
:

:

DO LOGIC PROGRAMS RESEMBLE PROGRAMS

IN CONVENTIONAL LANGUAGES ?

W lodzimierz Drabent

Department of Computer and Information Science

Link�oping University

581 83 Link�oping, Sweden

present address: Institute of Computer Science

Polish Academy of Sciences

P.O.Box 22, 00-901 Warszawa PKiN, Poland

This is a reformated version of the paper that appeared in \Proceedings of 1987 Sympo-

sium on Logic Programming". The author's e-mail is wdr@ida.liu.se and the homepage

is http://www.ipipan.waw.pl/~drabent/. The second paper-mail address above is ob-

solete.

0

ABSTRACT: It was suggested by Mellish that \many Prolog programs are not radically

di�erent in kind from programs written in conventional languages". This paper attempts

to formalize the concept of a \conventional" logic program. An experiment was performed

to check how often Prolog programs fall in our restricted class of conventional programs

and ascertain which programming techniques result in programs falling outside this class.

For the experiment a sample of Prolog programs was selected ranging from simple student

programs to a 52K character data base implementation. The results con�rm Mellish's

hypothesis. On the other hand the experiment disclosed some programming techniques

which are unique for logic programming.

1. INTRODUCTION

It was suggested by Mellish [M] that \many Prolog programs are not radically di�erent

in kind from programs written in conventional languages". We share this opinion and we

believe that a better understanding of \conventional" and \non-conventional" techniques

of logic programming is essential for improving e�ciency of implementations. This paper

attempts to formalize the concept of a \conventional" logic program and describes an

experiment based on this formalization. The aim of the experiment is to check how often

Prolog programs fall in our restricted class of conventional programs and ascertain which

programming techniques result in programs falling outside this class.

Our intuition of conventional programs is similar to Mellish's directional programs

[M] and close to Klu�zniak's ground Prolog [K]. It is formalized as a restriction with regard

to data
ow during computation. The restriction originates from [DtM] and was used in

[DiM] as a basis for a model of AND-parallel computations.

For the experiment a sample of Prolog programs was selected ranging from simple

student programs to a 52K character data base implementation. For checking whether a

given program satis�es our restrictions a program in Prolog was developed. The results

of the experiment con�rm Mellish's hypothesis. About half of the programs have satis�ed

the restrictions; substantial parts of the remaining ones were "conventional" too. On the

other hand the experiment disclosed some programming techniques which are unique for

logic programming.

In the next section of this paper a class of simple logic programs is introduced and

their properties are discussed. The third section describes a method which was used to

check whether a program is simple and summarizes the results of the experiment. The

fourth section presents programming techniques which led to some of the sample programs

1

being classi�ed as not being simple.

2. SIMPLE LOGIC PROGRAMS

Our intuition of \conventional" computation assumes transformation of input data

into output data. When applied to logic programs, this would mean that the argument

positions of every predicate symbol are divided into input positions and output positions.

Following [DtM] we call such programs annotated logic programs . Furthermore, according

to the model-theoretic semantics of logic programs [AE], input and output data are ground

terms. Thus, we want to focus our attention on annotated logic programs which transform

input ground terms into output ground terms. Notice that this does not exclude non-

determinism; such programs may also fail or produce more than one result. Generally

this property of an annotated logic program is undecidable but following [DtM] we give a

su�cient condition for it. The condition is based on the observation that nodes of a proof

tree of a logic program communicate only via shared variables.

In this paper it is assumed that programs are executed using the Prolog computation

rule (the leftmost subgoal becomes a selected goal). Let C be a clause of an annotated

program. An occurrence of a variable V in an input position of its head or in an output

position of a literal of its body is called a defining occurrence of V in C .

Now we require

CONDITION 1

For every clause C of an annotated logic program (including its goal clause)

1. every variable V of C has a de�ning occurrence in C , and

2. every non-de�ning occurrence of V in the body of C is preceded by a de�ning

occurrence of V in another literal of C . ut

An annotated program satisfying Condition 1 will be called a simple logic program .

It is easy to show that if a simple logic program is called with a goal clause satisfying

Condition 1 then

PROPERTY 1

1. At every step of its computation all input positions of its actual subgoal are ground.

2. When the subgoal succeeds, all its output positions are ground. ut

Thus, if the computation succeeds all the positions of the goal clause are ground.

A well known example of a simple logic program is the append program

append([],L,L).

append([H jL1],L2,[H jL]) :- append(L1,L2,L).

2

where the �rst two positions of the predicate append are input positions and the last one is

an output position (which we denote by append(#; #; ")). This means that the program is

used to obtain the concatenation of two given lists. Another example is the same program

with an annotation append("; "; #) or with append(#; #; #).

It is worth noticing how our input and output positions relate to the modes suggested

by Mellish [M] (which are an extension of modes introduced by Warren [W1]). During the

computation of a simple logic program the input positions of the actual goal are always

instantiated to ground terms, their mode is ++. On the other hand, the output positions

of the actual goal may, or may not, be instantiated so any mode is possible (which is

expressed as ? mode). A more detailed discussion on modes appears at the end of this

section.

A very similar class of programs is introduced by Bruynooghe [B] to show the

possibility of a much more e�cient implementation of a restricted logic programming

language. The di�erence between his language and the class of simple programs is that

committed choice computation is assumed for the former. For the committed choice

computation the set of answers is only a subset of those which can be produced using

Prolog-like computation. A variant of that language is ground Prolog [K] introduced for a

purpose of presenting a powerful method of type derivation. The di�erence between simple

programs and ground Prolog is that the second uses delayed uni�cation on output positions.

This means that at a procedure call only the input positions are uni�ed. Uni�cation of

the output positions is done on success of the call. Another related work is [R]. In the

terminology of [R] simple logic programs are those for which there exists a de�nite acyclic

well-moding where the dependency relation for each clause coincides with the order of

literals.

Although implementation issues are outside of the scope of this paper, it may be

expected that at least some of the results of [B] can be used to make implementation of

simple logic programs more e�cient than in the case of Prolog. It may also be expected

that some of the results of [K] can be adapted for simple logic programs.

Simple logic programs have a number of interesting properties:

Every Turing machine can be simulated by a simple logic program [DtM].

A simple logic program can be viewed as a one-sweep attribute grammar [DtM].

A nontrivial subclass of simple logic programs can be executed by a proof procedure

employing one-way pattern matching instead of uni�cation [MK].

If the delayed uni�cation on output positions is applied then all simple logic programs

can be executed using pattern matching instead of uni�cation. It should be noted that in

some cases delaying the uni�cation may itself provide gain in e�ciency (in case of failure

3

it is not performed); in some others it may cause unnecessary backtracking (when the

uni�cation performed at the moment of procedure call would fail).

Simple logic programs can be executed without occur check. This fact is proved in the

Appendix 1.

Data
ow analysis of simple logic programs can be done in compile time, thus allowing

a simpli�ed model of AND-parallelism [DiM].

A simple method of mode analysis not requiring abstract interpretation is possible (see

Appendix 2).

Simple logic programs can be transformed into functional ones using the method de-

scribed in [R].

3. THE EXPERIMENT

A sample of Prolog programs was tested for being simple. That means it was checked

whether for a given program there exists an annotation under which the program is simple.

A program called CHECKER was written for this purpose. The program follows the above

de�nition of simple programs but it has to deal with programs which are not pure logic

programs. It uses information about annotation of some Prolog-10 standard predicates

(eg. read , write , is). For some others, an extension of the above de�nition would be

needed. Such extension seems in many cases very di�cult (eg. assert , retract). It was

done only for ; .

The algorithm used by CHECKER is similar to that presented by Franzen and Ho�-

man [FH]. Their paper solves a similar problem of assigning directions to extended a�x

grammars. CHECKER �nds all the annotations under which the program is simple. To

represent a set of annotations it uses an expression of propositional calculus. Such ex-

pressions are built out of propositional variables and connectives. Each position of every

predicate symbol has its corresponding propositional variable. The value false of the

variable means that the related position is input, the value true means output.

CHECKER makes one pass over an input program. It assumes that the program

is simple and looks for an appropriate annotation. For each clause and each variable

occurring in it an expression is built. It represents the fact that, in order for the program

to be simple, the variable should occur in an input position in the head or only in output

positions of the �rst literal in which it occurs in the body. For instance, the expression for

the clause

p(X,Y,X) :- q(Y), r(X,Y,X).

and Y is :p:2_ q:1 (where p:i corresponds to the i -th position of p). The expression for

X and the same clause is :p:1_:p:3_ (r:1^ r:3). The expressions for all the variables in

4

all the clauses are transformed to conjunctive normal form and conjuncted together. The

result is simpli�ed. The simpli�cation is based on the repeating application of two rules:

(a _ b _ :::) ^ a ! a and (a _ b _ :::) ^ :a ! (b _ :::) ^ :a . In the terminology of [FH],

they are tautology deletion and unit clause extracture. The resulting expression describes

all the annotations under which the given program is simple.

If the expression is unsatis�able then the program is not simple under any annotation.

Such a fact is usually determined by encountering a contradiction (like a^ :::^:a) during

simpli�cation. Otherwise the resulting expression can be checked for satis�ability and

the possible annotations can be generated (this check usually succeeds, all the non-simple

programs found caused contradiction during simpli�cation). Usually, there is only one

annotation possible for most of the predicate positions in a typical program.

As programs are usually submitted without their goals, it remains to check whether

the intended form of a goal is compatible with (an annotation described by) the resulting

expression. (This means checking if Condition 1 is satis�ed for the intended goals.) If so

then the program is (intended to be used as) a simple logic program.

Consider a standard example:

append([],L,L).

append([H jL1],L2,[H jL]) :- append(L1,L2,L).

The expression for the �rst clause is (:append:2 _ :append:3). The expressions for

the second one and H , L1, L2 and L are, respectively, (:append:1 _ :append:3),

(:append:1 _ append:1), (:append:2 _ append:2), (:append:3 _ append:3). After

conjunction and simpli�cation, the resulting expression (:append:2 _ :append:3) ^

(:append:1 _ :append:3) is obtained. It says that the program is simple if the third

position of append is input (and the remaining two are arbitrary) or if the �rst two

positions are input (and the third arbitrary). If the append procedure is a part of a bigger

program then some of these possible annotations can be excluded. (End of example)

It is rather di�cult to �nd a good set of benchmark programs. As a �rst sample

we took 23 programs. The �rst ones (EX7) are seven simple beginner's exercises. Then

there is Warren's Prolog benchmark (WPB - 5 programs). SENTENCE is a program

translating English sentences into logic formulae. It is taken from the Prolog-20 manual

[BPW]. SATISF are two exercise programs which check the satis�ability of a propositional

calculus expression. One of them experiments with a kind of intelligent backtracking using

non-logical features of Prolog. STORY is a student story generation program, SQUARES

a student puzzle solving program and ANSWER is a student story understanding and

answering questions program. WARPLAN is a well-known planning program [W][KS] (the

STRIPS problem is included). EDITOR is the program described in [KM]. INTERFACE

5

is the user interface of Toy-Prolog (Appendix A.4 of [KS] without the library and the

translator). The biggest program analyzed was a data base SPOQUEL [GKS]. CHECKER

itself was also included in the sample.

The programs were usually submitted to CHECKER without their goals. The annota-

tions obtained from the checking were compared with the expected goals. If no annotations

existed under which a given program was simple, the reason was masked in order to process

the remaining part of the program. This allowed us to �nd more then one such cause in a

program.

CHECKER reports the nonexistence of a required annotation after processing the

procedure which caused contradiction. It also reports on which predicate position the

contradiction occurred. However, the very cause of the contradiction is usually in another

place of the program and must be found heuristicly by a human. CHECKER produces

output which helps in this task. Actually, the notion of \cause of non-simplicity", being

not formally de�ned, relies on human understanding of a program.

Among 23 programs checked 10 were found to be non-simple, seven of them on the

basis of one cause. They are: one program from EX7, one from WPB, SENTENCE,

one program from SATISF, STORY, ANSWER, EDITOR. The programs WARPLAN,

INTERFACE and SPOQUEL contained several causes of \non-simpleness".

4. REASONS FOR PROGRAMS NOT BEING SIMPLE

6 cases of violating the de�nition of simple programs were found.

1. Always failing clause.

Such clauses are sometimes used in Prolog programs for their side e�ects. 24 occur-

rences were encountered in SPOQUEL, EDITOR, INTERFACE and SATISF. All of them

were last clauses of a procedure. A single procedure containing an always failing clause

was the only reason for \non-simpleness" of EDITOR and SATISF. The typical form of

such a clause is

p(Par,) :- error(Par).

where error is a procedure which eventually fails. Procedure p is always invoked with

its �rst argument instantiated to a ground term. The �rst position of p is input but the

second one plays the role of an output parameter. Of course a program with such a clause

is not simple but it has the Property 1 of simple programs.

2. Insigni�cant value.

A variable remains uninstantiated while its value is insigni�cant. An example is

..., read(Term, S), exec(Term, S), ...

6

Sometimes read succeeds with S uninstantiated but then exec does not depend on the

value of S (the corresponding clauses for exec have an anonymous variable as the second

argument). The meaning of the program would be equivalent if read returned S bound to

any ground term. Two such cases were found in INTERFACE.

3. Multidirectional use of a procedure.

A classic example is the procedure append which can be used not only to concatenate

lists but also to split a list into two. Three cases of \bi-directional" procedures were found.

Two of them were single procedures in WARPLAN (procedures add and always). The

third one is more interesting as it concerns a major part of the program ANSWER. A part

of the program is used to parse and translate a text to an internal representation. But it

is also used to translate such internal representation to its text counterpart. (Actually it

required the use of the built-in procedure var in one procedure of the program to recognize

in which direction the procedure is actually used. Then di�erent clauses of the procedure

deal with di�erent directions.)

Multidirectional programs can be transformed to simple ones: multidirectional proce-

dures can be copied, each copy having a new name and a di�erent annotation. It should

be noted that in a simple program multidirectionality may still exist on output positions.

A current goal may have both an uninstantiated variable or a term in such a position.

4. Two-directional position.

In this case a current goal has a nonground term as an argument. A ground subterm

of it plays the role of an input parameter while a variable subterm plays the role of an

output one. We can distinguish two subcases.

4a. Glued arguments.

Let us consider the example

p(: : :,f(X,g)) : � : : : :

: : : : � p(: : :,f(h,Y)).

This may be rewritten by splitting the last argument of p into two positions. In this way

we obtain a simple program by increasing the number of positions of p . We found one

example of glued arguments in a predicate with 5 positions.

4b. Goal as an argument.

Another example of two-directional positions that we encountered was passing a whole

goal as an argument to a procedure. The purpose of this procedure was to execute the

goal in a special way. An example of such a procedure is

once(P) :- P, !.

7

Of course, such a procedure was not pure (�rst-order) logic program. Three such causes

of \non-simpleness" were found in SPOQUEL and INTERFACE. This case may be trans-

formed to a simple program e.g. by writing a new version of this procedure for every such

goal occurring in a program.

5. Program bugs.

Two causes of "non-simpleness" appeared to be program bugs.

6. Variable as data.

The case concerns passing a nonground term as an argument of a current goal on a

position which is understood as input. From the operational point of view, nonground

terms are data of the program. They may also appear in the �nal results of computations.

This is di�erent not only from simple programs but also from the cases 1, 2, 3 and 4

above where programs can be understood as processing ground terms.

6a. Variables as unique objects.

Variables are used instead of a potentially in�nite set of distinct atoms. They never

become instantiated.

Example (based on the program SENTENCE). The predicate sentence generates

predicate calculus formulas with free variables taken from a given list.

sentence(; false):

sentence(; true):

� � �

sentence(Freevar; forall(X; S)) : �

sentence([XjFreevar]; S) (�)

An example goal is ?� sentence([]; Result). The program must be able to generate

quanti�ed formulas with any number of distinct bound variables. To do this it represents

them as Prolog variables (the variable X in the clause (*)). Each instance of (*) gives a

distinct version of X . None of them is ever instantiated. Under the annotation sentence(#

; ") the program is not simple. (End of example)

A program using variables as unique objects may be transformed into a simple one by

exchanging these variables for atoms. This requires a procedure which generates unique

atoms (see the procedure gensym [CM] p.149). Such a procedure must use extra-logical

features of Prolog.

6b. Variable as a tag.

8

One of the meaningful values of a certain variable in a program is the variable unin-

stantiated. It may be used to �nd out that a certain action (which binds the variable) has

not been performed. To check the value of the variable procedure var is used. This use

of variables was found in SPOQUEL and INTERFACE.

6cde. The remaining cases of using variables as data can be treated as di�erent ways

of applying a programming technique of top-down construction of terms. The idea is to

create �rst a non-ground term to be updated later by instantiating some of its variables.

A �nal result may, or may not, be a ground term.

6c. Natural use of variables.

Two versions of something which can conveniently be called a natural use of variables

as data were found. The �rst consists in using nonground terms to represent Prolog terms

(including literals and clauses). This occurs in INTERFACE. The program contains a

parser which reads and parses Prolog input. The result of parsing may then be asserted

using assert or executed using call . So the most natural form of parser's output is Prolog

terms itself.

The second version was found in WARPLAN and STORY. A term is used to represent

a class of all its ground instances. Variables occurring in such a term may be instantiated

later or may occur in a �nal result. This usage is very natural and quite convenient but in

some cases it did not work and a ground representation for the same term classes is also

used in WARPLAN.

6d. Open data structures.

An example is an open tree with variables as leaves. Such a tree grows by instantiating

its leaves to new subtrees. It never becomes ground but each variable may be instantiated

later. Open lists are used in INTERFACE and SPOQUEL.

6e. Variables as pointers.

This concerns the non-simple programs which do not belong to the previous classes.

They use the technique of top-down building of terms but one variable can occur in two

distinct terms. Then, changing one of the terms may change the other. One could imagine

two terms sharing a variable as connected by a two-directional pointer. Instantiating the

variable a�ects both terms. An example is a di�erence list which consists of two terms:

an open list and a variable. Binding the variable to a list has as a side e�ect appending

this list to the open list. Here is another example found in our benchmark.

Example (program serialise from WPB).

serialise(L,R) :-

9

pairlists(L,R,A),

arrange(A,T),

numbered(T,1,N).

pairlists([X|L],[Y|R],[pair(X,Y)|A]) :-

pairlists(L,R,A).

pairlists([],[],[]).

For a given ground list Items, the procedure pairlists produces a list of variables

SerialNos and a (nonground) list Pairs. All the variables occurring in SerialNos occur also

in Pairs. SerialNos is the �nal result of the computation. But before serialise succeeds,

the list Pairs is processed by arrange and numbered. This results in instantiating all its

variables to ground terms. It means that SerialNos is also made ground for it shared these

variables.

Note that the declarative reading of the procedure is easy but this kind of discussion

we have just made is necessary to convince ourselves that the procedure will work. (End

of example)

5. CONCLUSIONS

In this paper, the notion of a conventional logic program was formalized as a class of

simple logic programs. An experiment was performed to check whether actual programs

belong to the class. Results seem to con�rm the hypothesis that many logic programs

resemble programs in conventional languages. About half of the analyzed programs turned

out to be simple. Many other can be treated as simple programs with exception for

their minor fragments. The programming techniques which led to \non-simpleness" were

classi�ed and discussed. A list of them is given in the previous section.

The annotations generated by the CHECKER for simple logic programs facilitate

understanding of these programs. CHECKER can also be helpful in discovering bugs in

programs intended to be simple.

As many actual programs are simple and so are substantial parts of the remaining

ones, it is worthwhile to study techniques for e�cient execution of simple logic programs.

On the other hand, an implementation for simple programs only would be too restrictive. It

would reject quite a lot of programs which programmers actually write. This suggests that

an implementation using such special techniques should be able to accept any programs

(using traditional methods for these program fragments for which the special ones are

inapplicable). This suggestion seems to be valid also for the methods of [K] [B] [B1] as

the restricted logic programming languages introduced there are very close to the class

10

of simple logic programs (see also section 2). It should be mentioned, however, that a

problem of separating non-simple parts of \otherwise simple programs" is not dealt with

in this paper.

An interesting problem is an extension of the class of simple logic programs in order to

include cases 1, 2, 6a and 6b (always failing clause, insigni�cant value, variables as unique

objects, variable as a tag). They have a common property that when a nonground term is

passed then its variables will never be instantiated. (By \a term is passed" we mean that it

occurs in an input position at the moment of call or in an output position at the moment

of success.) One may say that nonground data are treated in the same way as ground

ones because their variables are never bound. It may be expected that implementation

techniques for simple logic programs can also be used for programs of cases 1, 2, 6a and

6b.

ACKNOWLEDGEMENTS

Thanks are due to Jan Ma luszy�nski for suggesting this area of research and for many

valuable discussions. Some of the programs were obtained from Jan Komorowski. Feliks

Klu�zniak made interesting remarks on the �rst draft of this paper. Ivan Rankin helped to

correct my English. This research has been partially supported by the National Swedish

Board for Technical Development, projektnummer STUF 85-3166 and STU 86-3372.

REFERENCES

[AE] Apt, K.R. and van Emden, M.H., \Contributions to the Theory of Logic Program-

ming", J.ACM. 29, 841-862 (1982).

[B] Bruynooghe, M., \Compile time garbage collection", IFIP TC2 Working Conference

on Program Speci�cation and Transformation, Bad T�olz, FRG, 1986, North Holland -

in print

[B1] Bruynooghe, M., \Is logic programming real programming", IFIP TC2 Working

Conference on Program Speci�cation and Transformation, Bad T�olz, FRG, 1986, North

Holland - in print

[BPW] D.L.Bowen, L.Byrd, F.C.N.Pereira, L.M.Pereira and D.H.D.Warren, \Prolog-20

user's manual", 1984

[CM] Clocksin,W.F., Mellish,C.S., \Programming in Prolog", Springer Verlag 1981

[DiM] Dembi�nski,P., Ma luszy�nski,J., \AND-paralelism with intelligent backtracking for

annotated logic programs", 1985 IEEE Symposium on Logic Programming, Boston July

1985, IEEE Computer Society Press, 29-38

11

[DtM] Deransart,P. and Ma luszy�nski,J., \Relating Logic Programs and Attribute Gram-

mars", Journal of Logic Programming 3, No. 2 (1985) 119-158

[FH] Franzen,P., Ho�mann,B., \Automatic determination of data
ow in extended a�x

grammars", 9th annual GI conference, Bonn 1979

[GKS] Grudzinski,W., Klu�zniak,F., Szpakowicz,S., \SPOQUEL interpreter", Institute of

Informatics, Warsaw University, 1982

[K] Klu�zniak,F., \Type synthesis for ground Prolog", 4th International Conference on

Logic Programming, Melbourne 1987

[KM] J. Komorowski and J. Ma luszy�nski , \Logic programming and rapid prototyping",

Research Report LITH-IDA-R-86-20, The Dept. of Computer and Information Science,

Link�oping University, 1986 (to appear in \Science of Computer Programming")

[KS] Klu�zniak,F., Szpakowicz,S., \Prolog for programmers", Academic Press 1985

[M] Mellish,C.S., \Some global optimizations for a Prolog Compiler", J. Logic Program-

ming 1985:1:43{66

[MK] Ma luszy�nski, J. and Komorowski, J., \Uni�cation-Free Execution of Logic Pro-

grams", 1985 IEEE Symposium on Logic Programming, Boston July 1985, IEEE Com-

puter Society Press, 78{87

[R] Reddy, U.S., \Transformation of logic programs into functional programs", 1984 IEEE

International Symposium on Logic Programming, IEEE Computer Society Press, 187{

196

[W] Warren, D.H.D., \WARPLAN: a system for generating plans", DCL Memo 76, De-

partment of Arti�cial Intelligence, University of Edinburgh Scotland, 1974.

[W1] Warren, D.H.D., \Implementing Prolog - compiling predicate logic programs", DAI,

Research Report Nos 39 and 40, University of Edinburgh, 1977

APPENDIX 1. Simple logic programs can be run without occur check.

Executing simple logic programs without occur check is sound in the sense that no

derivation can be successful in which two non-uni�able terms are "uni�ed" by Prolog

uni�cation without occur check. While executing a simple logic program, omitting occur

check may only delay a failure which should be otherwise caused by the check. The delay

may sometimes lead to an in�nite loop but all the answers obtained are correct with respect

to the declarative semantics of logic programs.

The uni�cation without occur check will be called p-uni�cation. It produces in�nite

terms as results of p-unifying of term pairs which are not uni�able because of occur check.

To prove soundness of executing simple logic programs without occur check we show that

12

every result given by a computation using p-uni�cation can also be produced using true

uni�cation. We manage to make the proof without a detailed de�nition of p-uni�cation;

only an assumption is needed that a �nite ground term is not p-uni�able with an in�nite

term.

Theorem.

Let P be a simple logic program, p be an atomic formula with input positions ground

and C = q:�q

1

; :::; q

m

be a clause of P . If p and q are not uni�able or if p contains in�nite

terms then there exists no successful derivation of P using p-uni�cation and starting from

p and C .

Proof (By a \successful derivation" we mean an SLD-refutation in the terminology

of [AE])

Assume that such a derivation exists. If the length of the derivation is 1 then m = 0,

every variable in an output position of q occurs also in an input position. Thus every

variable has to be uni�ed with a ground term. If p contains in�nite terms then p-uni�cation

fails (since an in�nite term is not p-uni�able with a ground one). Hence contradiction, a

derivation required by the theorem, of length 1 does not exist (for any p and C).

Now assume that n > 1 is the least number for which such a derivation exists, p is

the related goal and C = q:�q

1

; :::; q

m

is the clause. At the beginning of the derivation

p-uni�cation of p and q succeeds. Then there exists a variable occurring in C which

does not occur in an input position of q and becomes bound to an in�nite term by the

p-uni�cation of p and q . Then the �rst occurrence of such a variable in the right hand

side of C , say in q

i

, is in an output position of q

i

. When q

i

becomes a current goal

(instantiated to, say, q

0

i

) its input positions are ground and an in�nite term occurs in

an output position. The derivation beginning from q

0

i

is successful but shorter than n .

Contradiction. This completes the inductive proof of the theorem.

APPENDIX 2. Mode analysis of simple logic programs.

During execution the input positions of a current goal are always ground so their mode

[M] is ++. Mode analysis for output positions can be based on the following reasoning.

Consider a clause C of a simple program and a literal occurring in its right hand side. Let

us discuss instantiations of the variables of this literal when it becomes a current selected

goal. All the variables for which there exists a de�ning occurrence preceding the literal are

instantiated to ground terms. Among the remaining variables, those which do not occur in

13

the clause head are unbound. This local analysis is able to produce full mode information

about all variables except for those which

1. occur in the head but not in input positions and

2. have their �rst occurrence in the right hand side in the literal under consideration.

Using the mode information for clause variables it is trivial to �nd out modes for the

output positions of the literal. These modes are valid for every instantiation of this literal

as a selected goal. Now, all the literals with the same procedure name which occur in

the right hand sides of the clauses (including the goal clause) should be taken into ac-

count. Combining their local modes, a (correct) mode declaration for the procedure can

be generated.

The discussion above shows that it is possible to obtain a fair amount of mode informa-

tion for simple logic programs using a one pass algorithm. Although abstract interpretation

[M] can generate more precise mode declarations, it requires many passes over a program

(transformed into a form of equations). The upper limit on the number of passes can be

very high. So the approach discussed above may be a good compromise between e�ciency

of analysis and exactness of generated mode declarations.

14

