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Abstract

SLS-resolution is an abstract query answering procedure for computing the
well-founded semantics of normal programs. It is incomplete due to floun-
dering. We present an extension of SLS-resolution that avoids this problem.

1 Introduction

From the point of view of non-monotonic reasoning, the most suitable se-
mantics for logic programs is the well-founded semantics [5]. It is equivalent
to appropriate forms of all four major formalizations of non-monotonic rea-
soning [15].

The standard abstract query answering mechanism for computing the
well-founded semantics for normal programs is SLS-resolution. It was intro-
duced for stratified programs in [14] and generalized for arbitrary programs
in [16] and [13]. It is incomplete due to floundering. In this paper we present
a generalization of SLS-resolution that is sound and complete.

Methods for computing answers for nonground negated queries are called
constructive negation. Qur work follows the constructive negation approach
presented in [11] for definite programs and the completion semantics. Similar
idea was proposed in [19]. The main concept of this approach is as follows.
In order to find an answer for <= A, a failed SLD-tree for an instance «— A8
of «— A is built; 6 is then an answer for —=A. [11] also shows how to compute
such answers: an SLD-tree for «<— A is pruned in order to obtain a finitely
failed tree. Pruning means instantiating the tree (thus obtaining an SLD-
tree for some —Aco) in such a way that some subtree of the original tree
disappears. Removing all the success leaves and infinite branches results in
a finitely failed SLD-tree.

In this paper we present a generalization of this approach for normal
programs and the well-founded semantics. A proper definition of a failed
tree is important here. A straightforward extension of the concept of a
failed SLS-tree leads to unsoundness; such a “failed tree” for «— A does not
demonstrate that A is false but only that A is false or undefined.

We introduce a correct definition of a failed tree and present SLSFA-
resolution, a query answering method for normal programs and goals. It



is sound and complete with respect to the well-founded semantics. Our
method subsumes SLS-resolution as defined in [14] for stratified programs
and SLDNF-resolution [8]. Every SLS- (SLDNF-) failed tree is an SLSFA-
failed tree and every SLS- (SLDNF-) refutation is an SLSFA-refutation.

Our presentation is informal. Section 2 describes the notation and some
preliminary notions. SLSFA-resolution is introduced and explained by means
of examples in Section 3. Section 4 contains a formal definition, a sound-
ness and completeness result and some more advanced examples. Section 5
contains conclusions.

We assume that the reader is familiar with the well-founded semantics
[5] and with SLS-resolution for stratified programs [14].

2 Preliminaries

We use the standard logic programming terminology and definitions [8].
However, normal programs are just called programs.

Logic programs are written in first order languages that differ only by
their sets of predicate symbols and functors (including constants). We do
not assume a fixed language for all programs, nor do we define a program’s
language as that of exactly the functors and predicate symbols occurring in
the program. Instead we assume that, for every program under considera-
tion, the set of functors and of predicate symbols of the underlying language
L is known. We will say that £ is (in)finite if its set of functors is (in)finite.

When referring to syntactic objects of £, s,¢,u will usually stand for
terms, v, x,y variables, a,b,c constants, p, ¢ predicate symbols. Sub- and
superscripts may be used if necessary. Overlining will be used to denote a
(finite) sequence of objects, e.g. T is an abbreviation for z1,...,z, for some
n > 0. Symbol = will be used both in £ and in the metalanguage. We take
care that this does not lead to ambiguity.

The set of free variables occurring in a syntactic construct (term, for-
mula etc.) F' is denoted by FreeVars(F'). Restriction F|g of a formula F
to a set S of variables is the formula Jxq,...,2,F where {zy,...,2,} =
FreeVars(F) \ 5.

WEF(P) denotes the well-founded model of a program P. We refer to
SLS-resolution as defined for stratified programs in [14].

2.1 Constraints

In standard logic programming answers are given in the form of idempotent
substitutions. This is not feasible when answers to negative queries are
required. Some generalization of the concept of a substitution is needed to
conveniently express inequality.

In order not to restrict ourselves to a particular form of answers, we
will use arbitrary first order formulae built out of equality and inequality
literals. Such formulae will be called constraints and denoted by 8,0,6,p



(possibly with sub- and superscripts). Note that an idempotent substitution
{x1/t1,...,2,/t,} corresponds to a constraint zy=t; A ... A z,=t,. Con-
junction of constraints § and o will often be denoted by 6,0 or by fc (as it
plays the role of composition of substitutions).

We are interested only in Herbrand interpretations of the underlying
language £ with = interpreted as equality. Equality in the Herbrand universe
Ur is axiomatized by Clark equality theory (see [8]). If £ is finite then the
(weak) domain closure axiom DCA [9],[12] should be added. Informally,
the axiom ensures that in the interpretation domain of any model of the
theory every object is a value of a non-variable term (under some variable
valuation).

By CET we denote the Clark equality theory with added DCA in the
case of L finite. The axiomatization is complete [20]; constraint 8 is true in
a Herbrand interpretation of £ iff CET |= 6. (As usual, by truth of an open
formula # in an interpretation or in a theory we mean truth of ¥6.)

A constraint 6 is called satisfiable iff CET |= 36. 6 is more general than
o iff CET o — 6. 6 and o are equivalent iff CET | 0 < 6; we will write
o = 6. Note that terms ¢ and s are unifiable iff constraint ¢t=s is satisfiable.

SLD- (and SLS-) resolution can be in an obvious way converted into
a version using constraints instead of substitutions. Instead of applying
an m.g.u. to a goal, the corresponding constraint is added to a goal. In
standard SLD-resolution goal —p(t1,...,t,) and a clause p(sy,...,s,)—B
resolve into < Bt where 7 is a most general idempotent unifier of
p(ty,...,t,) and p(s1,...,8,). In the version with constraints the result
is «—1t1=81,...,t,=$,, B. Thus we will use goals in the form <@, B where
f is a satisfiable constraint and B is a sequence of literals.

From the practical point of view it is important to solve constraints, i.e.
to transform them into some intelligible form. Many papers are devoted
to this subject, we refer to [20], [1], [3], [10] and to the references therein.
There exist algorithms that reduce any constraint to an equivalent one in
some disjunctive normal form. (Such an algorithm also checks satisfiability;
for an unsatisfiable constraint the empty formula false is obtained). The
normal form may be, for instance, a disjunction of “simple” constraints of
the form

37 (e1=ti Ao A=t AV (i#Es ) A o AY (0 FS))

where n,m > 0, {x1/ty,...,2,/t,} is an idempotent substitution, the z;’s
do not occur elsewhere in this formula and some (maybe none) variables of
the s;’s are universally quantified.

The choice of actual normal form and of a reduction algorithm is an
important implementation decision which is outside of the scope of this pa-
per. There is no agreement in the papers on constructive negation on which
normal form to use. Our method is independent from this choice, we al-
low arbitrary constraints. However a restriction can be imposed that every



constraint used in SLSFA-resolution (a computed answer, a fail answer, the
constraint in a goal, etc.) is a simple constraint. (Any notion of simple
constraints can be applied here. The only requirement is that there exists
an algorithm transforming every constraint into an equivalent disjunction of
simple constraints). Definitions and theorems of the next sections remain
correct with such a restriction.

3 Informal presentation

In this section SLSFA-resolution (FA for fail answers) is presented by means
of examples. First we introduce our approach using an example for which
the notions of an SLS-failed tree and an SLSFA-failed tree coincide. Then we
show that generalizing the definition of an SLS-failed tree in a straightfor-
ward way leads to unsoundness. We explain the reason for the unsoundness
and introduce a notion of a failed tree suitable for our purposes. Then we
show how to construct failed trees by pruning.

Example 3.1 Consider a program P

pla) — —p(x)
p(b) — p(b)

and a goal «——p(z). To find an answer, a failed SLS-tree for some instance of
—p(x) is constructed. This can be done by pruning the SLS-tree for —p(z):

— p(x)
/ \
—r=a,-p(y) Hw=|b,p(b)
—a=b,p(b)

Pruning means adding a constraint to the nodes of the tree in such a way
that some subtree of the original tree disappears (and the resulting tree is
still an SLS-tree). For example the tree can be pruned at depth 1: applying
constraint z#b removes the subtree rooted at «—a=b,p(b), applying z#a
removes the (single node) subtree rooted at «—xz=a,-p(y). As a result we
obtain a tree consisting of a single node —z#a, 2#b, p(z) which is a failed
SLS-tree. Thus z#a,2#b is a fail answer for «—p(z) and an answer for
—=p(x).

A more general answer is possible, it is enough to prune the only leaf of
the tree. The resulting failed SLS-tree for <« 2#a, p(z) consists of a single
infinite branch, 2#a is an answer for <—-p(z). Both answers are sound as

WF(P) E x#a — —p(z).



The ability of answering nonground negative queries makes it possible to
avoid floundering. Sequence

—p(z);  —z=a,p(y)
is a floundering SLS-derivation. Using a previously computed answer y#a
for «—=p(y), this derivation can be extended to an SLSFA-refutation

—p(x);  —r=a,opy);  —r=a,yFa
The computed answer of an SLSFA-refutation is obtained similarly as in
SLS-resolution. The last goal contains the constraint accumulated in the
refutation. The constraint plays the role of the composition of the m.g.u.’s
of an SLS-refutation. The answer is the restriction of this constraint to the
variables of the initial goal. In our example it is Jy(z=a,y#a) which is
equivalent to x=a. O

3.1 TUnsoundness of a naive solution

The notion of a failed tree in SLS-resolution can be presented as follows.
Let us treat goals as equal up to variable renaming. Consider a goal —(),
a computation rule R and a tree built out of all the derivations for <) via
R. The tree is failed if (1) it does not have a success leaf and (2) for every
its leaf «—...,2A,... with a negative literal selected, A is ground and —A
succeeds.

The following example shows that using such a definition together with
constructive negation leads to unsoundness. We construct a tree satisfying
this definition for which ) is not false with respect to the well-founded
semantics.

Example 3.2 Let P be the program

P — _'Q(x)v T(x)
g(a) = -q(a)
q(b)
(a)
r(b)
In the well-founded semantics of the program, p is undefined as ¢(a) is un-
defined.

Assume that @ and b are not the only functors of the underlying language.
Constraint z#a,x#b is a computed answer for «<—-¢(z) as the (one node)
tree for «—x#a,x#b, q(z) is failed. Note that this is a most general answer
for «=¢(x) that is correct with respect to the well-founded semantics. Now
the tree

=P
|
—2g(2), r(x)
|
—a#a,x#b,r(z)




satisfies the abovementioned definition of a failed treel

. Clauses r(a) and
r(b) are not applicable to the last goal as it contains z#a,2#b. Condition
(1) is satisfied as the only leaf contains a literal r(), condition (2) is satisfied
trivially. On the other hand, the tree should not be considered failed as p is

not false with respect to the well-founded semantics of the program. O

The reason for unsoundness could be informally explained as follows. A
tree satisfying the definition above, with the root <), shows that there does
not exist any answer for <. Thus 3@ is not true w.r.t. the well-founded
semantics. However this does not imply that 3¢ is false, as the underlying
logic is three valued.? For the purposes of constructive negation we need
a notion of a failed tree that demonstrates that a query is neither true nor
undefined in the well-founded semantics of the program.

3.2 Correct solution

Now we informally present the concept of SLSFA-failed tree. In comparison
with SLS-failed trees, the difference concerns the treatment of goals with a
negative literal selected. Consider such a goal G = «—=4,Q and assume
that z is the only variable occurring in . To show that = A, @ is false we
have to prove the following property: ) is false for any x for which A is not
true. In SLSFA-resolution we use a slight generalization of this property.
Assume that 61, ..., 06, are some (maybe not all) computed answers for —A
and let 6 = 64V ...V é,. Then WF(P) = 6 — A. Now to show that
WEF(P) = -(-A,Q) it is sufficient to prove that WF(P) = =6 — —(). This
can be done by constructing a failed tree for < =4,¢). Thus < =4, ) can be
made the only son of <=4, () in a failed tree.

Note an important difference. A branch of an SLSFA-failed tree is not
necessarily an SLSFA-derivation. If = A is selected in an SLSFA-derivation
then an answer for «—-A is used; if it is selected in an SLSFA-failed tree
then the negation of some answers for «— A is used instead.

Example 3.3 Consider the program from the previous example. The tree

— a#a,~q(x),r(x)

|
— x#a,x#b,r(x)

is an SLSFA-failed tree, as x=b is an answer for —¢(z) and no program
clause is applicable to goal —z#a,x#b, r(z).

!Strictly speaking, there exist other derivations for «—p but each of them is an instance
of the branch of the tree.

?In view of this, the soundness of the concept of SLS-failed tree could be seen as a
somehow surprising fact.



Failed trees can be constructed in the following way. An attempt to build
a failed tree for « —q(z),r(z) results in a pre-failed® tree
— 2q(2), r(x)
|
— x#b,r(x)
|

— T=a

(Note that the branch of the tree is not an SLSFA-derivation; 2=« cannot
be treated as an answer to < =¢(x),7(z).) By pruning the node — z#b, r(z)
(which means applying constraint =(z#b) to the tree) we obtain a failed tree

—x=b,=q(z),r().

The failed tree shown at the beginning of the example is obtained by pruning
the leaf «z=a.
There does not exist an SLSFA-failed tree for «p. The pre-failed tree

ip
— L(gf),r(x)
— yc;é|b,r($)

— T=a

cannot be pruned, as its root does not contain any variables. (As in the
previous cases, the branch of the tree is not an SLSFA-derivation; existence
of a “success” leaf does not imply that p is true). O

Generally, anode <8, ... can be pruned by adding to the nodes of the tree
such a constraint p that pf is unsatisfiable. Additionally, the free variables
of p should occur free in the root of the tree (in order to obtain a correct
pre-failed tree). Thus a most general such constraint is p = =(8|;,) where V'
is the set of the free variables of the root of the tree [11, 4].

It is convenient to allow more than one son of a node G = «——-A, () in
a failed tree. For example consider one answer § = z#a,x#b for — A; then
=6 = (z=aV =b). Constructing two sons —z=a, ) and —z=0b,Q of G may
be preferable to one son «— (z=a Vv 2=b), Q if equalities are implemented as
substitutions.

This suggests a following condition. For the sake of simplicity assume
Prolog computation rule. In a failed tree a node G = «—8,2A4,¢ with
a negative literal selected has sons «—o1,Q;...;—0,,Q (where m > 0)

FA tree satisfying the definition of SLSFA-failed tree except for the condition forbidding
“success” nodes will be called a pre-failed tree.



provided that there exist 61, ..., 6, (where n > 0) that are SLSFA-computed
answers for <6, A such that

0 —6V---Vbé, Vo V- -V o,.

is true in the Herbrand universe (or, equivalently, in CET).

Actually, this condition is not sufficient to achieve completeness of SLSFA-
resolution. It may be necessary to consider infinitely many sons of <6, - A, )
and/or infinitely many answers for <8, A (see Example 4.10). For the gen-
eralized condition see Definition 4.6.

Summarizing this section: Sons of a node «—...,2A4, ... in a failed tree
are obtained by negating some answers for — A. A successorof —...,2A4,...
in a refutation is obtained by using an answer for «——A (i.e. a fail answer

for —A).

4 SLSFA-resolution

Here we present a formal definition of SLSFA-resolution. It is followed by
examples and a soundness/completeness theorem. We begin with a modi-
fication of the concept of a goal. An adjustment is needed due to usage of
constraints instead of substitutions.

Definition 4.1 A goalis a formula of the form (6 A Ly A ... A L,,) usually
written as
He,Ll,. . .,Lm

(or just « @, L) where 8 is a satisfiable constraint and Ly,..., L,, (m > 0)
are literals. We will omit 8 if it is (equivalent to) true.

Now a formalization of a common notion of a goal with a literal selected.

Definition 4.2 An s-goal is a pair of a goal and a literal position
(—0,L1,...,Ly;1) (where 1 < ¢ < morm = 0

ten as «—6,Lq,....,Li—1,Li, Liy1,..., Ly (o1 as <40,
Ll,. . .,Li_l and L' = LZ'_|_1,. . ,Lm)

= 1), usually writ-
L,L;, L' where T =

L; is called the selected literal of the above s-goal (if 7 > 1). G is called
the goal part of an s-goal ((; 7). If it does not lead to ambiguity we sometimes
do not distinguish between an s-goal and its goal part.

Definition 4.3 Let G be an s-goal 6, L, p(t1,...,t,), L’ and C a clause

p(51,...,5,) — M. An s-goal G is positively derived from G using C iff the
following holds:

o FreeVars(G) N FreeVars(C') = 0,

o ¢ is the constraint ({1 = sy A -+~ At, = s,),



e (the goal part of) G’ is «— 600", L, M, I'.

By the definition of a goal, 86’ above is satisfiable. We will say that a clause
(' is applicable to a goal G if there exists a goal positively derived from G
using a variant of C.

The definition of SLSFA-resolution consists of mutually recursive Defini-
tions 4.4, 4.5 and 4.6. To assure correctness of the definition, the concept of
ranks is used, as in the definition of SLDNF-resolution [8]. Ranks are ordi-
nal numbers. Refutations are defined in terms of negative derivation steps
of the same rank. These are, in turn, defined in terms of failed trees of a
lower rank. Failed trees are defined in terms of refutations of a lower rank.
The base case is the definitions for rank 0 (of a refutation and a failed tree).

Definition 4.4 Let P be a program and « an ordinal. Assume that the
notion of “negatively derived” is defined for ranks < a. An SLSFA-refutation
of rank « is a sequence of s-goals G, ..., G, such that G, is < 8 and, for
1=1,...,n,

o (7; is positively derived from G;_; using a variant C' of a program
clause from P such that FreeVars(C') N FreeVars(Go,...,Gi—1) =0

e or a > 0 and G is rank a negatively derived from G;_;.

The constraint 0|FreeVars(G0) is a called an SLSFA-computed answer for (the
goal part of ) G, of rank a.

Definition 4.5 Let P be a program, a > 0 and assume that failed trees of
ranks < «a are already defined. Let

G = HO,I,ﬂ,F

be an s-goal with a negative literal selected. G’ is rank a negatively derived
from G if, for some ¢’,

o G'=«—00 LT,
o — 00", A fails and is of rank <a,
o lreeVars(#') C FreeVars(A);

Constraint 068’ is called a fail answer for <6, A.

Definition 4.6 Let P be a program, « an ordinal and G a goal. Assume
that SLSFA-refutations of ranks < «a are already defined. Then G fails and
is of rank o iff there exists a tree (called rank o SLSFA-failed tree) satisfying
the following conditions:

1. each node is an s-goal and the goal part of the root node is G



2. if H is a node in the tree with a positive literal selected then for every
clause C' of P applicable to H there exists exactly one son of H that
is positively derived from H using a variant of ';

3. A node H with a negative literal selected, of the form
—0,L,-A L
has (possibly zero or infinitely many) sons
—o, L, Ly —oy, L L; ...

provided that there exist (possibly zero or infinitely many) SLSFA-
computed answers

81,82, ...

of ranks < a for «— @, A such that for every ground substitution 7 for
FreeVars(6, A) if 7 is true* then some é;7 or some ;7 is true.

4. no node of the tree is of the form 4.

The condition in part 3 of the definition is called safeness condition. A
node H satisfying it will be called correct. A tree satisfying the definition
without part 4 will be called an SLSFA pre-failed tree. See [4] and [11] (or
Section 3) for ways of obtaining failed trees by pruning pre-failed ones.

When the sets of answers and sons are finite, say n answers and m sons,
the safeness condition becomes

CETEO0—6V---Vé, VoL V---Vao,.

A standard way of computing o;’s is then converting #-6; - -- -6, to a dis-
junctive normal form o1V ---V g,,. It is not clear how to compute o1, 09,...
when the set of ¢;’s is infinite. A “brute force” method is to construct a
son for every ground substitution 7 as above for which 67 is true and every
6; is false. (The constraint of the son is the constraint corresponding to 7).
Usually more general o;’s are possible (conf. Example 4.10).

A definition of an SLSFA-derivation can be obtained from Definition
4.4 by removing the requirements for the form of the last goal and of the
finiteness of the sequence.

Note that a refutation (failed goal, failed tree) of rank a is also of any
higher rank. A computed answer for <6, L can be represented as #6’ where
FreeVars(¢') C FreeVars(L). For other technical properties of derivations
and failed trees see [4].

*in the Herbrand universe of the underlying language or, equivalently, in CET



4.1 Further examples

We discuss two versions of a standard example: a game with a finite and with
an infinite graph. Then we show that infinite ranks and infinite branching
are necessary for completeness of SLSFA-resolution.

Example 4.7 Remark: for convenience, some constraints in our examples
may be replaced by equivalent ones.
Consider a program [6]

m(e, d)
m(d,e)
m(d,b)
m(e,b)
m(b,a)

In its well-founded semantics w(b) is true, w(a) and w(c) are false and w(d)
and w(e) are undefined.

A “top section” of the pre-failed tree for «—w(z) with Prolog computation
rule is

—x=e,y=d, «— x=d,y=e, «— x=d,y=b, — x=c,y=b, — x=b,y=a,
—w(y) —w(y) —w(y) —w(y) —w(y)

An SLSFA-failed tree can be obtained by pruning the five nodes at depth
3 of the tree. For example, to prune — z=e,y=d,-w(y) constraint
-3,(z=e,y=d) = x#e has to be added to the root of the tree. As a re-
sult we obtain a failed tree of rank 0:

— plvw(x)
|

— P1, m(ac, y)v _'w(y)

where p; = a#e,x#d, 2#c,2#b. Under an assumption that a,b,c,d, e are
the only functors of L, p; = z=a.
Now we can construct a refutation of rank 1:

—w(x) —m(x,y),~wly) <—y=am(z,y) —r=by=a

with the computed answer x=b.
Thus y=b is a rank 1 computed answer for —w(y). If this answer is
used in the pre-failed tree above then the nodes — z=d,y=b,~w(y) and



—x=c,y=b,~w(y) do not have sons. Hence these nodes do not need to be
pruned. Pruning the remaining three nodes at depth 3 results in

— P2 w(x)
|

— pa,m(z,y), w(y) where p; = z#e,x#£d, 2#b = x=aV x=c

— T=C, y:bv _'w(y)

which is a rank 2 SLSFA-failed tree. Note that the fail answer py does not
give rise to any new answer for «—w(z) and that py is a most general fail
answer for —w(x). O

Example 4.8 (Previous example with infinite ralation m)

w(z) = m(z,y), ~w(y)

m(f*(x), f(x))

m(g(e), )

m(g(z), g*(x))
Assume that f, g and a constant a are the only functors of £. In the well-
founded semantics, w(s) is false for s being a or f*~1(¢) where the main
functor of ¢ is not f and ¢ = 1,2,... (conf. the diagram of m below). It is
true for s being g(a), g(f*~1(t)) or f*(t) where t and i are as above. For
the remaining terms it is undefined (i.e. for g(f?(¢)) where i > 0 and ¢ as
above and for ¢*(¢') where i > 1 and t' is arbitrary).

! !

) )
g*(a) @) ) PUPR)
) ) | |
g9(a) g(f()  g(fx ) g(f21)
! ! ! !
a f()y — ) — ) —

Similarly as in the previous example we obtain:

o A failed tree of rank 0:

— p,|w(x)

— p,m(z,y), ~w(y)

where p = Voa [2(2), Vo g(2) = 1=a v 3, (0= (1), Yoo (2).
o Refutations of rank 1 (where 8 = 3,(y=f(v),V.0#£f(2))):
—w(e) —m(z,y),owly) —y=a,m(z,y) —y=a,r=g(y)

—w(z) —m(z,y),w(y) <0, m(z,y) —0,x=f%(a"),y=f(a")
Hw($) Hm(x,y),—'w(y) He,m(x,y) HO,x:g(y)




with the computed answers z=g(a), J,(z=f*(v),V.v#£f(z)) and
Ju(z=gf(v),V.v#f(2)) respectively.
o A failed tree of rank 2n, forn =1,2,...

Hpni w(x)
— Pns m(w, y)v _'w(y) where Pn = Hv($:f2n+l(v)7vzv7£f(2))

= pr,x=fAa"), y=f(a'), ~w(y)

The leaf of the tree is correct as 3,(y=f2"(v),V,v#£f(z)) is a rank 2n — 1
answer for <—w(y), see below. Note that not all the lower rank answers need
to be used.

o Refutations of rank 2n 41 (n=1,2,...):

—palz/yl,m(z,y) —palz/yl, 2=F*(2"), y=F(2")
(z,y), ~w(y) —pale/yl,m(z,y) —pulz/yl,2=9(y)

—~
&
N
~—
J
g
—~
N
~—

—1m
—1m

with  the  computed  answers  3J,(z=f*""%(v),V.v£f(z)) and
(=g f*" T (v),V,v#f(2)) respectively.

The rank 2n failed tree above (n = 0,1,...) may be constructed by
pruning the following pre-failed tree

— w(x)

- m(xv @/)7 _'w(y)

_— | T
H621‘2(96’)7@/|=f(96’)»ﬂv(y) —r=g(y),~w(y) —r=g(2'),y=g*"), ~w(y)
Hxzfz(xl)v y:f(xl)v =6,

where 6, = false and for n > 0 6, = 3,(y=,*"(v),V.0#£f(2)) is an answer
for —w(y) of rank 2n — 1.

For n = 0 pruning the leaves gives constraint p. For n > 0 in order to
prune the first leaf, constraint 6, = =3,/ ,(z=f%*(2'), y=/f(2'), =é,) should
be used. It is equivalent to Vyra# f2(2')V 3y (z=f*(2"), y=f ('), é,) which
is equivalent to V. a#f2(a") V p,

(as  Fpry(x=f2(a"),y=f(2"), J(y=1*"(v),V.v#£f(2))) is equivalent to
3 (z=f*"(v),V,0£f(2)) and to p,).

The constraints to prune the second and the third leaf are, respectively,
0 = =3ya=g(y) and O3 = =3,/ ,(v=g(2’), y=¢*(2’)). Both are equivalent to
V.x#£g(2). Thus 010205 = (Vua# f2(2")V pn),Voatg(z) = pV p,. O




Example 4.9 (Infinite rank)
Consider a program

even(0) odd(s(0))
even(s(z)) — —even(x) odd(s*(z)) — odd(z)
For ¢ = 0,1,..., constraint x:sQi(O) is a rank 2¢ computed answer for

«—even(z) and there exists an SLSFA-failed tree for «— x=s%+1(0), even(z)
of rank 2¢ 4+ 1 (see [4] for details).
Assume Prolog computation rule. The failed tree for «—odd(z), even(x)

has an infinite branch with nodes «—x=s%(y;),0dd(y;), even(z), i =
0,1,... and infinitely many finite branches with leaves equivalent to
—...,meven(s*(0)), ¢ = 0,1,.... As above, a successful derivation for

«—even(s%(0)) is of rank 2i. Thus the rank of the tree is w. O

Example 4.10 (Infinitely branching tree)
Atom p is false w.r.t. the well-founded semantics of the program

p — ~q(x), ~r(z) r(0)
q(z) = -r(z) r(s(e)) = r(z)
The answers for «r(z) are §; = 2=5'(0) for i = 0,1, .... Assume that 0 and

s are not the only functors of the underlying language. Then constraints
68 = 3, (z=s'(y), y#0,V.y#s(2)) for i = 0,1,... are fail answers for «—r(z)
and answers for —q(z).

An SLSFA-failed tree for <—p (of rank 2) has branches

=P
= 2g(z), ~r(x)
— b;,—r(x)

for ¢ = 0,1,.... The safeness condition is satisfied because for every ground
instance z7 of x some é;7 or some 6/ is true. There does not exist a finitely
branching failed tree for «p. There does not exist a failed tree for «—p in
which a finite set of answers for «<¢() (or for <r(2)) is taken into account.
O

4.2 Soundness and completeness

The following theorem formulates soundness, completeness and indepen-
dence from computation rule for SLSFA-resolution. For a proof see [4].

Theorem 4.11 Let P be a normal program and «—#@,L be a goal. Let
W F(P) be the well-founded (3-valued, Herbrand) model of P.

If ¢ is an SLSFA-computed answer for <6, L then WF(P) | 6§ — L.
If there exists an SLSFA-failed tree for <6, L then WF(P) | —(8,L) (or,
equivalently, W F(P) = 0 — —=L).



If WF(P) = —(0,L) then for any computation rule there exists an
SLSFA-failed tree for «—6, L. If WF(P) |= L7, where 7 is a substitution
and L7 is ground, then for any computation rule 7 is covered by an SLSFA-
computed answer: there exists a computed answer § for <@, L such that 67
is true in CET provided 87 is true in CET.

5 Conclusions

We presented SLSFA-resolution, a constructive negation approach for the
well-founded semantics. It is sound and complete for arbitrary normal pro-
grams and goals and for any computation rule. It subsumes SLS-resolution
as originally defined in [14] for stratified programs. (Any SLS-refutation is
an SLSFA-refutation, the same for failed trees.) In contrast, the other top-
down query answering mechanisms for the well-founded semantics [16, 13]
are incomplete due to floundering. They are also restricted to computation
rules that select a positive literal whenever possible.

We generalized the notion of a failed tree to floundering goals (a straight-
forward generalization is unsound). An answer to a negated query «—-A4 is
obtained by constructing a failed tree for an instance <8, A of —A. The
tree can be obtained by pruning a pre-failed tree for < A. For a discussion
of pruning see [4] and [11].

As the well-founded semantics is not computable, SLSFA-resolution is
not an effective computational mechanism. What can be implemented is
an algorithm that is a sound but incomplete approximation of SLSFA-
resolution. A crude approximation is obtained by considering only finite
failed trees in which finite numbers of computed answers are used. Such an
approximation is called SLDFA-resolution in [4]. It is sound and complete
for Clark completion semantics in 3-valued logic [7]. Better approximations
are a subject for future research. An obvious hint is to use methods of tab-
ulation [17, 18] for finite representation of infinite trees and methods like
those presented in [2] for finite representation of infinite sets of answers.

This work shows that a rather natural generalization of the standard con-
cept of a failed tree provides a sound and complete operational semantics
for two declarative semantics for logic programs: the 3-valued completion se-
mantics and the well-founded semantics. The only difference is using finitely
failed trees in the first case and infinite ones in the second. The author be-
lieves that this confirms the importance and naturalness of these semantics;
the first for finite failure and the second for infinite failure.
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