
SLS-resolution without ounderingW lodzimierz DrabentIPI PAN, Polish Academy of SciencesOrdona 21, Pl { 01-237 Warszawa, Polandwdr@ida.liu.seandIDA, Link�oping UniversityS { 581 83 Link�oping, SwedenAbstractSLS-resolution is an abstract query answering procedure for computing thewell-founded semantics of normal programs. It is incomplete due to oun-dering. We present an extension of SLS-resolution that avoids this problem.1 IntroductionFrom the point of view of non-monotonic reasoning, the most suitable se-mantics for logic programs is the well-founded semantics [5]. It is equivalentto appropriate forms of all four major formalizations of non-monotonic rea-soning [15].The standard abstract query answering mechanism for computing thewell-founded semantics for normal programs is SLS-resolution. It was intro-duced for strati�ed programs in [14] and generalized for arbitrary programsin [16] and [13]. It is incomplete due to oundering. In this paper we presenta generalization of SLS-resolution that is sound and complete.Methods for computing answers for nonground negated queries are calledconstructive negation. Our work follows the constructive negation approachpresented in [11] for de�nite programs and the completion semantics. Similaridea was proposed in [19]. The main concept of this approach is as follows.In order to �nd an answer for  :A, a failed SLD-tree for an instance  A�of A is built; � is then an answer for :A. [11] also shows how to computesuch answers: an SLD-tree for  A is pruned in order to obtain a �nitelyfailed tree. Pruning means instantiating the tree (thus obtaining an SLD-tree for some  A�) in such a way that some subtree of the original treedisappears. Removing all the success leaves and in�nite branches results ina �nitely failed SLD-tree.In this paper we present a generalization of this approach for normalprograms and the well-founded semantics. A proper de�nition of a failedtree is important here. A straightforward extension of the concept of afailed SLS-tree leads to unsoundness; such a \failed tree" for  A does notdemonstrate that A is false but only that A is false or unde�ned.We introduce a correct de�nition of a failed tree and present SLSFA-resolution, a query answering method for normal programs and goals. It



is sound and complete with respect to the well-founded semantics. Ourmethod subsumes SLS-resolution as de�ned in [14] for strati�ed programsand SLDNF-resolution [8]. Every SLS- (SLDNF-) failed tree is an SLSFA-failed tree and every SLS- (SLDNF-) refutation is an SLSFA-refutation.Our presentation is informal. Section 2 describes the notation and somepreliminary notions. SLSFA-resolution is introduced and explained by meansof examples in Section 3. Section 4 contains a formal de�nition, a sound-ness and completeness result and some more advanced examples. Section 5contains conclusions.We assume that the reader is familiar with the well-founded semantics[5] and with SLS-resolution for strati�ed programs [14].2 PreliminariesWe use the standard logic programming terminology and de�nitions [8].However, normal programs are just called programs.Logic programs are written in �rst order languages that di�er only bytheir sets of predicate symbols and functors (including constants). We donot assume a �xed language for all programs, nor do we de�ne a program'slanguage as that of exactly the functors and predicate symbols occurring inthe program. Instead we assume that, for every program under considera-tion, the set of functors and of predicate symbols of the underlying languageL is known. We will say that L is (in)�nite if its set of functors is (in)�nite.When referring to syntactic objects of L, s; t; u will usually stand forterms, v; x; y variables, a; b; c constants, p; q predicate symbols. Sub- andsuperscripts may be used if necessary. Overlining will be used to denote a(�nite) sequence of objects, e.g. x is an abbreviation for x1; . . . ; xn for somen � 0. Symbol = will be used both in L and in the metalanguage. We takecare that this does not lead to ambiguity.The set of free variables occurring in a syntactic construct (term, for-mula etc.) F is denoted by FreeVars(F ). Restriction F jS of a formula Fto a set S of variables is the formula 9x1; . . . ; xnF where fx1; . . . ; xng =FreeVars(F ) n S.WF (P ) denotes the well-founded model of a program P . We refer toSLS-resolution as de�ned for strati�ed programs in [14].2.1 ConstraintsIn standard logic programming answers are given in the form of idempotentsubstitutions. This is not feasible when answers to negative queries arerequired. Some generalization of the concept of a substitution is needed toconveniently express inequality.In order not to restrict ourselves to a particular form of answers, wewill use arbitrary �rst order formulae built out of equality and inequalityliterals. Such formulae will be called constraints and denoted by �; �; �; �



(possibly with sub- and superscripts). Note that an idempotent substitutionfx1=t1; . . . ; xn=tng corresponds to a constraint x1=t1 ^ . . . ^ xn=tn. Con-junction of constraints � and � will often be denoted by �;� or by �� (as itplays the role of composition of substitutions).We are interested only in Herbrand interpretations of the underlyinglanguage L with = interpreted as equality. Equality in the Herbrand universeUL is axiomatized by Clark equality theory (see [8]). If L is �nite then the(weak) domain closure axiom DCA [9],[12] should be added. Informally,the axiom ensures that in the interpretation domain of any model of thetheory every object is a value of a non-variable term (under some variablevaluation).By CET we denote the Clark equality theory with added DCA in thecase of L �nite. The axiomatization is complete [20]; constraint � is true ina Herbrand interpretation of L i� CET j= �. (As usual, by truth of an openformula � in an interpretation or in a theory we mean truth of 8�.)A constraint � is called satis�able i� CET j= 9�. � is more general than� i� CET j= � ! �. � and � are equivalent i� CET j= � $ �; we will write� � �. Note that terms t and s are uni�able i� constraint t=s is satis�able.SLD- (and SLS-) resolution can be in an obvious way converted intoa version using constraints instead of substitutions. Instead of applyingan m.g.u. to a goal, the corresponding constraint is added to a goal. Instandard SLD-resolution goal  p(t1; . . . ; tn) and a clause p(s1; . . . ; sn) Bresolve into  B� where � is a most general idempotent uni�er ofp(t1; . . . ; tn) and p(s1; . . . ; sn). In the version with constraints the resultis  t1=s1; . . . ; tn=sn; B. Thus we will use goals in the form  �; B where� is a satis�able constraint and B is a sequence of literals.From the practical point of view it is important to solve constraints, i.e.to transform them into some intelligible form. Many papers are devotedto this subject, we refer to [20], [1], [3], [10] and to the references therein.There exist algorithms that reduce any constraint to an equivalent one insome disjunctive normal form. (Such an algorithm also checks satis�ability;for an unsatis�able constraint the empty formula false is obtained). Thenormal form may be, for instance, a disjunction of \simple" constraints ofthe form9 y (x1=t1 ^ . . .^ xn=tn ^ 8:::(v1 6=s1) ^ . . .^ 8:::(vm 6=sm))where n;m � 0, fx1=t1; . . . ; xn=tng is an idempotent substitution, the xi'sdo not occur elsewhere in this formula and some (maybe none) variables ofthe si's are universally quanti�ed.The choice of actual normal form and of a reduction algorithm is animportant implementation decision which is outside of the scope of this pa-per. There is no agreement in the papers on constructive negation on whichnormal form to use. Our method is independent from this choice, we al-low arbitrary constraints. However a restriction can be imposed that every



constraint used in SLSFA-resolution (a computed answer, a fail answer, theconstraint in a goal, etc.) is a simple constraint. (Any notion of simpleconstraints can be applied here. The only requirement is that there existsan algorithm transforming every constraint into an equivalent disjunction ofsimple constraints). De�nitions and theorems of the next sections remaincorrect with such a restriction.3 Informal presentationIn this section SLSFA-resolution (FA for fail answers) is presented by meansof examples. First we introduce our approach using an example for whichthe notions of an SLS-failed tree and an SLSFA-failed tree coincide. Then weshow that generalizing the de�nition of an SLS-failed tree in a straightfor-ward way leads to unsoundness. We explain the reason for the unsoundnessand introduce a notion of a failed tree suitable for our purposes. Then weshow how to construct failed trees by pruning.Example 3.1 Consider a program Pp(a) :p(x)p(b) p(b)and a goal :p(x). To �nd an answer, a failed SLS-tree for some instance of p(x) is constructed. This can be done by pruning the SLS-tree for p(x): p(x)���� PPPP x=a;:p(y)  x=b; p(b)j x=b; p(b)...Pruning means adding a constraint to the nodes of the tree in such a waythat some subtree of the original tree disappears (and the resulting tree isstill an SLS-tree). For example the tree can be pruned at depth 1: applyingconstraint x6=b removes the subtree rooted at  x=b; p(b), applying x6=aremoves the (single node) subtree rooted at  x=a;:p(y). As a result weobtain a tree consisting of a single node  x6=a; x6=b; p(x) which is a failedSLS-tree. Thus x6=a; x6=b is a fail answer for  p(x) and an answer for :p(x).A more general answer is possible, it is enough to prune the only leaf ofthe tree. The resulting failed SLS-tree for  x6=a; p(x) consists of a singlein�nite branch, x6=a is an answer for  :p(x). Both answers are sound asWF (P ) j= x6=a! :p(x).



The ability of answering nonground negative queries makes it possible toavoid oundering. Sequence p(x);  x=a;:p(y)is a oundering SLS-derivation. Using a previously computed answer y 6=afor  :p(y), this derivation can be extended to an SLSFA-refutation p(x);  x=a;:p(y);  x=a; y 6=a:The computed answer of an SLSFA-refutation is obtained similarly as inSLS-resolution. The last goal contains the constraint accumulated in therefutation. The constraint plays the role of the composition of the m.g.u.'sof an SLS-refutation. The answer is the restriction of this constraint to thevariables of the initial goal. In our example it is 9y(x=a; y 6=a) which isequivalent to x=a. 23.1 Unsoundness of a naive solutionThe notion of a failed tree in SLS-resolution can be presented as follows.Let us treat goals as equal up to variable renaming. Consider a goal  Q,a computation rule R and a tree built out of all the derivations for  Q viaR. The tree is failed if (1) it does not have a success leaf and (2) for everyits leaf  . . . ;:A; . . . with a negative literal selected, A is ground and  Asucceeds.The following example shows that using such a de�nition together withconstructive negation leads to unsoundness. We construct a tree satisfyingthis de�nition for which Q is not false with respect to the well-foundedsemantics.Example 3.2 Let P be the programp  :q(x); r(x)q(a)  :q(a)q(b)r(a)r(b)In the well-founded semantics of the program, p is unde�ned as q(a) is un-de�ned.Assume that a and b are not the only functors of the underlying language.Constraint x6=a; x6=b is a computed answer for  :q(x) as the (one node)tree for  x6=a; x6=b; q(x) is failed. Note that this is a most general answerfor  :q(x) that is correct with respect to the well-founded semantics. Nowthe tree  pj :q(x); r(x)j x6=a; x6=b; r(x)



satis�es the abovementioned de�nition of a failed tree1. Clauses r(a) andr(b) are not applicable to the last goal as it contains x6=a; x6=b. Condition(1) is satis�ed as the only leaf contains a literal r(x), condition (2) is satis�edtrivially. On the other hand, the tree should not be considered failed as p isnot false with respect to the well-founded semantics of the program. 2The reason for unsoundness could be informally explained as follows. Atree satisfying the de�nition above, with the root Q, shows that there doesnot exist any answer for  Q. Thus 9Q is not true w.r.t. the well-foundedsemantics. However this does not imply that 9Q is false, as the underlyinglogic is three valued.2 For the purposes of constructive negation we needa notion of a failed tree that demonstrates that a query is neither true norunde�ned in the well-founded semantics of the program.3.2 Correct solutionNow we informally present the concept of SLSFA-failed tree. In comparisonwith SLS-failed trees, the di�erence concerns the treatment of goals with anegative literal selected. Consider such a goal G =  :A;Q and assumethat x is the only variable occurring in G. To show that :A;Q is false wehave to prove the following property: Q is false for any x for which A is nottrue. In SLSFA-resolution we use a slight generalization of this property.Assume that �1; . . . ; �n are some (maybe not all) computed answers for  Aand let � = �1 _ . . . _ �n. Then WF (P ) j= � ! A. Now to show thatWF (P ) j= :(:A;Q) it is su�cient to prove that WF (P ) j= :� ! :Q. Thiscan be done by constructing a failed tree for  :�; Q. Thus  :�; Q can bemade the only son of  :A;Q in a failed tree.Note an important di�erence. A branch of an SLSFA-failed tree is notnecessarily an SLSFA-derivation. If :A is selected in an SLSFA-derivationthen an answer for  :A is used; if it is selected in an SLSFA-failed treethen the negation of some answers for  A is used instead.Example 3.3 Consider the program from the previous example. The tree x6=a;:q(x); r(x)j x6=a; x6=b; r(x)is an SLSFA-failed tree, as x=b is an answer for  q(x) and no programclause is applicable to goal  x6=a; x6=b; r(x).1Strictly speaking, there exist other derivations for  p but each of them is an instanceof the branch of the tree.2In view of this, the soundness of the concept of SLS-failed tree could be seen as asomehow surprising fact.



Failed trees can be constructed in the following way. An attempt to builda failed tree for  :q(x); r(x) results in a pre-failed3 tree :q(x); r(x)j x6=b; r(x)j x=a(Note that the branch of the tree is not an SLSFA-derivation; x=a cannotbe treated as an answer to :q(x); r(x).) By pruning the node  x6=b; r(x)(which means applying constraint :(x6=b) to the tree) we obtain a failed tree x=b;:q(x); r(x):The failed tree shown at the beginning of the example is obtained by pruningthe leaf  x=a.There does not exist an SLSFA-failed tree for  p. The pre-failed tree pj :q(x); r(x)j x6=b; r(x)j x=acannot be pruned, as its root does not contain any variables. (As in theprevious cases, the branch of the tree is not an SLSFA-derivation; existenceof a \success" leaf does not imply that p is true). 2Generally, a node �; . . . can be pruned by adding to the nodes of the treesuch a constraint � that �� is unsatis�able. Additionally, the free variablesof � should occur free in the root of the tree (in order to obtain a correctpre-failed tree). Thus a most general such constraint is � = :(�jV ) where Vis the set of the free variables of the root of the tree [11, 4].It is convenient to allow more than one son of a node G =  :A;Q ina failed tree. For example consider one answer � = x6=a; x6=b for  A; then:� = (x=a_=b). Constructing two sons  x=a;Q and  x=b; Q of G maybe preferable to one son  (x=a _ x=b); Q if equalities are implemented assubstitutions.This suggests a following condition. For the sake of simplicity assumeProlog computation rule. In a failed tree a node G =  �;:A;Q witha negative literal selected has sons  �1; Q; . . . ; �m; Q (where m � 0)3A tree satisfying the de�nition of SLSFA-failed tree except for the condition forbidding\success" nodes will be called a pre-failed tree.



provided that there exist �1; . . . ; �n (where n � 0) that are SLSFA-computedanswers for  �; A such that� ! �1 _ � � � _ �n _ �1 _ � � � _ �m:is true in the Herbrand universe (or, equivalently, in CET).Actually, this condition is not su�cient to achieve completeness of SLSFA-resolution. It may be necessary to consider in�nitely many sons of �;:A;Qand/or in�nitely many answers for  �; A (see Example 4.10). For the gen-eralized condition see De�nition 4.6.Summarizing this section: Sons of a node  . . . ;:A; . . . in a failed treeare obtained by negating some answers for A. A successor of . . . ;:A; . . .in a refutation is obtained by using an answer for  :A (i.e. a fail answerfor  A).4 SLSFA-resolutionHere we present a formal de�nition of SLSFA-resolution. It is followed byexamples and a soundness/completeness theorem. We begin with a modi-�cation of the concept of a goal. An adjustment is needed due to usage ofconstraints instead of substitutions.De�nition 4.1 A goal is a formula of the form :(�^L1^ . . .^Lm) usuallywritten as  �; L1; . . . ; Lm(or just  �; L) where � is a satis�able constraint and L1; . . . ; Lm (m � 0)are literals. We will omit � if it is (equivalent to) true.Now a formalization of a common notion of a goal with a literal selected.De�nition 4.2 An s-goal is a pair of a goal and a literal positionh �; L1; . . . ; Lm; ii (where 1 � i � m or m = 0 = i), usually writ-ten as  �; L1; . . . ; Li�1; Li; Li+1; . . . ; Lm (or as  �; L; Li; L0 where L =L1; . . . ; Li�1 and L0 = Li+1; . . . ; Lm).Li is called the selected literal of the above s-goal (if i � 1). G is calledthe goal part of an s-goal hG; ii. If it does not lead to ambiguity we sometimesdo not distinguish between an s-goal and its goal part.De�nition 4.3 Let G be an s-goal  �; L; p(t1; . . . ; tn); L0 and C a clausep(s1; . . . ; sn) M . An s-goal G0 is positively derived from G using C i� thefollowing holds:� FreeVars(G) \ FreeVars(C) = ;,� �0 is the constraint (t1 = s1 ^ � � � ^ tn = sn),



� (the goal part of) G0 is  ��0; L;M; L0:By the de�nition of a goal, ��0 above is satis�able. We will say that a clauseC is applicable to a goal G if there exists a goal positively derived from Gusing a variant of C.The de�nition of SLSFA-resolution consists of mutually recursive De�ni-tions 4.4, 4.5 and 4.6. To assure correctness of the de�nition, the concept ofranks is used, as in the de�nition of SLDNF-resolution [8]. Ranks are ordi-nal numbers. Refutations are de�ned in terms of negative derivation stepsof the same rank. These are, in turn, de�ned in terms of failed trees of alower rank. Failed trees are de�ned in terms of refutations of a lower rank.The base case is the de�nitions for rank 0 (of a refutation and a failed tree).De�nition 4.4 Let P be a program and � an ordinal. Assume that thenotion of \negatively derived" is de�ned for ranks < �. An SLSFA-refutationof rank � is a sequence of s-goals G0; . . . ; Gn such that Gn is  � and, fori = 1; . . . ; n,� Gi is positively derived from Gi�1 using a variant C of a programclause from P such that FreeVars(C) \ FreeVars(G0; . . . ; Gi�1) = ;� or � > 0 and Gi is rank � negatively derived from Gi�1.The constraint �jFreeVars(G0) is a called an SLSFA-computed answer for (thegoal part of) G0, of rank �.De�nition 4.5 Let P be a program, � > 0 and assume that failed trees ofranks < � are already de�ned. LetG = �; L;:A;L0be an s-goal with a negative literal selected. G0 is rank � negatively derivedfrom G if, for some �0,� G0 = ��0; L; L0,�  ��0; A fails and is of rank <�,� FreeVars(�0) � FreeVars(A);Constraint ��0 is called a fail answer for  �; A.De�nition 4.6 Let P be a program, � an ordinal and G a goal. Assumethat SLSFA-refutations of ranks < � are already de�ned. Then G fails andis of rank � i� there exists a tree (called rank � SLSFA-failed tree) satisfyingthe following conditions:1. each node is an s-goal and the goal part of the root node is G;



2. if H is a node in the tree with a positive literal selected then for everyclause C of P applicable to H there exists exactly one son of H thatis positively derived from H using a variant of C;3. A node H with a negative literal selected, of the form �; L;:A;L0has (possibly zero or in�nitely many) sons �1; L; L0;  �2; L; L0; . . .provided that there exist (possibly zero or in�nitely many) SLSFA-computed answers �1; �2; . . .of ranks < � for  �; A such that for every ground substitution � forFreeVars(�; A) if �� is true4 then some �i� or some �i� is true.4. no node of the tree is of the form  �.The condition in part 3 of the de�nition is called safeness condition. Anode H satisfying it will be called correct. A tree satisfying the de�nitionwithout part 4 will be called an SLSFA pre-failed tree. See [4] and [11] (orSection 3) for ways of obtaining failed trees by pruning pre-failed ones.When the sets of answers and sons are �nite, say n answers and m sons,the safeness condition becomesCET j= � ! �1 _ � � � _ �n _ �1 _ � � � _ �m:A standard way of computing �i's is then converting �:�1 � � �:�n to a dis-junctive normal form �1_ � � �_�m. It is not clear how to compute �1; �2; . . .when the set of �i's is in�nite. A \brute force" method is to construct ason for every ground substitution � as above for which �� is true and every�i is false. (The constraint of the son is the constraint corresponding to �).Usually more general �i's are possible (conf. Example 4.10).A de�nition of an SLSFA-derivation can be obtained from De�nition4.4 by removing the requirements for the form of the last goal and of the�niteness of the sequence.Note that a refutation (failed goal, failed tree) of rank � is also of anyhigher rank. A computed answer for  �; L can be represented as ��0 whereFreeVars(�0) � FreeVars(L). For other technical properties of derivationsand failed trees see [4].4in the Herbrand universe of the underlying language or, equivalently, in CET



4.1 Further examplesWe discuss two versions of a standard example: a game with a �nite and withan in�nite graph. Then we show that in�nite ranks and in�nite branchingare necessary for completeness of SLSFA-resolution.Example 4.7 Remark: for convenience, some constraints in our examplesmay be replaced by equivalent ones.Consider a program [6]w(x) m(x; y);:w(y)m(e; d)m(d; e)m(d; b)m(c; b)m(b; a)In its well-founded semantics w(b) is true, w(a) and w(c) are false and w(d)and w(e) are unde�ned.A \top section" of the pre-failed tree for w(x) with Prolog computationrule is  w(x)j m(x; y);:w(y)(((((((���� j PPPP hhhhhhh x=e; y=d;  x=d; y=e;  x=d; y=b;  x=c; y=b;  x=b; y=a;:w(y) :w(y) :w(y) :w(y) :w(y)An SLSFA-failed tree can be obtained by pruning the �ve nodes at depth3 of the tree. For example, to prune  x=e; y=d;:w(y) constraint:9y(x=e; y=d) � x6=e has to be added to the root of the tree. As a re-sult we obtain a failed tree of rank 0: �1; w(x)j �1; m(x; y);:w(y)where �1 = x6=e; x6=d; x6=c; x6=b. Under an assumption that a; b; c; d; e arethe only functors of L, �1 � x=a.Now we can construct a refutation of rank 1: w(x)  m(x; y);:w(y)  y=a;m(x; y)  x=b; y=awith the computed answer x=b.Thus y=b is a rank 1 computed answer for  w(y). If this answer isused in the pre-failed tree above then the nodes  x=d; y=b;:w(y) and



 x=c; y=b;:w(y) do not have sons. Hence these nodes do not need to bepruned. Pruning the remaining three nodes at depth 3 results in �2; w(x)j �2; m(x; y);:w(y) where �2 = x6=e; x6=d; x6=b � x=a _ x=cj x=c; y=b;:w(y)which is a rank 2 SLSFA-failed tree. Note that the fail answer �2 does notgive rise to any new answer for  w(x) and that �2 is a most general failanswer for  w(x). 2Example 4.8 (Previous example with in�nite ralation m)w(x) m(x; y);:w(y)m(f2(x); f(x))m(g(x); x)m(g(x); g2(x))Assume that f; g and a constant a are the only functors of L. In the well-founded semantics, w(s) is false for s being a or f2i�1(t) where the mainfunctor of t is not f and i = 1; 2; . . . (conf. the diagram of m below). It istrue for s being g(a), g(f2i�1(t)) or f2i(t) where t and i are as above. Forthe remaining terms it is unde�ned (i.e. for g(f2i(t)) where i > 0 and t asabove and for gi(t0) where i > 1 and t0 is arbitrary).... ... ... ...l l l lg2(a) g2(f(t)) g2(f2(t)) g2(f3(t))l l l lg(a) g(f(t)) g(f2(t)) g(f3(t))# # # #a f(t)  � f2(t)  � f3(t)  �� � �Similarly as in the previous example we obtain:� A failed tree of rank 0:  �; w(x)j �;m(x; y);:w(y)where � = 8zx6=f2(z); 8zx6=g(z) � x=a _ 9v(x=f(v); 8zv 6=f(z)).� Refutations of rank 1 (where � = 9v(y=f(v); 8zv 6=f(z))): w(x)  m(x; y);:w(y)  y=a;m(x; y)  y=a; x=g(y) w(x)  m(x; y);:w(y)  �;m(x; y)  �; x=f2(x0); y=f(x0) w(x)  m(x; y);:w(y)  �;m(x; y)  �; x=g(y)



with the computed answers x=g(a), 9v(x=f2(v); 8zv 6=f(z)) and9v(x=gf(v); 8zv 6=f(z)) respectively.� A failed tree of rank 2n, for n = 1; 2; . . .: �n; w(x)j �n; m(x; y);:w(y)j �n; x=f2(x0); y=f(x0);:w(y) where �n = 9v(x=f2n+1(v); 8zv 6=f(z))The leaf of the tree is correct as 9v(y=f2n(v); 8zv 6=f(z)) is a rank 2n � 1answer for w(y), see below. Note that not all the lower rank answers needto be used.� Refutations of rank 2n + 1 (n = 1; 2; . . .): w(x)  m(x; y);:w(y)  �n[x=y]; m(x; y)  �n[x=y]; x=f2(x0); y=f(x0) w(x)  m(x; y);:w(y)  �n[x=y]; m(x; y)  �n[x=y]; x=g(y)with the computed answers 9v(x=f2n+2(v); 8zv 6=f(z)) and9v(x=gf2n+1(v); 8zv 6=f(z)) respectively.The rank 2n failed tree above (n = 0; 1; . . .) may be constructed bypruning the following pre-failed tree w(x)j m(x; y);:w(y)((((((( j hhhhhhh x=f2(x0); y=f(x0);:w(y)  x=g(y);:w(y)  x=g(x0); y=g2(x0);:w(y)j x=f2(x0); y=f(x0);:�nwhere �0 = false and for n > 0 �n = 9v(y=f2n(v); 8zv 6=f(z)) is an answerfor  w(y) of rank 2n� 1.For n = 0 pruning the leaves gives constraint �. For n > 0 in order toprune the �rst leaf, constraint �1 = :9x0;y(x=f2(x0); y=f(x0);:�n) shouldbe used. It is equivalent to 8x0x6=f2(x0)_9x0;y(x=f2(x0); y=f(x0); �n) whichis equivalent to 8x0x6=f2(x0) _ �n(as 9x0;y(x=f2(x0); y=f(x0); 9v(y=f2n(v); 8zv 6=f(z))) is equivalent to9v(x=f2n+1(v); 8zv 6=f(z)) and to �n).The constraints to prune the second and the third leaf are, respectively,�2 = :9yx=g(y) and �3 = :9x0 ;y(x=g(x0); y=g2(x0)). Both are equivalent to8zx6=g(z). Thus �1�2�3 � (8x0x6=f2(x0) _ �n); 8zx6=g(z) � �_ �n. 2



Example 4.9 (In�nite rank)Consider a programeven(0) odd(s(0))even(s(x)) :even(x) odd(s2(x)) odd(x)For i = 0; 1; . . ., constraint x=s2i(0) is a rank 2i computed answer for even(x) and there exists an SLSFA-failed tree for  x=s2i+1(0); even(x)of rank 2i+ 1 (see [4] for details).Assume Prolog computation rule. The failed tree for  odd (x); even(x)has an in�nite branch with nodes  x=s2i(yi); odd(yi); even(x), i =0; 1; . . . and in�nitely many �nite branches with leaves equivalent to :::;:even(s2i(0)), i = 0; 1; . . . . As above, a successful derivation for even(s2i(0)) is of rank 2i. Thus the rank of the tree is !. 2Example 4.10 (In�nitely branching tree)Atom p is false w.r.t. the well-founded semantics of the programp :q(x);:r(x) r(0)q(x) :r(x) r(s(x)) r(x)The answers for r(x) are �i = x=si(0) for i = 0; 1; . . .. Assume that 0 ands are not the only functors of the underlying language. Then constraints�0i = 9y(x=si(y); y 6=0; 8zy 6=s(z)) for i = 0; 1; . . . are fail answers for  r(x)and answers for  q(x).An SLSFA-failed tree for  p (of rank 2) has branches p :q(x);:r(x) �i;:r(x)for i = 0; 1; . . .. The safeness condition is satis�ed because for every groundinstance x� of x some �i� or some �0i� is true. There does not exist a �nitelybranching failed tree for  p. There does not exist a failed tree for  p inwhich a �nite set of answers for q(x) (or for  r(x)) is taken into account.24.2 Soundness and completenessThe following theorem formulates soundness, completeness and indepen-dence from computation rule for SLSFA-resolution. For a proof see [4].Theorem 4.11 Let P be a normal program and  �; L be a goal. LetWF (P ) be the well-founded (3-valued, Herbrand) model of P .If � is an SLSFA-computed answer for  �; L then WF (P ) j= � ! L.If there exists an SLSFA-failed tree for  �; L then WF (P ) j= :(�; L) (or,equivalently, WF (P ) j= � ! :L).



If WF (P ) j= :(�; L) then for any computation rule there exists anSLSFA-failed tree for  �; L. If WF (P ) j= L� , where � is a substitutionand L� is ground, then for any computation rule � is covered by an SLSFA-computed answer: there exists a computed answer � for  �; L such that ��is true in CET provided �� is true in CET.5 ConclusionsWe presented SLSFA-resolution, a constructive negation approach for thewell-founded semantics. It is sound and complete for arbitrary normal pro-grams and goals and for any computation rule. It subsumes SLS-resolutionas originally de�ned in [14] for strati�ed programs. (Any SLS-refutation isan SLSFA-refutation, the same for failed trees.) In contrast, the other top-down query answering mechanisms for the well-founded semantics [16, 13]are incomplete due to oundering. They are also restricted to computationrules that select a positive literal whenever possible.We generalized the notion of a failed tree to oundering goals (a straight-forward generalization is unsound). An answer to a negated query  :A isobtained by constructing a failed tree for an instance  �; A of  A. Thetree can be obtained by pruning a pre-failed tree for  A. For a discussionof pruning see [4] and [11].As the well-founded semantics is not computable, SLSFA-resolution isnot an e�ective computational mechanism. What can be implemented isan algorithm that is a sound but incomplete approximation of SLSFA-resolution. A crude approximation is obtained by considering only �nitefailed trees in which �nite numbers of computed answers are used. Such anapproximation is called SLDFA-resolution in [4]. It is sound and completefor Clark completion semantics in 3-valued logic [7]. Better approximationsare a subject for future research. An obvious hint is to use methods of tab-ulation [17, 18] for �nite representation of in�nite trees and methods likethose presented in [2] for �nite representation of in�nite sets of answers.This work shows that a rather natural generalization of the standard con-cept of a failed tree provides a sound and complete operational semanticsfor two declarative semantics for logic programs: the 3-valued completion se-mantics and the well-founded semantics. The only di�erence is using �nitelyfailed trees in the �rst case and in�nite ones in the second. The author be-lieves that this con�rms the importance and naturalness of these semantics;the �rst for �nite failure and the second for in�nite failure.AcknowledgmentsThe author wants to thank Teodor Przymusi�nski for stimulating discussions.This work was partially supported by Swedish Research Council for Engi-neering Sciences (TFR), grants no. 221-91-331 and NUTEK 90-1676, by the
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