
IT IS DECLARATIVEON REASONING ABOUT LOGIC PROGRAMSW lodzimierz Drabent1AbstractWe advocate using the declarative reading of logic programs in provingpartial correctness, when the properties of interest are declarative. Some pub-lications present unnecessarily complicated methods for proving such proper-ties. These approaches refer to the operational semantics, as they considercalls and successes of the predicates of the program during LD-resolution. Weshow that this is an unnecessary complication and that a straightforward proofmethod is simpler and in some sense more general. Our approach is basedsolely on the property that \whatever is computed is a logical consequence ofthe program". This approach is not new and can be traced back to the workof Clark in 1979. However it seems that it has been - to a certain extent -forgotten. We believe in its importance in teaching logic programming.The paper deals with partial correctness, we complement it with an outlineof a method for proving completeness.In this paper we recall a simple and straightforward method of proving partialcorrectness properties of de�nite clause logic programs. The method is declarative:it treats programs as sets of axioms and the computed instances of queries as logicalformulae; it abstracts from any operational semantics. The method may seem wellknown, it is discussed among others in [Cla79, Hog81, Hog84, Der93]. However somepublications on the theory of logic programming, for instance [Apt97, PR97], use anunnecessarily complicated approach for proving such properties. That approach isoperational, it refers to LD-resolution and considers the procedure calls that occurduring the computation.A main advantage of logic programming is that for many purposes one canabstract from the \control" of programs and consider only their \logic". Using anoperational approach to prove program properties (those which can be dealt within a declarative way) weakens this advantage. In this paper we show that, as longas we are not interested in the form of procedure calls during the computation, thedeclarative proof method is simpler and not less general than the operational one.We show that in a certain sense it is more powerful.First we present the declarative proof method (which will be called \natural"),then the operational one. In the third section we compare the two approaches. Inparticular we show that whatever can be proved by the operational method, canalso be proved by the declarative one (as long as properties of program answers areconsidered). The main subject of this paper is a declarative approach to proving1Institute of Computer Science, Polish Academy of Sciences and IDA, Link�opings universitet,Sweden. E-mail: drabent@ipipan.waw.pl 1

partial correctness of logic programs. In Section 5 we briey present a correspond-ing approach to proving completeness. The next section relates the natural proofmethod to the so called annotation method.1 PreliminariesFor basic de�nitions etc. we refer the reader to the standard references and to[Apt97]. We use a variant of SLD-resolution with queries (of the form A1; : : : ; An)instead of goals (of the form A1; : : : ; An). By a computed (resp. correct) answerwe mean an instance Q� of a query Q, where � is a computed (correct) answersubstitution for Q and the given program.We are interested in declarative properties of programs, i.e. properties of pro-grams treated as sets of logic formulae. Speaking more formally, we consider proper-ties of programs' (computed or correct2) answers. So we do not distinguish programswhich are logically equivalent but have di�erent S-semantics.2 Declarative speci�cations and the natural proofmethodAs a standard example let us take the program APPEND:app([],L,L)app([H|K],L,[H|M]) :- app(K,L,M)We want to prove that it indeed appends lists. We have to begin with a precise state-ment (a speci�cation) of this property. A slight complication is that the programdoes not actually de�ne the relation of list concatenation, but its superset. This isbecause its least Herbrand model contains \ill-typed" atoms, like app([]; 1; 1).So we want to prove that:For any answer app(k; l;m), if k and l are lists then m is a list andk � l = m. (1)(By a list we mean a term [t1; : : : ; tn] (in Prolog notation), where n � 0 and t1; : : : ; tnare possibly non-ground terms. Symbol � denotes the concatenation of lists.3)This speci�cation could be equivalently expressed asspec j= app(k; l;m) (2)2By the soundness and completeness of SLD-resolution, for a given program the sets of computedand of correct answers are equal.3Actually, the requirement on k is unnecessary. Our intention however is to follow the corre-sponding example from [Apt97]. A full speci�cation of APPEND may be: if l is a list or m is alist then k; l;m are lists and k � l = m. 2

for any answer app(k; l;m), where spec is the Herbrand interpretation:spec = f app(k; l;m) 2 H j if k and l are lists then m is a list and k � l = m g(H is the Herbrand base; we assume a �xed in�nite set of function symbols). Obvi-ously, (2) holds i� all the ground instances of app(k; l;m) are in spec.Notice that we do not need to refer to the notion of a query in the speci�cation.Assume that app(k; l;m) is a success instance of query app(k0; l0;m0). If k0; l0 arelists then (k; l are lists and) the speci�cation implies that m is a list and k � l = m.Such speci�cations, referring to program answers, will be called declarative. Adeclarative speci�cation can be an interpretation (possibly a non Herbrand one) ora set of axioms.4 In this paper we will use speci�cations of the �rst kind. We willsay that a program is correct w.r.t. a declarative speci�cation spec i� spec j= Q forany answer Q of the program.To prove the partial correctness (of a logic program w.r.t. a declarative speci�ca-tion) we use an obvious approach, discussed among others by Clark [Cla79], Hogger[Hog81, p. 378{9] and Deransart [Der93, Section 3].5 We will call it the naturalproof method:Let P be a program and spec be an interpretation. To show thatspec j= Q for every computed/correct instance Q of a query it issu�cient to show that spec j= P .So we have to show that spec j= C for each clause C of the program. This proofmethod is obviously sound (as P j= Q, by soundness of SLD-resolution). It is alsocomplete [Der93] in the following sense. If a program P is correct w.r.t. a declarativespeci�cation spec then there exists a stronger speci�cation spec0 � spec such thatspec0 j= P (and thus the method is applicable to spec0).In our example the proof is simple. We present here the less trivial part withdetails. Consider the second clause. To show thatspec j= app([HjK]; L; [HjM]) app(K;L;M)take ground terms h; k; l;m6 such that spec j= app(k; l;m). (In other wordsapp(k; l;m) 2 spec). Assume that [hjk] and l are lists (hence k is a list). Then m isa list and k � l = m, as spec j= app(k; l;m). Thus [hjm] is a list and [hjk]� l = [hjm].We showed that spec j= app([hjk]; l; [hjm]), this concludes the proof.We present another simple example. Consider the standard REVERSE programwhich uses the so called accumulator technique.4An axiomatic speci�cation equivalent to our example speci�cation may consist of formulaapp(k; l;m) $ (list(k); list(l) ! list(m); k�l=m) together with axioms describing predicates =and list and function �.5where it is called \inductive proof method".6and valuation fH=h;K=k; L=l;M=m g 3

reverse(X, Y) :- rev(X, Y, []).rev([], X, X).rev([H|L], X, Y) :- rev(L, X, [H|Y]).The declarative reading of the program is simple: the �rst argument of rev is a list,its reverse is represented as a di�erence list, of the second and the third argument.The formal speci�cation isspec = freverse([t1; : : : ; tn]; [tn; : : : ; t1]) j n � 0; t1; : : : ; tn 2 T g[frev([t1; : : : ; tn]; [tn; : : : ; t1jt]; t) j n � 0; t1; : : : ; tn; t 2 T gwhere T is the set of ground terms. The nontrivial part of the proof is to show thatthe last clause is true in the interpretation spec. Take ground terms l; x; h; y, suchthat spec j= rev(l ; x ; [hjy]): So there exist n � 0, t1; : : : ; tn; t such that l = [t1; : : : ; tn],x = [tn; : : : ; t1jt], t = [hjy]. Then rev([hjl]; x; y) is rev([h; t1; : : : ; tn]; [tn; : : : ; t1; hjy]; y),thus spec j= rev([hjl]; x ; y).Notice that the natural method refers only to the declarative semantics of pro-grams. A speci�cation is an interpretation. Correctness is expressed as truth (ofthe program's answers) in the interpretation. Program clauses are treated as logicformulae, their truth in the interpretation is to be shown7. We abstract from anyoperational semantics, in particular from the notions of a selected literal and theselection rule used by resolution. Still we can use declarative speci�cations to rea-son about queries and corresponding answers, using the fact that an answer is aninstance of the query.3 Call-success speci�cations and the operationalapproachSome authors [BC89], [Apt97, Chapter 8], [PR97]8 propose another approach toproving partial correctness of logic programs. The main di�erence is that theyspecify the properties of interest in another, non-declarative way. To deal with \ill-typed" atoms they consider the form of queries. They use speci�cations consistingof two parts. The precondition speci�es the \procedure calls" that appear during thecomputation (more precisely, the atoms that are selected in the LD-resolution). Thepostcondition speci�es the procedure successes (the computed instances of procedurecalls). We will call such speci�cations call-success speci�cations. Formally, pre- andpostconditions are sets of atoms, closed under substitutions9. Hence, if a procedurecall satis�es the precondition then also any corresponding success does.7Alternatively we may consider an axiomatic speci�cation of the intended property (by meansof a set of axioms T) and show that the program is a logical consequence of T .8Whenever these approaches di�er, we follow that of [Apt97].9If an atom satis�es the precondition then so do all its instances.4

A program is correct if every procedure call and every success satisfy the pre-or postcondition respectively10. Notice that this is not a declarative property. Itconsiders computations (SLD-trees), not only computed answers, and it depends onthe selection rule used. Prolog selection rule is assumed. The proof method used wasproposed by Bossi and Cocco [BC89] and is an instance of the method of Drabentand Ma luszy�nski [DM88]. We will call it the operational proof method.The method is based on the following veri�cation condition. For each clause Cof the program, show that for each (possibly non-ground) instance H B1; : : : ; Bn(n � 0) of Cif H 2 pre; B1 ; : : : ;Bk 2 post then Bk+1 2 pre (for k = 0; : : : ; n� 1),if H 2 pre; B1 ; : : : ;Bn 2 post then H 2 post .The condition on the initial query is that, for any instance B1; : : : ; Bn (n > 0) of thequery, if B1; : : : ; Bk 2 post then Bk+1 2 pre (for k = 0; : : : ; n�1). In the terminologyof [Apt97], a program satisfying the veri�cation condition is called, together withits speci�cation, well-asserted.So the operational method requires proving one implication per atom occurringin the program or in the initial goal. In contrast, the natural method advocated inthis paper requires proving one implication per program clause.Let us come back to our example. We refer here to its treatment in [Apt97,p. 214]. The precondition ispre = f app(k; l;m) j k and l are lists g:(Here k; l;m are terms, possibly non-ground. An atom A satis�es pre if A 2 pre).The postcondition ispost = f app(k; l;m) j k; l;m are lists and k � l = m g:The veri�cation conditions to be proved consist of one implication for the �rst clauseof APPEND and two implications for the second one. The details of the proof canbe found in [Apt97].The reader can see that that proof is more complicated than the one using thenatural method. This should not be surprising as the proved property is stronger. Inaddition to the required property, we also get a proof that for a certain class of initialgoals each atom selected by LD-resolution satis�es the precondition. However, thelatter property is often of no interest.4 ComparisonIn this section we �rst compare the speci�cation styles of the two approaches. Thenwe show that, although formally both methods are equivalent, the declarative oneis, in a certain sense, stronger.10Provided that the initial goal satis�es a certain condition.5

A declarative speci�cation refers to all the answers of the program (i.e. successinstances of arbitrary queries). It is independent of the operational semantics. Acall-success speci�cation refers to a particular operational semantics (LD-resolution)and to computations starting from a restricted class of initial queries. The speci�ca-tion consists of a precondition and a postcondition. The precondition refers to theselected atoms in LD-derivations; the postcondition to their success instances.A call-success speci�cation is a pair of sets of atoms; a declarative speci�cationis an interpretation over an arbitrary universe, or it is an axiomatic theory.A common phenomenon in logic programming is that a program's semanticscontains atoms which are irrelevant for the correctness of the program. For instance,APPEND program is intended to de�ne the relation of appending lists. But itactually de�nes a superset of this relation; its least Herbrand model contains atomsapp(k; l;m) where l and m are not lists11.The two compared approaches deal with such \ill-typed" atoms in di�erent ways.In the natural method, the speci�cation is a superset of the least Herbrand modelMP . Such speci�cations could be seen as (conjunctions of) implications; we justdo not bother and include all \ill-typed" atoms. In the other approach, \ill-typed"atoms are excluded from the speci�cation. The precondition pre is used for thispurpose. The postcondition is not (in general) a superset of MP . Instead it is asuperset of MP \ pre. We may say that a declarative speci�cation speci�es MP (orMP [:pre) while the postcondition of a call-success speci�cation speci�es MP \pre.Now we are going to show that, given a call-success speci�cation, one can con-struct a declarative speci�cation which is, in a sense, equivalent. Consider an op-erational speci�cation hpre; posti. A corresponding declarative speci�cation used inour approach could be seen, speaking informally, as implication pre! post.De�nition 4.1 Let pre and post be sets of atoms closed under substitution. Thedeclarative speci�cation corresponding to the call-success speci�cation hpre; posti isthe Herbrand interpretationpre!post := fA 2 H j if A 2 pre then A 2 post gIn other words, pre!post = (H n pre) [(H \ post):The following proposition compares corresponding declarative and call-successspeci�cations. The next result compares both proof methods.Proposition 4.2 If a program P is correct w.r.t. the call-success speci�cationhpre; posti then P is correct w.r.t. declarative speci�cation pre!post.If P is correct w.r.t. pre!post and A� is an answer to a query A 2 pre thenA� 2 post .11Provided that the Herbrand universe contains a term which is not a list.6

PROOF: The second part is obvious (as A� 2 :pre [post and A� 2 pre). For the�rst part assume that a program P is correct w.r.t. hpre; posti. So for any atomicquery from pre, any of its computed instances is in post. Consider any computedinstance A of an arbitrary atomic query and assume that pre!post 6j= A. Then someground instance A0 of A is not a member of pre!post. This means that A0 2 pre andA0 62 post. As A is a computed instance of a query, query A succeeds with an emptyanswer substitution. Any instance of A has the same property; thus A0 succeeds andfrom the assumption we obtain A0 2 post, contradiction. This completes the proof.2Proposition 4.3 Assume that it can be shown, by the method of [BC89], that aprogram P is correct w.r.t. a call-success speci�cation hpre; posti. Then it can beshown that P is correct w.r.t. declarative speci�cation pre!post, using the naturalmethod.In other words, if P and hpre; posti satisfy the veri�cation condition of the op-erational method then pre!post j= P .PROOF (see also [CD88]): As pre!post is a Herbrand interpretation, pre!post j=P is equivalent to a property that if B1; : : : ; Bn 2 pre!post then H 2 pre!post,for any ground instance H B1; : : : ; Bn of a clause of P ,To show the latter, assume that B1; : : : ; Bn 2 pre!post. If H 62 pre thenH 2 pre!post. Otherwise, if H 2 pre then by simple induction we obtain from theveri�cation condition that Bi 2 pre and Bi 2 post , for i = 1; : : : ; n. Hence, by theveri�cation condition, H 2 post , thus H 2 pre!post. 2The two propositions show that the natural method is stronger than the opera-tional method, as far as declarative properties are concerned. Moreover, a declara-tive speci�cation corresponding to a given call-success speci�cation is obtained fromthe latter by a simple composition of three operations: removing non-ground atoms,set complementation and set union.Formally, the natural method is not strictly stronger, as it may be treated as aspecial case of the operational method. (For a given declarative speci�cation spec,take the set of all atoms as the precondition and post = fA j spec j= Ag as thepostcondition). However we want to view the operational method together withits style of speci�cations which uses nontrivial preconditions and postconditionswhich are not supersets of MP and which do not contain \ill-typed" atoms. Theoperational method understood in this way is in a sense less powerful than thedeclarative method.First, correctness w.r.t. the declarative speci�cation pre!post does not implycorrectness w.r.t. the call-success speci�cation hpre; posti. The latter requires thatall the atoms selected in LD-resolution are in pre. So the call-success speci�cationabove is strictly stronger than the declarative speci�cation. Often a desired propertyis conveniently expressed by a declarative speci�cation pre!post (or by intersection7

of some such speci�cations) but the selected atoms are not in pre. In such a case theoperational method is inapplicable (conf. [BM97]). We illustrate this by an example,where under any selection rule the precondition does not hold.Let us consider the following program P .p(X,Y) :- q(X,W,Z,Y),q(Z, ,W,).q(X,Y,X,Y).This program is arti�cial, however it is an abstraction of \two-pass" programs andof certain usages of di�erence lists. (Some examples of such programs can be founde.g. in [BM97]). Let �(t) stands for \t is a list", for a possibly non-ground term t.Let prep = f p(t ; s) j �(t) g postp = f p(t; s) j �(s) gpreq = f q(t; s; u; v) j �(t) g postq = f q(t; s; u; v) j �(u) gpre0q = f q(t; s; u; v) j �(s) g post0q = f q(t; s; u; v) j �(v) gpre = prep [(preq \ pre0q) post = postp [(postq \ post0q):The program is correct w.r.t. declarative speci�cation pre!post. It is also correctw.r.t. a stronger declarative speci�cationspec = (prep!postp) \ (preq!postq) \ (pre 0q!post 0q):Moreover, spec j= P and thus the natural method is applicable12. On the other hand,the program is obviously not correct w.r.t. call-success speci�cation hpre; posti andthe operational method is inapplicable13.In contrast to the case of �nding a declarative speci�cation corresponding to agiven call-success one, the reverse mapping does not exist. For a given declarative12We present here in details the nontrivial part of the proof, showing that the �rst clause of Pis true in spec. Take a ground instance H B1; B2 of the clause. Notice that:H 2 prep implies B1 2 preqB1 2 postq implies B2 2 preqB2 2 postq implies B1 2 pre0qB1 2 post0q implies H 2 postp: (3)Assume that the right hand side is true in spec : spec j= B1 ;B2 . Thus we have:Bi 2 preq implies Bi 2 postq for i = 1; 2B1 2 pre0q implies B1 2 post0qCombining these implications together we obtain that from our assumption it follows thatH 2 prepimplies H 2 postp . This means that spec j= H . Thus we showed that for an arbitrary groundinstance C of the clause, spec j= C , which completes the proof.13P is correct w.r.t. call-success speci�cation h(prep[preq); (postp [postq)i but this speci�cationis too weak to construct a proof by the operational method. This can be done, for instance, if thepostcondition expresses the fact that the second and the fourth arguments of q are equal (or if thedeclarative speci�cation spec is used as a postcondition).8

speci�cation, there does not exist a call-success speci�cation (with a non-trivialprecondition) such that if P is correct w.r.t. the former then P is correct w.r.t.the latter. Such a call-success speci�cation depends on (the behaviour under LD-resolution of) P .So although both methods are equivalent (if declarative properties are con-cerned), the natural method is strictly stronger in the following sense. There existsa (rather simple) mapping transforming a call-success speci�cation into a declara-tive one, equivalent in the sense of Propositions 4.2 and 4.3. Such a mapping fromdeclarative speci�cations into call-success ones (with nontrivial preconditions) doesnot exist.Informal comparison suggests that the declarative speci�cations are simpler andmore natural. The veri�cation conditions of the natural method consist of substan-tially fewer implications to prove (conf. the previous section). So, at least in mostcases, the proofs using the natural method are simpler.5 On proving completenessThe main subject of this paper is the natural method of proving partial correctnessof logic programs. Here we briey discuss a method for proving completeness.Let us begin from the fact that for a given program, a speci�cation for complete-ness is in general di�erent from that for partial correctness. For the purposes ofcorrectness we describe a superset of the set of answers of a program. For the pur-poses of completeness we describe its subset. (A program satisfying a completenessrequirement may compute something more than required). Often when a speci�ca-tion for correctness is of the form pre!post then a speci�cation for completeness ispost (together with a speci�cation of equality).We consider a program P complete w.r.t. a speci�cation cspec if cspec j= Q im-plies that Q is an answer for the program. As previously, we consider speci�cationswhich are (possibly non Herbrand) interpretations. We require that these interpre-tations are models of Clark equality theory CET. (Alternatively, we may considerspeci�cations which are theories).For example, a speci�cation for completeness of APPEND may be the Herbrandinterpretationcspec = fapp(k ; l ;m) 2 H j k ; l ;m are lists, k � l = mg[ft=t j t is a ground termg:Let P be a de�nite clause program. Below we refer to theory ONLY-IF(P) thatis usually used when de�ning Clark completion comp(P) of a program. Informally,ONLY-IF(P) is P with implications reversed. For the de�nition the reader is referrede.g. to [Apt90]. In our example, ONLY-IF(APPEND) isapp(x ; y; z) ! x = []; y = z _ 9h; k ; l ;m: x = [hjk]; y = l ; z = [hjm]; app(k ; l ;m)The following property can be used to prove completeness of a program.9

Proposition 5.1 Let P be a program and Q a query. Assume that(i) cspec j= ONLY-IF(P) and cspec j= CET,(ii) P terminates for Q, i.e. there exists a �nite SLD-tree for Q and P .Then1. if cspec j= 9Q then P j= 9Q (and some instance of Q is an answer of P),2. if cspec j= Q then P j= Q (and Q is an answer of P).PROOF (outline)1. By induction on the SLD-tree. Let Q1; : : : ; Qn (n � 0) be the children of theroot Q in the SLD-tree. As cspec j= 9Q , by (i) we have n > 0 and cspec j= 9Qi forsome i. Now either Qi is empty and then Q succeeds, thus P j= 9Q or Qi is notempty and P j= 9Q by the inductive assumption.2. If cspec j= Q then, by 1., P j= Q0 for any ground instance Q0 of Q. HenceP j= Q (under an assumption that P is �nite and the set of function symbols in thelanguage is in�nite). 2EXAMPLE Consider program APPEND and the speci�cation cspec given above.It is easy to show that cspec j= ONLY-IF(APPEND). Consider Q = app(k ; l ;m)where m is a list. One can show, using any standard method, that Q terminatesunder Prolog selection rule.Now assume that k; l are variables. Then cspec j= 9Q and we obtain from theproposition that P j= 9Q. Taking k0; l0 being lists such that k0 � l0 = m we havecspec j= app(k 0; l 0;m) and from the proposition we get P j= app(k0; l0;m). So, bycompleteness of SLD-resolution, Q succeeds and produces all the required divisionsof m into two lists. 2We believe that the theorem above is a formalization of a common way of informalreasoning about completeness, by checking that any tuple of argument values to bede�ned by the predicate is \covered" by some of its clauses.The method proposed here establishes program completeness for queries thatterminate. This should not be seen as disadvantage, termination of a program hasto be shown anyway.6 A note on related workIn this section we briey compare the natural method with with the annotationmethod of Deransart [Der93, Section 4], [BM97, Section 4] of proving declarativeproperties of logic programs. Then we mention some other related work.10

A speci�cation in the natural method is usually in a form of an implication (ora conjunction of implications). The annotation method treats the speci�cation in adi�erent way. It treats the antecedents and consequents of the implications in thespeci�cation as separate properties. Let us call them elementary properties. Oneassigns directions (\inherited" or \synthesised") to these properties. Then meth-ods of attribute grammars are used to construct a su�cient condition for programcorrectness.Applying this approach to our last example, the speci�cation consists of inher-ited properties prep; preq ; pre 0q and synthesised properties postp; postq ; post 0q . As asu�cient condition to prove, one obtains the implications (3).The annotation method could be seen as a re�nement of the natural method,with a lower granularity. The veri�cation condition of the natural method is a setof \big" implications. The approach of [Der93, BM97] shows how to decomposethem into smaller ones. That approach could also be understood as studying thestructure of the proofs in the natural method.It could be seen as a disadvantage of the annotation method that its style of spec-i�cation hides the information about which antecedent implies which consequent.(For instance, such speci�cation for our example does not state that postq dependson preq but not on pre 0q). Also that approach involves a bigger technical apparatus.(It requires establishing an ordering among the elementary properties of the atomsof each clause. It also requires showing non-circularity of some attribute grammar.)We should mention the work of St�ark [St�a97] on proving properties of Prologprograms. It considers programs with negation and contains an implementation ofa theorem prover/checker. It deals with a broader class of properties than our work,for instance program termination. An important work on constructing correct logicprograms is [Dev90].The purpose of this paper is di�erent; we want to recall a simple and basicmethod and show that it is at least as useful as the operational one, for a widerange of purposes. Also Naish [Nai96] advocates using the declarative semantics,instead of operational, in reasoning about logic programs.A method for proving completeness similar to ours was presented in [DM93]. Asimilarity can be seen between allowing di�erent speci�cations for correctness andcompleteness in Section 5, and a three-valued approach to declarative debuggingproposed by Naish[Nai97].7 ConclusionsWe presented a simple and natural way of proving declarative partial correctnessproperties of de�nite clause programs. The method is not new and can be tracedback at least to [Cla79]. It is based on a property that if SPEC j= P then, for anyquery instance Q computed by program P , SPEC j= Q . We discussed the case whenthe speci�cation SPEC is an interpretation. However it can also be a set of axioms.11

We compared the natural method with the approach used in [Apt97, PR97], whichis based on operational semantics (LD-resolution). We showed that whatever canbe proved by the operational method, can be proved by the natural one (as long asthe results of computations are considered). We showed (at the end of Section 4)that in a certain sense the natural method is strictly stronger than the operationalone.We also presented a method of proving completeness. Thus proving a programtotally correct consists of showing its correctness, completeness and termination.The latter can be dealt with for instance by the method of [AP93].We advocate using a pair of speci�cations, one for correctness and one for com-pleteness. This is because the requirements for a program usually have a 3-valuedavour. Some answers should not be computed, they are considered incorrect. Someanswers have to be computed. The remaining ones are irrelevant, possibly no queryleading to such an answer will be used.It seems that a desire to have a single speci�cation leads to complications, for in-stance to a need for explicit specifying the form call instances of predicates. Considerthe set of answers satisfying our correctness speci�cation, and the set of those theirinstances that are correct calls according to a "corresponding" call-success speci�-cation. Often the latter set is equal to that given by a completeness speci�cation(as in the APPEND examples above).Obviously, when the operational semantics is of interest, operational methodsare necessary. Their importance should not be neglected. But as long as we areinterested in the properties of computed answers (partial correctness and complete-ness) and not in the details of computations, the declarative approach is su�cient.The need of referring to operational properties seems sometimes exaggerated. Ourexamples and the work of Naish [Nai96] show that what is often being expressed interms of call patterns can be translated into declarative properties. Termination isan important operational property, which in contrast to correctness and complete-ness depends on the selection rule. But even for termination the method of Aptand Pedreschi [AP93] does not explicitly refer to call patterns (except for the initialquery).The author believes that the declarative method (possibly treated informally) isa valuable tool for programmers in their every-day reasoning about programs, andthat it is actually used by many of them. It should be included in teaching thebasics of logic programming.If it were necessary to resort to operational semantics in order to prove sim-ple program properties then logic programming would not deserve to be called adeclarative programming paradigm. This work shows that this is not the case.12

ACKNOWLEDGEMENTSThanks are due to Pierre Deransart for discussions on the subject. Krzysztof Aptsuggested writing this report. This work was supported by Institute of ComputerScience, Polish Academy of Sciences, by Polish KBN grant nr 8 T11C 001 11 andby Link�oping University.References[AP93] K. Apt and D. Pedreschi. Reasoning about termination of pure Prologprograms. Information and Computation, 106(1):109{157, 1993.[Apt90] K. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of The-oretical Computer Science, Volume B, chapter 10, pages 493{574. ElsevierScience Publishers B.V., 1990.[Apt97] K. R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.[BC89] A. Bossi and N. Cocco. Verifying correctness of logic programs. In Proceed-ings of the International Joint Conference on Theory and Practice of Soft-ware Development TAPSOFT '89, vol. 2, pages 96{110. Springer-Verlag,1989. Lecture Notes in Computer Science.[BM97] J. Boye and J. Ma luszy�nski. Directional types and the annotation method.Journal of Logic Programming, 33(3):179{220, 1997.[CD88] B. Courcelle and P. Deransart. Proofs of partial correctness for attributegrammars with application to recursive procedures and logic programming.Information and Computation, 78(1):1{55, 1988.[Cla79] K. L. Clark. Predicate logic as computational formalism. Technical Report79/59, Imperial College, London, December 1979.[Der93] P. Deransart. Proof methods of declarative properties of de�nite programs.Theoretical Computer Science, 118:99{166, 1993.[Dev90] Y. Deville. Logic Programming: Systematic Program Development.Addison-Wesley, 1990.[DM88] W. Drabent and J. Ma luszy�nski. Inductive Assertion Method for LogicPrograms. Theoretical Computer Science, 59:133{155, 1988.[DM93] P. Deransart and J. Ma luszy�nski. A Grammatical View of Logic Program-ming. The MIT Press, 1993.[Hog81] C. J. Hogger. Derivation of logic programs. Journal of ACM, 28(2):372{392,1981. 13

[Hog84] C. J. Hogger. Introduction to Logic Programming. Academic Press, London,1984.[Nai96] L. Naish. A declarative view of modes. In Proceedings of JICSLP '96, pages185{199. MIT Press, 1996.[Nai97] Lee Naish. A three-valued declarative debugging scheme. Technical Re-port 97/5, Department of Computer Science, University of Melbourne, Mel-bourne, Australia, April 1997.[PR97] D. Pedreschi and S. Ruggieri. Veri�cation of logic programs. TechnicalReport TR-97-05, Department of Computer Science, University of Pisa,1997.[St�a97] R. F. St�ark. Formal veri�cation of logic programs: Foundations and imple-mentation. In Logical Foundations of Computer Science LFCS '97 | Logicat Yaroslavl, pages 354{368. Springer-Verlag, 1997. LNCS 1234.

14

