[T IS DECLARATIVE
ON REASONING ABOUT LOGIC PROGRAMS

Wilodzimierz Drabent!

Abstract

We advocate using the declarative reading of logic programs in proving
partial correctness, when the properties of interest are declarative. Some pub-
lications present unnecessarily complicated methods for proving such proper-
ties. These approaches refer to the operational semantics, as they consider
calls and successes of the predicates of the program during LD-resolution. We
show that this is an unnecessary complication and that a straightforward proof
method is simpler and in some sense more general. Our approach is based
solely on the property that “whatever is computed is a logical consequence of
the program”. This approach is not new and can be traced back to the work
of Clark in 1979. However it seems that it has been - to a certain extent -
forgotten. We believe in its importance in teaching logic programming.

The paper deals with partial correctness, we complement it with an outline
of a method for proving completeness.

In this paper we recall a simple and straightforward method of proving partial
correctness properties of definite clause logic programs. The method is declarative:
it treats programs as sets of axioms and the computed instances of queries as logical
formulae; it abstracts from any operational semantics. The method may seem well
known, it is discussed among others in [Cla79, Hog81, Hog84, Der93]. However some
publications on the theory of logic programming, for instance [Apt97, PRI7], use an
unnecessarily complicated approach for proving such properties. That approach is
operational, it refers to LD-resolution and considers the procedure calls that occur
during the computation.

A main advantage of logic programming is that for many purposes one can
abstract from the “control” of programs and consider only their “logic”. Using an
operational approach to prove program properties (those which can be dealt with
in a declarative way) weakens this advantage. In this paper we show that, as long
as we are not interested in the form of procedure calls during the computation, the
declarative proof method is simpler and not less general than the operational one.
We show that in a certain sense it is more powerful.

First we present the declarative proof method (which will be called “natural”),
then the operational one. In the third section we compare the two approaches. In
particular we show that whatever can be proved by the operational method, can
also be proved by the declarative one (as long as properties of program answers are
considered). The main subject of this paper is a declarative approach to proving

!Institute of Computer Science, Polish Academy of Sciences and IDA, Linkopings universitet,
Sweden. E-mail: drabent@ipipan.waw.pl

partial correctness of logic programs. In Section 5 we briefly present a correspond-
ing approach to proving completeness. The next section relates the natural proof
method to the so called annotation method.

1 Preliminaries

For basic definitions etc. we refer the reader to the standard references and to
[Apt97]. We use a variant of SLD-resolution with queries (of the form Ay,..., A,)
instead of goals (of the form < Ay,..., A,). By a computed (resp. correct) answer
we mean an instance Q6 of a query), where 6§ is a computed (correct) answer
substitution for) and the given program.

We are interested in declarative properties of programs, i.e. properties of pro-
grams treated as sets of logic formulae. Speaking more formally, we consider proper-
ties of programs’ (computed or correct?) answers. So we do not distinguish programs
which are logically equivalent but have different S-semantics.

2 Declarative specifications and the natural proof
method

As a standard example let us take the program APPEND:

app(L],L,L)
app([HIK],L,[HIM]) :- app(K,L,M)

We want to prove that it indeed appends lists. We have to begin with a precise state-
ment (a specification) of this property. A slight complication is that the program
does not actually define the relation of list concatenation, but its superset. This is
because its least Herbrand model contains “ill-typed” atoms, like app([],1,1).

So we want to prove that:

For any answer app(k,l,m), if k and [are lists then m is a list and (1)
kxl=m.

(By alist we mean a term [t1,...,%,] (in Prolog notation), where n > 0 and ¢4, ...,1,
are possibly non-ground terms. Symbol * denotes the concatenation of lists.?)
This specification could be equivalently expressed as

spec |= app(k,l,m) (2)

?By the soundness and completeness of SLD-resolution, for a given program the sets of computed
and of correct answers are equal.

3Actually, the requirement on k is unnecessary. Our intention however is to follow the corre-
sponding example from [Apt97]. A full specification of APPEND may be: if [is a list or m is a
list then k,[, m are lists and k * [= m.

for any answer app(k,l,m), where spec is the Herbrand interpretation:
spec = { app(k,l,m) € H | if k and [are lists then m is a list and k[=m }

(H is the Herbrand base; we assume a fixed infinite set of function symbols). Obvi-
ously, (2) holds iff all the ground instances of app(k,l,m) are in spec.

Notice that we do not need to refer to the notion of a query in the specification.
Assume that app(k,l,m) is a success instance of query app(k’,l',m’). If k',I' are
lists then (k,[are lists and) the specification implies that m is a list and k %[= m.

Such specifications, referring to program answers, will be called declarative. A
declarative specification can be an interpretation (possibly a non Herbrand one) or
a set of axioms.* In this paper we will use specifications of the first kind. We will
say that a program is correct w.r.t. a declarative specification spec iff spec = @ for
any answer () of the program.

To prove the partial correctness (of a logic program w.r.t. a declarative specifica-
tion) we use an obvious approach, discussed among others by Clark [Cla79], Hogger
[Hog81, p. 378-9] and Deransart [Der93, Section 3].° We will call it the natural
proof method:

Let P be a program and spec be an interpretation. To show that
spec = @ for every computed/correct instance @ of a query it is

sufficient to show that spec = P.

So we have to show that spec = C for each clause C of the program. This proof
method is obviously sound (as P = @, by soundness of SLD-resolution). It is also
complete [Der93] in the following sense. If a program P is correct w.r.t. a declarative
specification spec then there exists a stronger specification spec’ C spec such that
spec’ = P (and thus the method is applicable to spec’).

In our example the proof is simple. We present here the less trivial part with
details. Consider the second clause. To show that

spec |= app([H| K], L,[H|M]) < app(K, L, M)

take ground terms h,k,l,m" such that spec |= app(k,l,m). (In other words
app(k,l,m) € spec). Assume that [h|k] and [are lists (hence k is a list). Then m is
a list and k! = m, as spec |= app(k,l,m). Thus [h|m] is a list and [h|k] *[= [h|m].
We showed that spec |= app([h|k], [, [h]m]), this concludes the proof.

We present another simple example. Consider the standard REVERSE program
which uses the so called accumulator technique.

4An axiomatic specification equivalent to our example specification may consist of formula
app(k,l,m) & (list(k),list(l) — list(m), kxl=m) together with axioms describing predicates =
and list and function *.

Swhere it is called “inductive proof method”.

Sand valuation { H/h, K/k, L/l, M/m}

reverse(X, Y) - rev(X, Y, []).
rev([1, X, X).
rev([HIL], X, Y) :- rev(L, X, [HIY]).

The declarative reading of the program is simple: the first argument of rev is a list,
its reverse is represented as a difference list, of the second and the third argument.
The formal specification is

spec = {reverse([tr,....to], [tn,-. . t1]) | n > 0,t1,...,t, €T}
U Arev([ts, ..., ta], [ty tilt]st) | n > 0,81, t,, t €T}

where T is the set of ground terms. The nontrivial part of the proof is to show that
the last clause is true in the interpretation spec. Take ground terms [, z, h,y, such
that spec |= rev(l, z,[h|y]). So there exist n > 0, ¢y,...,¢,, t such that [= [tq,...,t,],
= [tn, ..., 1|t} t = [hly]. Then rev([h|l],z,y)is rev([h,t1, ... tal, [tn,y - - 11, RlY], y),
thus spec |= rev([h|l], z, y).

Notice that the natural method refers only to the declarative semantics of pro-
grams. A specification is an interpretation. Correctness is expressed as truth (of
the program’s answers) in the interpretation. Program clauses are treated as logic
formulae, their truth in the interpretation is to be shown”. We abstract from any
operational semantics, in particular from the notions of a selected literal and the
selection rule used by resolution. Still we can use declarative specifications to rea-
son about queries and corresponding answers, using the fact that an answer is an
instance of the query.

3 Call-success specifications and the operational
approach

Some authors [BC89], [Apt97, Chapter 8], [PRI7]® propose another approach to
proving partial correctness of logic programs. The main difference is that they
specify the properties of interest in another, non-declarative way. To deal with “ill-
typed” atoms they consider the form of queries. They use specifications consisting
of two parts. The precondition specifies the “procedure calls” that appear during the
computation (more precisely, the atoms that are selected in the LD-resolution). The
posteondition specifies the procedure successes (the computed instances of procedure
calls). We will call such specifications call-success specifications. Formally, pre- and
postconditions are sets of atoms, closed under substitutions”. Hence, if a procedure
call satisfies the precondition then also any corresponding success does.

" Alternatively we may consider an axiomatic specification of the intended property (by means
of a set of axioms T') and show that the program is a logical consequence of 7.

8Whenever these approaches differ, we follow that of [Apt97].

°If an atom satisfies the precondition then so do all its instances.

4

A program is correct if every procedure call and every success satisfy the pre-
or postcondition respectively!®. Notice that this is not a declarative property. It
considers computations (SLD-trees), not only computed answers, and it depends on
the selection rule used. Prolog selection rule is assumed. The proof method used was
proposed by Bossi and Cocco [BC89] and is an instance of the method of Drabent
and Matuszyriski [DM88]. We will call it the operational proof method.

The method is based on the following verification condition. For each clause €'
of the program, show that for each (possibly non-ground) instance H < By,..., B,
(n>0)of C

if H € pre, By,..., By € post then Bjyq € pre (for k=0,...,n—1),
if H € pre, By,...,B, € post then H € post.

The condition on the initial query is that, for any instance By, ..., B, (n > 0) of the
query, if By, ..., Bx € post then Byyq € pre (for k =0,...,n—1). In the terminology
of [Apt97], a program satisfying the verification condition is called, together with
its specification, well-asserted.

So the operational method requires proving one implication per atom occurring
in the program or in the initial goal. In contrast, the natural method advocated in
this paper requires proving one implication per program clause.

Let us come back to our example. We refer here to its treatment in [Apt97,
p. 214]. The precondition is

pre ={ app(k,l,m) | k and [are lists }.

(Here k,l, m are terms, possibly non-ground. An atom A satisfies pre if A € pre).
The postcondition is

post = {app(k,l,m) | k,1,m are lists and k* [= m }.

The verification conditions to be proved consist of one implication for the first clause
of APPEND and two implications for the second one. The details of the proof can
be found in [Apt97].

The reader can see that that proof is more complicated than the one using the
natural method. This should not be surprising as the proved property is stronger. In
addition to the required property, we also get a proof that for a certain class of initial
goals each atom selected by LD-resolution satisfies the precondition. However, the
latter property is often of no interest.

4 Comparison

In this section we first compare the specification styles of the two approaches. Then
we show that, although formally both methods are equivalent, the declarative one
is, in a certain sense, stronger.

10Provided that the initial goal satisfies a certain condition.

A declarative specification refers to all the answers of the program (i.e. success
instances of arbitrary queries). It is independent of the operational semantics. A
call-success specification refers to a particular operational semantics (LD-resolution)
and to computations starting from a restricted class of initial queries. The specifica-
tion consists of a precondition and a postcondition. The precondition refers to the
selected atoms in LD-derivations; the postcondition to their success instances.

A call-success specification is a pair of sets of atoms; a declarative specification
is an interpretation over an arbitrary universe, or it is an axiomatic theory.

A common phenomenon in logic programming is that a program’s semantics
contains atoms which are irrelevant for the correctness of the program. For instance,
APPEND program is intended to define the relation of appending lists. But it
actually defines a superset of this relation; its least Herbrand model contains atoms
app(k,l,m) where [and m are not lists'!.

The two compared approaches deal with such “ill-typed” atoms in different ways.
In the natural method, the specification is a superset of the least Herbrand model
Mp. Such specifications could be seen as (conjunctions of) implications; we just
do not bother and include all “ill-typed” atoms. In the other approach, “ill-typed”
atoms are excluded from the specification. The precondition pre is used for this
purpose. The postcondition is not (in general) a superset of Mp. Instead it is a
superset of Mp N pre. We may say that a declarative specification specifies Mp (or
MpU=pre) while the postcondition of a call-success specification specifies MpNpre.

Now we are going to show that, given a call-success specification, one can con-
struct a declarative specification which is, in a sense, equivalent. Consider an op-
erational specification (pre, post). A corresponding declarative specification used in
our approach could be seen, speaking informally, as implication pre — post.

Definition 4.1 Let pre and post be sets of atoms closed under substitution. The
declarative specification corresponding to the call-success specification (pre, post) is
the Herbrand interpretation

pre—post = { A€ H|ifl A€ prethen A € post }

In other words, pre—post = (H \ pre) U (H N post).
The following proposition compares corresponding declarative and call-success
specifications. The next result compares both proof methods.

Proposition 4.2 If a program P is correct w.r.t. the call-success specification
(pre, post) then P is correct w.r.t. declarative specification pre— post.

If P is correct w.r.t. pre—post and Af is an answer to a query A € pre then
A € post.

HProvided that the Herbrand universe contains a term which is not a list.

PROOF: The second part is obvious (as A € =pre U post and Af € pre). For the
first part assume that a program P is correct w.r.t. (pre, post). So for any atomic
query from pre, any of its computed instances is in post. Consider any computed
instance A of an arbitrary atomic query and assume that pre—post £ A. Then some
ground instance A’ of A is not a member of pre—post. This means that A" € pre and
A’ & post. As A is a computed instance of a query, query A succeeds with an empty
answer substitution. Any instance of A has the same property; thus A’ succeeds and

from the assumption we obtain A’ € post, contradiction. This completes the proof.
O

Proposition 4.3 Assume that it can be shown, by the method of [BC89], that a
program P is correct w.r.t. a call-success specification (pre, post). Then it can be
shown that P is correct w.r.t. declarative specification pre— post, using the natural
method.

In other words, if P and (pre, post) satisfy the verification condition of the op-
erational method then pre—post E P.

PROOF (see also [CD88]): As pre—post is a Herbrand interpretation, pre— post |=
P is equivalent to a property that if By,..., B, € pre—post then H € pre—post,
for any ground instance H < By,..., B, of a clause of P,

To show the latter, assume that By,..., B, € pre—post. If H & pre then
H € pre—post. Otherwise, if H € pre then by simple induction we obtain from the
verification condition that B; € pre and B; € post, for + = 1,...,n. Hence, by the
verification condition, H € post, thus H € pre—post. a

The two propositions show that the natural method is stronger than the opera-
tional method, as far as declarative properties are concerned. Moreover, a declara-
tive specification corresponding to a given call-success specification is obtained from
the latter by a simple composition of three operations: removing non-ground atoms,
set complementation and set union.

Formally, the natural method is not strictly stronger, as it may be treated as a
special case of the operational method. (For a given declarative specification spec,
take the set of all atoms as the precondition and post = {A | spec = A} as the
postcondition). However we want to view the operational method together with
its style of specifications which uses nontrivial preconditions and postconditions
which are not supersets of Mp and which do not contain “ill-typed” atoms. The
operational method understood in this way is in a sense less powerful than the
declarative method.

First, correctness w.r.t. the declarative specification pre—post does not imply
correctness w.r.t. the call-success specification (pre, post). The latter requires that
all the atoms selected in LD-resolution are in pre. So the call-success specification
above is strictly stronger than the declarative specification. Often a desired property
is conveniently expressed by a declarative specification pre—post (or by intersection

of some such specifications) but the selected atoms are not in pre. In such a case the
operational method is inapplicable (conf. [BM97]). We illustrate this by an example,
where under any selection rule the precondition does not hold.

Let us consider the following program P.

P(X,Y) ‘- q(X:W:Z:Y) ,q(z,—,W,—) .
q(X,Y,X,Y).

This program is artificial, however it is an abstraction of “two-pass” programs and
of certain usages of difference lists. (Some examples of such programs can be found
e.g. in [BM97]). Let A(?) stands for “¢ is a list”, for a possibly non-ground term ¢.

Let
pre; = {p(t,s) | A(1) } posty = {p(t,s) [A(s) }
preg ={q(t,s,u,v) [A1)} posty = {q(t,s,u,v) [A(u) }
preg ={qt,s,u,0) [A(s)} posty = {q(t,s,u,v) [A(v) }
pre = pre, U (pre, N pre;) post = post, U (post, N post).

The program is correct w.r.t. declarative specification pre—post. It is also correct
w.r.t. a stronger declarative specification

spec = (pre,—post,) N (preg—posty) N (pre,—post,).

Moreover, spec |= P and thus the natural method is applicable!?. On the other hand,
the program is obviously not correct w.r.t. call-success specification (pre, post) and
the operational method is inapplicable!.

In contrast to the case of finding a declarative specification corresponding to a
given call-success one, the reverse mapping does not exist. For a given declarative

12We present here in details the nontrivial part of the proof, showing that the first clause of P
is true in spec. Take a ground instance H < By, B» of the clause. Notice that:

H € pre, implies B € preg
By € post, implies B3 € preg
By € post, implies By € preg,
By € post;, implies H € post,.

Assume that the right hand side is true in spec: spec = By, Bo. Thus we have:

B; € pre, implies B; € post, fori=1,2
By € pre; implies By € post;,

Combining these implications together we obtain that from our assumption it follows that H € pre,
implies H € post,. This means that spec | H. Thus we showed that for an arbitrary ground
instance C' of the clause, spec = C, which completes the proof.

13P is correct w.r.t. call-success specification {(pre, U pre,), (post, U post,)) but this specification
1s too weak to construct a proof by the operational method. This can be done, for instance, if the
postcondition expresses the fact that the second and the fourth arguments of ¢ are equal (or if the
declarative specification spec is used as a postcondition).

specification, there does not exist a call-success specification (with a non-trivial
precondition) such that if P is correct w.r.t. the former then P is correct w.r.t.
the latter. Such a call-success specification depends on (the behaviour under LD-
resolution of) P.

So although both methods are equivalent (if declarative properties are con-
cerned), the natural method is strictly stronger in the following sense. There exists
a (rather simple) mapping transforming a call-success specification into a declara-
tive one, equivalent in the sense of Propositions 4.2 and 4.3. Such a mapping from
declarative specifications into call-success ones (with nontrivial preconditions) does
not exist.

Informal comparison suggests that the declarative specifications are simpler and
more natural. The verification conditions of the natural method consist of substan-
tially fewer implications to prove (conf. the previous section). So, at least in most
cases, the proofs using the natural method are simpler.

5 On proving completeness

The main subject of this paper is the natural method of proving partial correctness
of logic programs. Here we briefly discuss a method for proving completeness.

Let us begin from the fact that for a given program, a specification for complete-
ness is in general different from that for partial correctness. For the purposes of
correctness we describe a superset of the set of answers of a program. For the pur-
poses of completeness we describe its subset. (A program satisfying a completeness
requirement may compute something more than required). Often when a specifica-
tion for correctness is of the form pre— post then a specification for completeness is
post (together with a specification of equality).

We consider a program P complete w.r.t. a specification espec if espec = @ im-
plies that () is an answer for the program. As previously, we consider specifications
which are (possibly non Herbrand) interpretations. We require that these interpre-
tations are models of Clark equality theory CET. (Alternatively, we may consider
specifications which are theories).

For example, a specification for completeness of APPEND may be the Herbrand
interpretation

cspec = {app(k,l,m) € H | k, [, m are lists, k+[= m}U{t=t | t is a ground term}.

Let P be a definite clause program. Below we refer to theory ONLY-IF(P) that
is usually used when defining Clark completion comp(P) of a program. Informally,
ONLY-IF(P)is P with implications reversed. For the definition the reader is referred
e.g. to [Apt90]. In our example, ONLY-IF(APPEND) is

app(e,y,z) = e =[l,y=2 V Ih,k,l,m: e =[hlk],y =1,z = [h|m], app(k, [, m)

The following property can be used to prove completeness of a program.

Proposition 5.1 Let P be a program and () a query. Assume that
(i) espec = ONLY-IF(P) and espec = CET,
(ii) P terminates for @), i.e. there exists a finite SLD-tree for) and P.
Then
L. if espec |= 3Q then P = 3Q (and some instance of @) is an answer of P),

2. if espec = @ then P = @ (and @ is an answer of P).

PROOF (outline)

1. By induction on the SLD-tree. Let Q1,...,Q, (n > 0) be the children of the
root () in the SLD-tree. As espec |= 3@, by (i) we have n > 0 and espec |= 3Q; for
some 7. Now either (); is empty and then) succeeds, thus P |= 3Q) or @); is not
empty and P |= 3@ by the inductive assumption.

2. If espec |E @ then, by 1., P | @' for any ground instance @' of (). Hence
P |= @ (under an assumption that P is finite and the set of function symbols in the
language is infinite).

O

EXAMPLE Consider program APPEND and the specification espec given above.
It is easy to show that ecspec E ONLY-IF(APPEND). Consider @ = app(k,l, m)
where m is a list. One can show, using any standard method, that () terminates
under Prolog selection rule.

Now assume that k,[are variables. Then espec = @) and we obtain from the
proposition that P | 3Q. Taking k’,l’ being lists such that &' * I’ = m we have
cspec = app(k', ', m) and from the proposition we get P |= app(k’,",m). So, by
completeness of SLD-resolution,) succeeds and produces all the required divisions
of m into two lists. O

We believe that the theorem above is a formalization of a common way of informal
reasoning about completeness, by checking that any tuple of argument values to be
defined by the predicate is “covered” by some of its clauses.

The method proposed here establishes program completeness for queries that
terminate. This should not be seen as disadvantage, termination of a program has
to be shown anyway.

6 A note on related work

In this section we briefly compare the natural method with with the annotation
method of Deransart [Der93, Section 4], [BM97, Section 4] of proving declarative
properties of logic programs. Then we mention some other related work.

10

A specification in the natural method is usually in a form of an implication (or
a conjunction of implications). The annotation method treats the specification in a
different way. It treats the antecedents and consequents of the implications in the
specification as separate properties. Let us call them elementary properties. One
assigns directions (“inherited” or “synthesised”) to these properties. Then meth-
ods of attribute grammars are used to construct a sufficient condition for program
correctness.

Applying this approach to our last example, the specification consists of inher-
ited properties pre,, preg, pre; and synthesised properties post,, post,, post,. As a
sufficient condition to prove, one obtains the implications (3).

The annotation method could be seen as a refinement of the natural method,
with a lower granularity. The verification condition of the natural method is a set
of “big” implications. The approach of [Der93, BM97] shows how to decompose
them into smaller ones. That approach could also be understood as studying the
structure of the proofs in the natural method.

It could be seen as a disadvantage of the annotation method that its style of spec-
ification hides the information about which antecedent implies which consequent.
(For instance, such specification for our example does not state that post, depends
on pre, but not on pre;). Also that approach involves a bigger technical apparatus.
(It requires establishing an ordering among the elementary properties of the atoms
of each clause. It also requires showing non-circularity of some attribute grammar.)

We should mention the work of Stark [Sta97] on proving properties of Prolog
programs. It considers programs with negation and contains an implementation of
a theorem prover/checker. It deals with a broader class of properties than our work,
for instance program termination. An important work on constructing correct logic
programs is [Dev90].

The purpose of this paper is different; we want to recall a simple and basic
method and show that it is at least as useful as the operational one, for a wide
range of purposes. Also Naish [Nai96] advocates using the declarative semantics,
instead of operational, in reasoning about logic programs.

A method for proving completeness similar to ours was presented in [DM93]. A
similarity can be seen between allowing different specifications for correctness and
completeness in Section 5, and a three-valued approach to declarative debugging

proposed by Naish[Nai97].

7 Conclusions

We presented a simple and natural way of proving declarative partial correctness
properties of definite clause programs. The method is not new and can be traced
back at least to [Cla79]. It is based on a property that if SPEC | P then, for any
query instance () computed by program P, SPEC = (). We discussed the case when
the specification SPEC' is an interpretation. However it can also be a set of axioms.

11

We compared the natural method with the approach used in [Apt97, PR97], which
is based on operational semantics (LD-resolution). We showed that whatever can
be proved by the operational method, can be proved by the natural one (as long as
the results of computations are considered). We showed (at the end of Section 4)
that in a certain sense the natural method is strictly stronger than the operational
one.

We also presented a method of proving completeness. Thus proving a program
totally correct consists of showing its correctness, completeness and termination.
The latter can be dealt with for instance by the method of [AP93].

We advocate using a pair of specifications, one for correctness and one for com-
pleteness. This is because the requirements for a program usually have a 3-valued
flavour. Some answers should not be computed, they are considered incorrect. Some
answers have to be computed. The remaining ones are irrelevant, possibly no query
leading to such an answer will be used.

It seems that a desire to have a single specification leads to complications, for in-
stance to a need for explicit specifying the form call instances of predicates. Consider
the set of answers satisfying our correctness specification, and the set of those their
instances that are correct calls according to a "corresponding” call-success specifi-
cation. Often the latter set is equal to that given by a completeness specification
(as in the APPEND examples above).

Obviously, when the operational semantics is of interest, operational methods
are necessary. Their importance should not be neglected. But as long as we are
interested in the properties of computed answers (partial correctness and complete-
ness) and not in the details of computations, the declarative approach is sufficient.
The need of referring to operational properties seems sometimes exaggerated. Our
examples and the work of Naish [Nai96] show that what is often being expressed in
terms of call patterns can be translated into declarative properties. Termination is
an important operational property, which in contrast to correctness and complete-
ness depends on the selection rule. But even for termination the method of Apt
and Pedreschi [AP93] does not explicitly refer to call patterns (except for the initial
query).

The author believes that the declarative method (possibly treated informally) is
a valuable tool for programmers in their every-day reasoning about programs, and
that it is actually used by many of them. It should be included in teaching the
basics of logic programming.

If it were necessary to resort to operational semantics in order to prove sim-
ple program properties then logic programming would not deserve to be called a
declarative programming paradigm. This work shows that this is not the case.

12

ACKNOWLEDGEMENTS

Thanks are due to Pierre Deransart for discussions on the subject. Krzysztof Apt
suggested writing this report. This work was supported by Institute of Computer

Science,

Polish Academy of Sciences, by Polish KBN grant nr 8 T11C 001 11 and

by Linkoping University.

References

[AP93] K. Apt and D. Pedreschi. Reasoning about termination of pure Prolog
programs. Information and Computation, 106(1):109-157, 1993.

[Apt90] K. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of The-
oretical Computer Science, Volume B, chapter 10, pages 493-574. Elsevier
Science Publishers B.V., 1990.

[Apt97] K. R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

[BC89] A. Bossi and N. Cocco. Verifying correctness of logic programs. In Proceed-
ings of the International Joint Conference on Theory and Practice of Soft-
ware Development TAPSOFT 89, vol. 2, pages 96-110. Springer-Verlag,
1989. Lecture Notes in Computer Science.

[BM97] J. Boye and J. Maluszynski. Directional types and the annotation method.
Journal of Logic Programming, 33(3):179-220, 1997.

[CD88] B. Courcelle and P. Deransart. Proofs of partial correctness for attribute
grammars with application to recursive procedures and logic programming.
Information and Computation, 78(1):1-55, 1988.

[Cla79] K. L. Clark. Predicate logic as computational formalism. Technical Report
79/59, Imperial College, London, December 1979.

[Der93] P. Deransart. Proof methods of declarative properties of definite programs.
Theoretical Computer Science, 118:99-166, 1993.

[Dev90] Y. Deville. Logic Programming: Systematic Program Development.
Addison-Wesley, 1990.

[DM88] W. Drabent and J. Maluszynski. Inductive Assertion Method for Logic
Programs. Theoretical Computer Science, 59:133-155, 1988.

[DM93] P. Deransart and J. Maluszynski. A Grammatical View of Logic Program-
ming. The MIT Press, 1993.

[Hog81] C.J. Hogger. Derivation of logic programs. Journal of ACM, 28(2):372-392,

1981.

13

[Hog84] C.J. Hogger. Introduction to Logic Programming. Academic Press, London,

[Nai96]

[Nai97]

[PROT]

[St&97]

1984.

L. Naish. A declarative view of modes. In Proceedings of JICSLP "96, pages
185-199. MIT Press, 1996.

Lee Naish. A three-valued declarative debugging scheme. Technical Re-
port 97/5, Department of Computer Science, University of Melbourne, Mel-
bourne, Australia, April 1997.

D. Pedreschi and S. Ruggieri. Verification of logic programs. Technical
Report TR-97-05, Department of Computer Science, University of Pisa,
1997.

R. F. Stark. Formal verification of logic programs: Foundations and imple-
mentation. In Logical Foundations of Computer Science LFCS 97 — Logic
at Yaroslavl, pages 354-368. Springer-Verlag, 1997. LNCS 1234.

14

