
Constructing provably correct logic programs

W lodzimierz Drabent
September 15, 2023

Section 2.4 (p. 9 and p. 10) from
W. Drabent. “Logic + control: On program construction and verification”.

Theory and Practice of Logic Programming 18(1):1-29, 2018.
DOI: 10.1017/S1471068417000047, © Cambridge University Press.

This note presents a systematic approach to construct logic programs that are provably
correct and semi-complete. (Semi-complete means, roughly, complete whenever the
program terminates.)

Basic explanations: A specification is a set of ground facts. An atom H is covered by a
rule (i.e. a program clause) C w.r.t. a specification S if H is the head of a ground instance
H ← B1, . . . , Bn of C, such that the atoms B1, . . . , Bn are in S. The sufficient condition
for program correctness w.r.t. S is that for each ground instance H ← B1, . . . , Bn of
each rule C of the program, if the atoms B1, . . . , Bn are in S then H is in S.

It often happens that the specifications for completeness and correctness differ. For
instance append([], a, a) may not be in the specification for completeness (as it is not
required to be computed), but in the specification for correctness (as it is acceptable as
an answer).

2.4 Program construction

The presented sufficient conditions suggest a systematic (informal) method of

constructing programs which are provably correct and semi-complete. A guiding

principle is that the program should satisfy the sufficient condition for semi-

completeness. The construction results in a program together with proofs of its

correctness and semi-completeness.

Assume that specifications Scompl and Scorr are given for, respectively, completeness

and correctness of a program P to be built. For each predicate p occurring in Scompl,

consider the set Sp = { p(̄t) | p(̄t) ∈ Scompl } of the specified p-atoms from the

specification. To construct a procedure p of P , provide rules such that

(1) each atom A ∈ Sp is covered w.r.t. Scompl by some rule, and

(2) each rule satisfies the sufficient condition for correctness w.r.t. Scorr of

Theorem 5.

(In other words, the first requirement states that the constructed procedure satisfies

the sufficient condition for semi-completeness.) The constructed program P is the

union of the procedures for all p from Scompl. It satisfies the conditions of Theorems

5, 9. Thus, P is correct w.r.t. Scorr and semi-complete w.r.t. Scompl.

In practice, semi-completeness is not sufficient. The actual task is to obtain a

program which is complete; also in most cases, the program should terminate for the

intended class of initial queries. So the constructed program rules should additionally

satisfy some sufficient condition for completeness (like that of Theorem 13) or for

10 W. Drabent

termination (like the program being recurrent). In this way, the method of the

previous paragraph may be augmented to ensure not only correctness and semi-

completeness, but also completeness.

The approach presented here will be used throughout the program constructions

presented in this paper.

3 SAT solver – first logic program

We are ready to begin the main subject of this paper – a construction of a program

implementing a SAT solver. The construction is divided in several steps, three

definite clause logic programs and a final Prolog program are constructed. An

interesting feature is that the construction is not a case of semantics-preserving

program transformation. The programs define different relations (for the common

predicates); however, the common predicates are correct and complete w.r.t. the

same approximate specification.

This section explains the data structures used by the programs, provides a

specification, and presents a construction of the first program, hand in hand with a

correctness and semi-completeness proof.

Representation of propositional formulae. We first describe the form of data used by

our programs, namely the encoding of propositional formulae in CNF as terms,

proposed by Howe and King (2012).

Propositional variables are represented as logical variables; truth values – as con-

stants true, false. A literal of a clause is represented as a pair of a truth value and a

variable; a positive literal, say x, as true-X and a negative one, say ¬x, as false-X.

A clause is represented as a list of (representations of) literals, and a conjunction of

clauses as a list of their representations. For instance, a formula (x∨¬y∨z)∧(¬x∨v)
is represented as [[true-X,false-Y,true-Z],[false-X,true-V]].

An assignment of truth values to variables can be represented as a substitution.

Thus, a clause (represented by a term) s is true under an assignment (represented

by) θ iff the list sθ has an element of the form t-t, i.e. false-false or true-true.

A formula in CNF is satisfiable iff its representation has an instance whose elements

(being lists) contain a t-t each. We will often say “formula u” for a formula in CNF

represented as a term u, similarly for clauses, etc.

Specification. Now, let us describe the sets to be defined by the predicates of our

first SAT-solving program.

L1 = { [t1, . . . , ti|s] ∈ HU | i > 0, ti = t-t for some t ∈ HU},
L2 = { [s1, . . . , sn] ∈ HU | n � 0, s1, . . . , sn ∈ L1 }.

(3.1)

Note that t1, . . . , ti−1, s are arbitrary ground terms; the reason for such generality

will be explained further on. The following holds for L1 and L2.

A clause s is true under an assignment θ iff the list sθ is in L1. Hence,

a CNF formula u is true under θ iff uθ is in L2,

a CNF formula u is satisfiable iff u has an instance in L2.

(3.2)

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068417000047
Downloaded from https://www.cambridge.org/core. Linkoping University Library, on 15 Feb 2018 at 20:07:39, subject to the Cambridge Core terms of use,

