τ a substitution. If CET |= θτ and Lτ
is ground then ←Lτ is called a ground instance of ←θ, L . A ground instance of a
formula θ, L and of a goal sequence is defined analogically (the same τ is used for
all the goals of the sequence).

Lemma 7.9 (Soundness of SLSFA-resolution)

1. If δ is an SLSFA-computed answer for ← θ, L obtained from a refutation of
rank α and if L′ is a ground instance of δ, L then

Ψα+1
P (∅) |=3 L′

2. If ←L′ is a ground instance of a root of an SLSFA failed tree of rank α then

Ψα+1
P (∅) |=3 ¬L′

PROOF
The proof is by transfinite induction. Assume that the lemma holds for any β < α .

1. By part 2 of the inductive assumption, every ground instance ←L0; . . . ;←Lk
of an SLSFA-refutation of rank α is an SLD-refutation w.r.t. P/tI where
I = Ψβ+1

P (∅) and β < α . By soundness of SLD-resolution, MP/tI |= L0 . In
other words, if L is a literal of L0 then L ∈MP/tI .

Thus L ∈ ΨP (I) (for a positive L it is obvious; if ¬A ∈MP/tI then ¬A ∈ P/tI
and ¬A ∈ I ⊆ ΨP (I)).

On the other hand ΨP (I) = Ψβ+2
P (∅) ⊆ Ψα+1

P (∅). We have shown that
Ψα+1
P (∅) |=3 L0 .
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2. Assume that part 2 of the lemma does not hold. Let I = Ψα
P (∅). Let ←L′ be

a ground instance of a root of a rank α failed tree T . Assume that ΨP (I) 6|=3

¬L′ . In other words, every literal of L′ is true or undefined in ΨP (I).

We show that every such literal is a member of MP/tuI . For positive literals
it follows immediately from the definition of ΨP . If the literal is negative, say
¬A , then A is false or undefined in ΨP (I) and A 6∈ ΨP (I). As I ⊆ ΨP (I),
A 6∈ I and ¬A is a unary clause in P/tuI .

By completeness of SLD-resolution, for the selection rule used in the failed
tree T , there exists an SLD-refutation for ←L′ and definite program P/tuI .
Simple induction shows that every goal of the refutation is an instance of a
node in the tree. Thus there is a node of the form ←θ . Contradiction. 2

We prove the completeness of SLSFA-resolution for atomic queries. The exten-
sion to general queries of the form ←θ, L is obvious (by adding a clause g(x)← L ,
where g is a new symbol, to the program and using ←θ,g(x) instead of ←θ, L).

Lemma 7.10 (Completeness of SLSFA-resolution) Let A be an atom. Assume an
arbitrary selection rule.

1. Let A′ be a ground instance of θ, A such that Ψα+1
P (∅) |= A′ for some ordi-

nal α . Then there exists an SLSFA-computed answer δ for ←θ, A such that
A′ is an instance of δ, A . The answer is obtained from an SLSFA-derivation
of rank α .

2. Let ←θ, A be a goal such that, for some α , Ψα+1
P (∅) |= ¬A′ for any ground

instance ←A′ of the goal. Then there exists a rank α SLSFA-failed tree for
this goal.

PROOF
By induction on α . Assume that the lemma holds for any ordinal less than α .
Let Ψα+1

P (∅) |= A′ . By the completeness of the SLD-resolution there exists an
SLD-refutation R for ← A′ and for program P/tI , where I = Ψα

P (∅). In other
words R is an SLD-refutation for program ground(P ) ∪ {¬A1, . . . ,¬Al} where
¬A1, . . . ,¬Al are those unary clauses of P/tI that are used in R and do not belong
to ground(P ). Note that ¬A1, . . . ,¬Al are true in I .

Let R1 be R with the first goal replaced by ←A . R1 is, using the terminology
of [Llo87], an unrestricted SLD-refutation for program P ∪ {¬A1, . . . ,¬Al} . By
Mgu Lemma of [Llo87], there exists an SLD-refutation R2 for ←A and the same
program, with the computed answer substitution τ such that A′ is an instance of
Aτ . An obvious transformation of R2 (that amounts to replacing unifiers by the
corresponding constraints) results in a rank 0 SLSFA-refutation R3 for the same
goal and program (still treated as a definite program). The computed answer δ of
R3 is such that A′ is an instance of δ, A .

By the inductive assumption, there exist SLSFA-failed trees of rank < α for
program P and goals ←A1, . . . ,←Al . Thus R3 is a rank α SLSFA-refutation for
P and for ←A . Adding θ to every goal of R3 results in a rank α SLSFA-refutation
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for P and for ←θ, A with the answer θδ satisfying the requirements of the lemma.
This completes the induction step for the first part of the lemma.

Consider a goal ←θ, A such that for every its ground instance ←A′ ,
Ψα+1
P (∅) |= ¬A′ . We construct a rank α pre-failed SLSFA-tree for ←θ, A . For

every its node with a positive literal selected the sons are constructed in a standard
way. Let H =←θ′,M,¬B,M ′ be a node with a negative literal selected. Consider
the ground instances Bτ of θ′, B . Let x be the variables of B . The sons of H are
those goals of the form ←θ′(x=xτ),M,M ′ for which Ψα

P (∅) 6|= Bτ .
Note that if Ψα

P (∅) |= Bτ then, by the inductive assumption, Bτ is a ground
instance of δ, B for some SLSFA-computed answer δ for ←θ′, B obtained from a
derivation of rank < α . Thus the tree is a pre-failed tree.

Now we show that the tree is a SLSFA-failed tree. Consider any ground instance
of any branch of the tree. It is an SLD-derivation for program ground(P ) ∪ {¬B ∈
¬H | B 6∈ Ψα

P (∅)} = P/tuI where I = Ψα
P (∅). Suppose that the derivation is

successful and that ←A′ is its first goal. Then by the soundness of SLD-resolution,
A′ ∈ MP/tuI . From Ψα+1

P (∅) |= ¬A′ it follows that A′ 6∈ MP/tuI . Contradiction.
Thus the pre-failed tree does not have a successful branch and it is an SLSFA-failed
tree. 2

8 Conclusion

Negation as failure has been a standard, although rather restricted, way of dealing
with negation in logic programming. In this paper we generalize the notion of failure
in order to obtain a constructive negation approach. The generalization is nontrivial
as a straightforward approach is incorrect. We introduce SLDFA-resolution which
is a method of obtaining answers for normal programs and normal goals, based on
building failed trees. SLDFA-resolution is sound and complete with respect to the
3-valued completion semantics, for any fair selection rule.

Our method is a generalization of that of [MN89]. It subsumes SLDNF-resolution
and SLDNFS-resolution [She89]. It also subsumes the method of [Cha88]. It neither
subsumes nor is subsumed by the methods of [Wal87], [Lug89], [Cha89, Stu91],
[SM91] and [Pla92]. Comparison with [Cha89] suggests that our method may be
competitive from the efficiency point of view.

A natural extension — allowing infinite failed trees — results in SLSFA-resolution
that is sound and complete for the well-founded semantics. Up to our knowledge
this is the first constructive negation approach for this semantics.

In another paper [Dra93a] we present an interesting corollary of the completeness
of SLDFA-resolution. Namely we prove the completeness of SLDNF-resolution for 3-
valued completion semantics for arbitrary programs and queries that do not flounder
under appropriate fairness conditions. We expect that SLDFA-resolution should
be easily extensible to constraint logic programming by simply allowing general
constraints instead of only equality constraints. Teusink [Teu93] applies SLDFA-
resolution to abductive logic programming.

This work shows that a rather natural generalization of the standard concept of
a failed tree provides a sound and complete operational semantics for two declara-
tive semantics for logic programs: the 3-valued completion semantics and the well-
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founded semantics. The difference is in using finitely failed trees in the first case and
infinite ones in the second. The author believes that this confirms the importance
and naturalness of these semantics, respectively for finite and infinite failure.
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