
[This version dated 1987 June 22 di�ers slightly from the �nal version (Theoretical Com-

puter Science, 59, 133{155, 1988)]

INDUCTIVE ASSERTION METHOD FOR LOGIC PROGRAMS

W lodzimierz Drabent

1

and Jan Ma luszy�nski

2

ABSTRACT

Certain properties of logic programs are inexpressible in terms of their declarative

semantics. One example of such properties would be the actual form of procedure calls

and successes which occur during computations of a program. They are often used by

programmers in their informal reasoning. In this paper, the inductive assertion method for

proving partial correctness of logic programs is introduced and proved sound. The method

makes it possible to formulate and prove properties which are inexpressible in terms of the

declarative semantics. An execution mechanism using the Prolog computation rule and

arbitrary search strategy (eg. OR-parallelism or Prolog backtracking) is assumed. The

method may be also used to specify the semantics of some extra-logical built-in procedures

for which the declarative semantics is not applicable.

1. INTRODUCTION

One of the most attractive features of logic programs is their declarative semantics

[Apt, van Emden][Lloyd]. It describes program meaning in terms of least Herbrand models

and logical consequence. It states, informally speaking, that whatever is computed by a

logic program is its logical consequence and whatever its logical consequence is may be

1

Institute of Computer Science, Polish Academy of Sciences, P.O.Box 22, 00-901

Warszawa PKiN, Poland, telex: 813556 coan pl

2

Department of Computer and Information Science, Link�oping University, 581 83

Link�oping, Sweden, computer mail: jmz@liuida.uucp

This research has been partially supported by the National Swedish Board for Tech-

nical Development, project nr. STUF 85-3166 and STU 86-3372. The �rst author was also

supported by Polish Academy of Sciences.

1

computed (unless the interpreter gets into an in�nite loop due to an imperfect search

strategy). More precisely, if a goal A succeeds with a substitution � as an answer

then 8A� is a logical consequence of the program. If 8A� is a logical consequence of the

program then there exists a computation for A giving an answer substitution � which

is more general then � (there exists such that � = �). The least Herbrand model of

a program is equal to the set of all ground atomic formulas A for which there exists a

successful computation for the goal A .

In most cases the declarative semantics is su�cient for dealing with logic programs.

For instance it may form a basis for formal program synthesis [Hogger]. However, there

are some important properties of logic programs which are inexpressible in terms of the

declarative semantics. For example, the information about the form of arguments at every

call of a procedure provided by Prolog mode declarations cannot be expressed in terms of

declarative semantics. It is also often the case that a Prolog procedure is written under

the assumption that all its invocations are of a certain form (and does not work properly

when called in another way). Consider, for example, the procedure

append(X{Y, Y{Z, X{Z).

which appends di�erence lists. When used with the two �rst arguments being variables it

produces incorrect results (they are not di�erence lists). Another example is the procedure

permute:

permute([], []).

permute(T, [E jP]) remove(T, E, T1), permute(T1, P).

remove([H jT], H, T).

remove([H jT], E, [H jT1]) remove(T, E, T1).

which loops (after producing one answer) when invoked with a variable as the �rst argu-

ment. Many built-in procedures of Prolog also require a particular form of their arguments

at the moment of a call. In every day reasoning about logic programs it is often necessary

to discuss the actual form of procedure calls and answers. Features of this kind will be

called here run-time properties as they concern not only the computed answers but also

the execution process. Of course they cannot be dealt with in terms of the declarative

semantics.

The declarative semantics is also insu�cient in that it cannot predict the actual form

of an answer. Knowing that 8A� is a logical consequence of a program we cannot say which

2

substitutions are the answers to the goal A (we only know that there is an answer more

general than �). Consider two programs:

p(f(a)). p(f(X)).

p(f(X)). q(a).

q(a).

The declarative semantics of both programs is the same, but for a goal p(Y) they give

di�erent sets of answers. Proving what the actual answers are is possible in our approach.

This paper describes an inductive assertion method for proving run time properties

of logic programs. It is an extended version of [Drabent, Ma luszy�nski 1, 2]. In this work

we are inspired by the well-known results of [Floyd] and [Hoare] for imperative programs

but, due to the rather di�erent nature of logic programs, direct application of these results

is not possible. Our assertions refer to the bindings of the arguments of a procedure at

each possible call of this procedure and upon its completion. Our notion of correctness

relies on such assertions; a program is correct i� the conditions expressed by the assertions

of a procedure are satis�ed whenever this procedure is called, and whenever it achieves a

success. We deal only with partial correctness: a procedure may loop or fail but if the

program is correct we still know that the arguments of every subsequent call have the

properties expressed by the corresponding assertion.

The rest of the paper is organized as follows. Section 2 introduces the notion of the

asserted logic program. Section 3 contains an informal explanation of the inductive asser-

tion method with some example proofs. Its purpose is to introduce intuitions facilitating

understanding of Section 4 which presents the method in a formal way. The latter section

also discusses applying the method to Prolog built-in procedures. A proof of the main the-

orem of this section is presented separately in Section 5. Section 6 contains comparisons

with related approaches.

2. LOGIC PROGRAMS WITH ASSERTIONS

In this section we introduce the notion of an asserted logic program. We assume

familiarity with foundations of logic programming, as presented for instance in [Lloyd].

By a logic program we mean a set of Horn clauses of the form

a

0

 a

1

; : : : ; a

n

: n � 0;

3

including a goal clause of the form

 a

1

; : : : ; a

n

: n � 0

where each a

i

is an atomic formula of the form p(t

1

; : : : ; t

m

) (m � 0) consisting of a

m-ary predicate symbol p and terms t

1

; : : : ; t

m

. The terms have the standard syntax:

they are either variables or are constructed from functors and variables (constants are

zero-argument functors).

By an n-ary procedure q of a logic program we mean the set of all clauses of the

program whose left-hand sides begin with the n-ary predicate letter q .

In the examples we will use the syntax of Edinburgh Prolog [Bowen et al] including

the list notation (functors including constants beginning with a small letter, variables

beginning with a capital letter, [] standing for the empty list, [HeadjTail] for the list

consisting of Head and Tail , [t

1

; : : : ; t

n

] for an n-element list).

In this paper the form of procedure calls and answers during execution of logic pro-

grams is treated formally in the framework of SLD-derivations. Nothing about search

strategy is assumed; it may be, for instance, OR-parallelism or the backtracking of Prolog

with or without cut. But in order to be able to obtain nontrivial results, some limitations

on the computation rule are needed. In this paper the Prolog computation rule is used

(the leftmost atomic formula in a current goal is always selected).

Our intention is to describe the form of procedure arguments at every possible call

and upon its completion, and to prove correctness of such descriptions. This resembles

the idea of introducing assertions for imperative programs [Floyd, Hoare]. Assertions

are logic formulas that characterize states (variable valuations) of imperative programs.

These formulas are to be interpreted on the data domain referred to by the program. The

assertions can be seen as a speci�cation of a program. They facilitate understanding of

programs and are used as a basis for program veri�cation. For each statement S of a

program two assertions, a precondition and a postcondition, are given. They describe,

respectively, states before the execution of S and states after this execution.

Experience has shown that it is often more convenient to use binary assertions [Tar-

lecki] which involve two states. For example a postcondition for a statement may describe

the relation between the input and output states of this statement (while a \normal",

4

unary assertion describes a set of states). In our approach, in order to describe a logic pro-

gram a unary precondition and a binary postcondition are associated with every predicate

symbol p of the program. The precondition characterizes the arguments of every call of

the procedure p , and the postcondition describes relations between these arguments and

their �nal instances when a call succeeds. The pair of pre- and postcondition will be called

here an assertion. A program with an assertion for every its predicate symbol is called an

asserted program.

An asserted program is said to be correct i�, during its execution, for any procedure

call the precondition of the procedure is satis�ed, and upon a success of the call the

postcondition is satis�ed. Note that this is partial correctness. It does not say whether a

success actually occurs. A formal de�nition of program correctness is given in Section 4.

Now we introduce a metalanguage for writing assertions for logic programs. The

language of clauses (the logic programming language) will be referred to as the object

language. The domain of interpretation for the metalanguage are (not necessarily ground)

terms of the object language. This is because the metalanguage is intended to describe

relations on (object language) terms. The functors and the predicate symbols of the met-

alanguage given in the de�nition below refer only to some basic operations and relations.

We do not intend to give an exhaustive list of such symbols, nor to restrict ourselves to

some minimal set.

DEFINITION 2.1 (of the metalanguage of assertions)

1. Variables:

a.

�

p

i

, p

�

i

(i = 1; : : : ; n) where p is an n-ary predicate of the object language.

b. T, U, V, : : : .

Comment:

�

p

i

stands for the value of i-th argument of p at invocation of the procedure p .

p

�

i

stands for the value of this argument at success. T, U, V, : : : stand for any terms.

2. n-ary functors (n � 0):

a. n-ary functors of the object language.

b. variables of the object language: X;Y;Z; ::: (n = 0).

c. : : :

For the functors from the cases a: and b: the interpretation of a functor is the functor

itself.

3. Terms: standard de�nition.

5

4. Predicate symbols: = , var, ground, � ,

�

=

, : : :

Interpretation:

= { term equality,

var(T) i� T is an (object language) variable,

ground(T) i� T is an (object language) ground term,

T � U i� T is a subterm of U,

T

�

=

U i� the terms T and U are variants of each other (they di�er at most in the

names of their variables),

disconnected(V

1

; : : : ; V

n

) i� no variable occurs in more than one of the terms

V

1

; : : : ; V

n

,

subterm(T; U; I) i� T � U and I is the corresponding selector (assuming any �xed

way of assigning selectors to subterm occurrences).

5. Logical connectives and quanti�ers: true, false, _ , &,) , : : : .

6. Formulas: standard de�nition.

7. An assertion for the predicate p is an expression

p : pre F

1

;post F

2

where F

1

, F

2

are formulas which do not contain the variables

�

q

i

, q

�

i

for q 6= p and p

�

i

does not occur in F

1

. F

1

, F

2

are called the precondition and the postcondition for p . ut

Sometimes it is necessary to add integer arithmetic to the metalanguage. In this case

we add numbers, arithmetical functors and predicates with the obvious interpretation.

Let a be an (object language) atomic formula of the form p(t

1

; : : : ; t

n

) . We will often

say \pre-(post-)condition for a" instead of \pre-(post-)condition for p".

DEFINITION 2.2

Let a = p(t

1

; : : : ; t

n

) .

1. a satis�es its precondition F

1

i� F

1

is true w.r.t. (any) interpretation in which

the values of

�

p

1

; : : : ;

�

p

n

are, respectively, t

1

; : : : ; t

n

.

2. Let � be a substitution. (a; a�) satis�es its postcondition F

2

i� F

2

is true w.r.t.

(any) interpretation in which the values of

�

p

1

; : : : ;

�

p

n

are, respectively, t

1

; : : : ; t

n

and the

values of p

�

1

; : : : ; p

�

n

are, respectively, t

1

�; : : : ; t

n

� . ut

For unary postconditions (this means for those without occurrences of

�

p

i

) we will

sometimes say \a� satis�es its postcondition" skipping the irrelevant element of the pair.

6

EXAMPLE 2.1

Let p be a three argument predicate symbol. This is an assertion for p :

p : pre var(

�

p

2

) & var(

�

p

3

) &

�

p

2

6�

�

p

1

&

�

p

3

6�

�

p

1

;

post p

�

2

= p

�

3

= [] _

:ground(p

�

2

) & ((var(V) & V � p

�

2

)) V � p

�

3

)

The precondition means that the second and the third arguments of p are variables which

do not occur in the �rst argument. The postcondition means that either the second and

the third arguments are empty lists or the second one is nonground and every variable

occurring in it also occurs in the third argument. Note that this is actually a unary

postcondition (since it is independent of the arguments of the call of p).

The atomic formula p([1; 2];X; Y) satis�es its precondition and p([1;X];X; Y)

does not. The postcondition is satis�ed by (p([1; 2];X; Y) , p([1; 2]; []; [])) and by

(p([1; 2];X; Y) , p([1; 2]; [V;Z]; [pair(1; V); pair(2; Z)])).

The program below is a part of the program serialise [Bowen et al].

 p(T;X; Y): where X 6� T; Y 6� T (0)

p([]; []; []): (1)

p([AjLA]; [BjLB]; [pair(A;B)jLC]) p(LA;LB;LC): (2)

This program together with the assertion is an asserted program. (Note that formally it is

a class of programs as a class of goal statements is speci�ed. X and Y are object language

variables while T stands for any term not containing these variables.) ut

EXAMPLE 2.2 (of an asserted program)

The program from Example 2.1 (but without any conditions for T in (0)) and with

the following assertion for p :

pre true ;

post p

�

2

= p

�

3

= [] _

var(

�

p

2

) & var(

�

p

3

) &

�

p

2

6�

�

p

1

&

�

p

3

6�

�

p

1

=)

:ground(p

�

2

) & ((var(V) & V � p

�

2

)) V � p

�

3

) ut

EXAMPLE 2.3 (of an asserted program)

The program from Example 2.1 with the following assertion for p :

pre var(

�

p

2

) & var(

�

p

3

) &

�

p

2

6�

�

p

1

&

�

p

3

6�

�

p

1

;

post p

�

2

= [V

1

; : : : ; V

n

] , n � 0 & 8

i;j

var(V

i

) & (i 6= j) V

i

6= V

j

) .

7

The postcondition means that the second argument of p (at a success of p) is a list of

distinct variables. ut

3. INFORMAL INTRODUCTION TO THE PROOF METHOD

The section contains an informal and intuitive presentation of the content of Section

4. Some readers may prefer to skip it and refer directly to that section.

Let us discuss computations of a program P relating to its clause

a

0

 a

1

; : : : ; a

n

: (�)

The clause may be invoked only when a current subgoal, say b , is uni�able with a

0

. As

a result of the uni�cation some of the variables occurring in a

0

will be instantiated to

terms, not necessarily ground. Let V denote a variable occurring in (*) or in b . The value

of V after the uni�cation will be denoted by V

0

. The value of an unbound variable is the

variable itself. So V

0

= V for example if V does not occur in a

0

.

Let a

0

1

be a

1

with every variable V substituted by V

0

. Now, a

0

1

becomes the current

subgoal. Upon a success of a

0

1

the variable bindings are updated: the value of each V is

denoted by V

1

, and a

0

1

with the new bindings is denoted by a

00

1

.

Note that the di�erence between V

0

and V

1

is due to binding some of the variables

which occur both in V

0

and in a

0

1

. The variables are being bound to terms which replace

them in V

0

giving V

1

. If there are no such variables then V

0

= V

1

. Further, V

0

and V

1

may di�er even if V does not occur in a

1

.

EXAMPLE 3.1

1. Let V

0

= V , a

1

= p(V; b) = a

0

1

. Suppose that a

00

1

= p(f(c); b) , then V

1

= f(c) .

2. Let V

0

= f(X;Y) , U

0

= X , a

1

= q(U) then a

0

1

= q(X) . Suppose that a

00

1

=

q(g(Z)) . Then U

1

= g(Z) , V

1

= f(g(Z); Y) . V does not occur in a

1

but V

1

6= V

0

ut

In the sequel of the computation, each a

i

may become a current subgoal with current

values of its variables. The current value of a variable V at this moment is denoted by V

i�1

and a

0

i

is a

i

with every variable V substituted by V

i�1

. Upon a success of a

0

i

the variable

bindings are updated; a

i

with these new bindings is denoted by a

00

i

and the value of V at

this moment is denoted by V

i

. The dependencies between V

i�1

and V

i

are of the same

kind as discussed above for i = 1.

8

Now we are ready to present an informal de�nition of a valuation sequence for the

clause (*) and the (sub-) goal b . This is a sequence �

0

; : : : ; �

n

of substitutions such that

there exists a program P (containing (*)) and a computation of P for which

�

i

= fV7!V

i

j V is a variable occurring in (*) or bg:

Thus a

0

i

= a

i

�

i�1

and a

00

i

= a

i

�

i

. Note that the de�nition takes into account only what

is implied by the very clause (*) and b . It does not depend on any other clauses. Every

computation of any program where the subgoal b invokes the clause (*) has a corresponding

valuation sequence for (*) and b . This is true also in the case of backtracking or looping.

If a

0

i

does not succeed then, in the corresponding valuation sequence, V

0

; : : : ; V

i�1

are the

values of V which actually occurred in the computation. Backtracking is understood here

as an attempt to construct another computation. Note that a valuation sequence exists i�

b is uni�able with a

0

.

A formal de�nition of a valuation sequence is presented in the next section and is based

on the following properties. Firstly, �

0

is a most general uni�er of b and a

0

. Then, the

di�erence between �

i�1

and �

i

is such that there exists a substitution �

i

and �

i

= �

i�1

�

i

(�

i

is actually a computed answer substitution for a

0

i

). Furthermore, �

i

may change only

the values of those variables which occur in a

0

i

and it must not introduce variables which

have already occurred in the computation but do not occur in a

0

i

.

EXAMPLE 3.2

Let b = p(c; Z) . Consider the clause

p(A;C) q(A;B); r(B;C); s:

One of the possible valuation sequences is

A

0

= c; B

0

= B; C

0

= Z ,

A

1

= c; B

1

= f(Y); C

1

= Z ,

A

2

= A

3

= c; B

2

= B

3

= f(d); C

2

= C

3

= e .

The reader may construct a corresponding program. For all valuation sequences B

0

= B ,

A

0

= c = A

1

= A

2

= A

3

and B

2

= B

3

; C

2

= C

3

. The other possible C

0

is C

0

= C . ut

Let a

00

0

be a

0

in which every variable V is substituted by V

n

. If P is a correct program,

then a

0

1

; : : : ; a

0

n

must satisfy their preconditions and (a

0

1

; a

00

1

); : : : ; (a

0

n

; a

00

n

) must satisfy their

postconditions. The precondition for b and the postcondition for (b; a

00

0

) must hold as well.

9

prove for every clause

Figure 1. Veri�cation condition, a diagram. Arrows stand for implications.

The following veri�cation criterion (cf. also Fig. 1) is proved in the next section and

is a basis for our proof method. (For simplicity a goal clause a

1

; : : : ; a

n

is represented

as goal a

1

; : : : ; a

n

where both the precondition and postcondition for goal are true).

To prove that the program is correct, it is enough to prove for every clause a

0

a

1

; : : : ; a

n

in the program (n � 0) that, for any goal b satisfying its precondition and any

valuation sequence (for the clause and b),

1. the precondition for a

0

1

holds,

2. for k = 1; : : : ; n� 1, the precondition for a

0

k+1

is implied by the postconditions for

(a

0

1

; a

00

1

); : : : ; (a

0

k

; a

00

k

) ,

3. the postcondition for (b; a

00

0

) is implied by the postconditions for

(a

0

1

; a

00

1

); : : : ; (a

0

n

; a

00

n

) .

An explanation for the above may be as follows. The correctness proof is divided into

local proofs dealing with single clauses. For each clause a

0

 a

1

; : : : ; a

n

we can assume

that the subgoal b invoking it satis�es its precondition. This should follow from the proofs

related to the clauses involved in the computation leading to b as the current subgoal. But

we have to prove that the precondition for a

0

1

holds. Further, a

0

1

may either fail (or loop)

or succeed giving a

00

1

. Since we already know that the precondition for a

0

1

holds, it follows

from the proofs for appropriate clauses that the postcondition for (a

0

1

; a

00

1

) holds. We can

use this fact to prove the precondition for a

0

2

. Generally, to prove the precondition for

a

0

k+1

it can be assumed that the postconditions for (a

0

1

; a

00

1

); : : : ; (a

0

k

; a

00

k

) hold (because the

preconditions for a

0

1

; : : : ; a

0

k

are already proved). The same assumption, for k = n , can be

used to prove the postcondition for (b; a

00

0

) .

10

Note that for n = 0 it is enough to prove the postconditions for (b; a

00

0

) (the conditions

1. and 2. and the premises in 3. disappear). For n = 1 the case 2. disappears.

In our proofs we will use some abbreviations and notational conventions. Let (*)

be the clause under consideration. When it does not lead to ambiguity, we will say that

a precondition is satis�ed by a

i

(instead of the appropriate instance of a

i

). The same

for postconditions. If the predicate symbol of a

i

is p , we will also say that the pre-

(post-) condition for p is satis�ed (or \... for p

i

" if p occurs more than once in the clause).

For example, in a proof for the clause test(X) testa(cond1;X; Y); testb(Y); test(Y) we

usually say \the postcondition for testb is satis�ed" instead of \the postcondition for

(a

0

2

; a

00

2

) is satis�ed" where a

0

2

and a

00

2

are appropriate instances of testb(Y) (that means

a

0

2

= testb(Y

1

); a

00

2

= testb(Y

2

)).

By

�

p

i;j

and p

�

i;j

we denote the value of the j -th argument of p

i

at the moment of

its invocation and its success respectively. The index i may be skipped when p occurs

only once in the clause. So in the example above,

�

test

3;1

= Y

2

, test

�

3;1

= Y

3

,

�

testa

1

=

testa

�

1

= cond1.

EXAMPLE 3.3 A correctness proof for the program from Example 2.1.

The proof for clauses (0) and (1) is immediate. Consider (2):

p([AjLA]; [BjLB]; [pair(A;B)jLC]) p(LA;LB;LC):

Let the head of (2) be uni�ed with b satisfying its precondition; then b = p(T; X; Y) where

X 6= Y (because of the occur check). Then B

0

, LB

0

, LC

0

are distinct variables and none of

them occurs in LA

0

. So the precondition for p

1

(strictly speaking, for p(LA

0

; LB

0

; LC

0

))

holds.

It remains to prove that the postcondition for p

0

(that means for

(b; p([A

1

jLA

1

]; [B

1

jLB

1

]; [pair(A

1

; B

1

)jLC

1

]))) holds. B

1

= B

0

since B

0

does not

occur in LA

0

; LB

0

; LC

0

. So :ground(p

�

0;2

) (since B

1

� p

�

0;2

). Let V be a variable and

V � p

�

0;2

. Two cases are possible:

1. V = B

1

� p

�

0;3

,

2. V � LB

1

and from the postcondition for p

1

we obtain V � LC

1

� p

�

0;3

. Q.E.D.

EXAMPLE 3.4 A correctness proof for the program from Example 2.3.

The proof for (0) and (1) is trivial. The clause (2) and the precondition for p are the

same as in Example 3.3. As we have already proved, the precondition for p

1

holds and

11

B

1

= B

0

& var(B

1

) . From the postcondition for p

1

LB

1

= [V

1

; : : : ; V

n

] , n � 0 & 8

i;j

var(V

i

) & (i 6= j) V

i

6= V

j

) .

So p

�

0;2

= [B

1

; V

1

; : : : ; V

n

] . We have also 8

i

B

1

6= V

i

because B

1

does not occur in the

invocation of p

1

(see also section 4, the de�nition of valuation sequence, condition 4).

Hence the postcondition for p

0

holds. Q.E.D.

4. THE METHOD

The main part of this section is a de�nition of program correctness and the veri�cation

theorem. These are preceded by a few necessary de�nitions and followed by examples.

Then extensions dealing with Prolog built-in predicates are discussed.

Let t be a term and � = fV

1

7!t

1

; : : : ; V

n

7!t

n

g a substitution. The following notation

will be used:

variables(t) is the set of (object language) variables occurring in t ,

variables(t

1

; : : : ; t

n

) = variables(t

1

) [: : : [variables(t

n

) ,

dom(�) = fV

1

; : : : ; V

n

g ,

variables(�) = variables(t

1

; : : : ; t

n

) . ut

We use the traditional de�nition of SLD-derivation as presented in [Lloyd] restricting it

to the �xed computation rule of Prolog. However, we must make explicit some assumptions.

For a most general uni�er (mgu) � of t

1

and t

2

we require that it does not introduce new

variables:

variables(�) � variables(t

1

) [variables(t

2

) .

Note that � does not use unnecessary variables:

dom(�) � variables(t

1

) [variables(t

2

) .

For an SLD-derivation we require that variables are standardized apart. That is, if

G

0

; G

1

; : : : ;C

1

; C

2

; : : : ; �

1

; �

2

; : : : is an SLD-derivation then for every i < j

variables(C

i

) \ variables(C

j

) = ; and

variables(G

i

) \ variables(C

j

) = ;

(where G

0

; G

1

; : : : is the goal sequence, C

1

; C

2

; : : : is the clause variant sequence and

�

1

; �

2

; : : : is the uni�cation sequence of the derivation; the sequences may be �nite or

in�nite).

12

DEFINITION 4.1

An asserted program P is correct i� for every SLD-derivation of P where G

0

; G

1

; : : :

is the sequence of goal clauses and �

1

; �

2

; : : : is the sequence of substitutions and for every

i if

G

i

= a

1

; : : : ; a

m

; m � 0

then

1. a

1

satis�es its precondition,

2. if there exists j > i such that

G

j

= (a

2

; : : : ; a

m

)�

i+1

: : : �

j

then (a

1

; a

1

�

i+1

: : : �

j

) satis�es its postcondition for the least such j . ut

Informally, a

i

is a procedure call, �

i+1

: : : �

j

the corresponding computed answer

substitution, a

1

�

i+1

: : : �

j

the instantiation of a

1

at the moment of its success. The part

of the SLD-derivation between i and j is the computation corresponding to procedure call

a

1

.

To facilitate formulation of the main theorem we introduce the notion of a valuation

sequence.

DEFINITION 4.2

A sequence of substitutions �

0

; : : : ; �

n

(n � 0) is a valuation sequence for a clause

a

0

 a

1

; : : : ; a

n

and for an atomic formula (a goal) b i�

0. variables(b) \ variables(a

0

; a

1

; : : : ; a

n

) = ;

1. �

0

is an mgu of b and a

0

and there exist �

1

; : : : ; �

n

(called an answer sequence) such that for i = 1; : : : ; n

2. �

i

= �

i�1

�

i

3. dom(�

i

) � variables(a

i

�

i�1

)

4. variables(�

i

) \ variables((a

0

 a

1

; : : : ; a

n

)�

i�1

) � variables(a

i

�

i�1

) . ut

�

i

can be understood as a valuation of clause variables upon a success of a

i

�

i�1

(provided it succeeded). �

i

is the corresponding computed answer substitution. It can

bind only the variables occurring in a

i

�

i�1

and cannot introduce variables which have

already occurred but not in a

i

�

i�1

(cf. condition 4). Using the notation from the previous

section, V�

i

= V

i

for any variable V occurring in the clause.

The theorem below is the main result of this paper and the basis of our proof method.

In the theorem we assume that a

0

= goal for a goal clause where goal is a special predicate

13

symbol which does not occur elsewhere. The assertion for goal is pre true; post true.

A proof of the theorem is given in section 5.

THEOREM 4.1 (veri�cation condition)

Let P be an asserted program. A su�cient condition for P to be correct is:

for every a

0

 a

1

; : : : ; a

n

being a clause of P (n � 0),

for every b which satis�es its precondition,

for every their valuation sequence �

0

; : : : ; �

n

1. the precondition for a

1

�

0

is satis�ed,

2. for every k = 1; : : : ; n� 1, if (a

1

�

0

; a

1

�

1

); : : : ; (a

k

�

k�1

; a

k

�

k

) satisfy their postcon-

ditions then the precondition for a

k+1

�

k

is satis�ed,

3. if (a

1

�

0

; a

1

�

1

); : : : ; (a

n

�

n�1

; a

n

�

n

) satisfy their postconditions then the postcondi-

tion for (b; a

0

�

n

) is satis�ed. ut

Note that for a unary clause (n = 0) the conditions 1., 2., 3. above reduce to

3. the postcondition for (b; a

0

�

0

) is satis�ed.

For n = 1 they reduce to

1. the precondition for a

1

�

0

is satis�ed,

3. if (a

1

�

0

; a

1

�

1

) satisfy its postcondition then the postcondition for (b; a

0

�

1

) is

satis�ed.

The veri�cation condition is expressed in semantic terms. While proving implications

2. and 3. one has to refer to properties of substitution composition, substitution appli-

cation and uni�cation. An interesting problem is �nding a set of proof rules which would

correspond to theorem 4.1 and would allow to perform proofs in a syntactic way, like in

the axiomatic semantics. This could make possible to automate the method.

Two example proofs of program correctness are given at the end of the previous

section. Here we present another two examples relating to mode declarations and one to

false as a postcondition.

EXAMPLE 4.1

Consider the following program

 q(T): (0)

q(L) p(L;M;N); s(N;L1; L2): (1)

14

p([]; []; []): (2)

p([AjLA]; [BjLB]; [pair(A;B)jLC]) p(LA;LB;LC): (3)

s([]; []; []): (4)

s([XjL]; [XjL1]; L2) s(L;L1; L2): (5)

s([XjL]; L1; [XjL2]) s(L;L1; L2): (6)

(where the procedure p is the same as in the previous examples) with the assertions

q : pre true; post true

p : pre true; post p

�

3

= [T

1

; : : : ; T

n

]; n � 0 & 8

i

:var(T

i

)

s : pre

�

s

1

= [T

1

; : : : ; T

n

]; n � 0 & 8

i

:var(T

i

) & var(

�

s

2

) & var(

�

s

3

); post true

As the correctness proof for the program is easy, we present here proofs for clauses

(1) and (5) only.

A proof for (1): Let the head of (1) be uni�ed with b satisfying its precondition.

As the precondition is true, b = q(S) (where S is any term) and �

0

= fL 7!Sg (if S is

a variable, it may also be �

0

= fS7!Lg). Let a

1

= p(L;M;N) and a

2

= s(N;L1; L2).

Then a

1

�

0

satis�es its precondition. Assume that (a

1

�

0

; a

1

�

1

) satis�es its postcondition.

This means that N�

1

= [T

1

; : : : ; T

n

]; n � 0 & 8

i

:var(T

i

) and the precondition for

a

2

�

1

= s((N�

1

); L1; L2) holds. This completes the proof for (1) since the postcondition

for q is true.

A proof for (5): Let b = s([T

1

; : : : ; T

n

]; U; V) satis�es its precondition (this means

n � 0, U; V are variables, T

1

; : : : ; T

n

are not variables). Let b be uni�ed with the head of

(5) by mgu �

0

. Then n � 1,

b�

0

= s([XjL]; [XjL1]; L2)�

0

= s([T

1

j[T

2

; : : : ; T

n

]]; [T

1

jW]; X)

(where W; X are variables) and

s(L;L1; L2)�

0

= s([T

2

; : : : ; T

n

]; W; X)

which satis�es its precondition. This completes the proof for (5) since the postcondition

for s is true.

From the precondition for s it follows that the procedure s may be given a mode

declaration s(+;�;�) [Mellish] (since at every call of s the �rst argument is not a variable

and the remaining arguments are variables). ut

15

EXAMPLE 4.2

Consider the program fragment

p q(f(a);X); r(X): (1)

s(Y) q(Y;X); t(X): (2)

q(f(X);X): (3)

with the assertions

p : pre true; post true

q : pre true; post ground(

�

q

1

)) ground(q

�

2

)

r : pre ground(

�

r

1

); post true

Let all the remaining assertions be pre true; post true. It is easy to prove that this

asserted program is correct (under the assumption that the procedure q consists only of

(3) and that the only invocation of r occurs in (1)). So the procedure r may be given a

mode declaration r(+). ut

Within the framework of partial correctness it is impossible to express (nor prove) the

actual success of a procedure call. On the other hand, the non-success can be dealt with.

The postcondition false means that the corresponding procedure never succeeds (thus it

fails or loops). Consider the program:

q(X) :{ q(s(X)).

q(0).

q : pre true; post (uni�able(

�

q

1

; 0)) q

�

1

= 0) & (: uni�able(

�

q

1

; 0)) false)

It is easy to check that the veri�cation condition holds; hence the program above is correct

(with any goal clause). The assertion means that 1. if q is called with an argument non-

uni�able with 0 then it loops or fails and 2. if called with an argument uni�able with 0

it results in binding it to 0 provided it succeeds. From the assertion it does not follow

whether q fails or whether it loops in case 1 and which of the three possibilities|success,

loop or failure|occurs in case 2. (Actually, in case 1 q loops and in case 2 it loops or

succeeds and then loops, depending on the search strategy). This kind of questions is

outside of the scope of the presented method as they are not related to partial correctness.

ut

Comment: Postcondition false implies that no ground instance of any call satisfying

the precondition is in the least Herbrand model of the program.

16

Our approach can easily be extended to deal with some extra-logical built-in proce-

dures. It can provide their formal semantics and also the absence of some run-time errors

can be proved. The declarative semantics is inapplicable to this kind of procedures.

EXAMPLE 4.3 Axiomatic semantics of the Prolog [Bowen et al] built-in procedure var

The meaning of the procedure may be described by the assertion

var : pre true ;

post var(

�

var

1

) &

�

var

1

= var

�

1

.

The postcondition states that at the moment of call the argument was an uninstantiated

variable. Thus in the other case the procedure does not succeed. ut

EXAMPLE 4.4 Correctness of use of the Prolog built-in procedure is

Consider the assertion

is : pre intexpr(

�

is

2

) ;

post true

where intexpr(T) i� T is an expression built out of integers and arithmetical functors. If

an asserted program with the above assertion is correct then no run-time error connected

with wrong arguments of is occurs. ut

A simple extension allowing programs containing Prolog negation is possible. It will

be discussed informally. Consider Prolog procedure not. The postcondition for it is not

�

1

=

�

not

1

since not does not bind its arguments. During a computation invoked by call not(T)

all the respective pre- and postconditions should be satis�ed, in particular the precondition

of T. So the assertion for not is

not : pre A ; post not

�

1

=

�

not

1

& ...

where A implies that

1. :var(

�

not

1

)

2.

�

not

1

satis�es its precondition.

Notice that the argument of not is treated both as a term and as an atomic formula. With

such an assertion for not the proof method remains sound. To prove that not is used in a

safe way [Lloyd] the precondition should imply also

3. ground(

�

not

1

).

A similar approach is possible for the meta call of Prolog (procedure call).

17

EXAMPLE 4.5

not : pre 9

T

�

not

1

= p(f(T)) _

�

not

1

= q(g(T)) ; post not

�

1

=

�

not

1

.

p : pre 9

T

�

p

1

= f(T) ; ...

q : pre true; ...

According to the precondition,

�

not

1

is of the form p(f(T)) or q(g(T)) . In both cases it

satis�es its precondition. Hence if the veri�cation condition holds for an asserted program

containing these assertions then the program is correct. ut

5. PROOF OF THE VERIFICATION THEOREM

This section proves the soundness of our method. To facilitate the proof we introduce

some de�nitions. Let G

0

; G

1

; : : : ;C

1

; C

2

; : : : ; �

1

; �

2

; : : : be an SLD-derivation (the reader

is referred to [Lloyd] for standard de�nitions and theorems).

DEFINITION

A k; l -subrefutation (of this derivation) is G

k�1

; : : : ; G

l

;C

k

; : : : ; C

l

; �

k

; : : : ; �

l

such

that

G

k�1

= b; b

1

; : : : ; b

m

; m � 0

G

l

= (b

1

; : : : ; b

m

)�

k

: : : �

l

and l is the least such number. ut

DEFINITION

A k; j -subderivation (of this derivation) is G

k�1

; : : : ; G

j

;C

k

; : : : ; C

j

; �

k

; : : : ; �

j

such

that

G

k�1

= b; b

1

; : : : ; b

m

; m � 0

and for k � i � j G

i

is not of the form (b

1

; : : : ; b

m

)�

k

: : : �

i

. ut

A subrefutation beginning with b; : : : is a fragment of an SLD-derivation related

to a successful procedure call b . A subderivation beginning with the same goal may be

treated as a not yet completed computation associated with b .

The su�cient condition from the Theorem 4.1 will often be referred to as (SC).

LEMMA 5.1

Let G

k�1

; : : : ; G

l

;C

k

; : : : ; C

l

; �

k

; : : : ; �

l

be a subrefutation of an SLD-derivation of a

program P for which (SC) is satis�ed. Let k � i � l and

18

G

k�1

= b; b

1

; : : : ; b

m

,

�

i

= �

k

; : : : ; �

i

,

G

i

= (A

i

; b

1

; : : : ; b

m

)�

i

, where A

i

is a sequence of atomic formulas.

Then

dom(�

i

) � variables(b;C

k

; : : : ; C

i

) ,

variables(�

i

) � variables(b;C

k

; : : : ; C

i

) and

variables(A

i

�

i

) � variables(b;C

k

; : : : ; C

i

) . ut

COROLLARY

Let G

0

; G

1

; : : : ;C

1

; C

2

; : : : ; �

1

; �

2

; : : : be an SLD-derivation of a program for which

(SC) is satis�ed. Let there exist a k; l -subrefutation of the derivation. Let G

k�1

=

b; b

1

; : : : ; b

m

. Then

G

k�1

�

k

: : : �

l

= G

k�1

�

where

� = �

k

: : : �

l

jvariables(b) (and j is de�ned by �jX = fV 7!t 2 � j V 2 Xg).

More generally, for every s � k

G

s�1

�

s

: : : �

l

= G

s�1

�

s

: : : �

k�1

� ut

LEMMA 5.2

Let G

0

; G

1

; : : : ;C

1

; C

2

; : : : ; �

1

; �

2

; : : : be an SLD-derivation of a program for which

(SC) is satis�ed. Let a k; l -subrefutation of the derivation exist. Let G

k�1

= b; b

1

; : : : ; b

m

where b satis�es its precondition. Then (b; b�

k

: : : �

l

) satis�es its postcondition. ut

PROOF by induction on l .

Let the premises of the lemma hold.

l = k :

Let G

k

be derived from G

k�1

and a unary clause a

0

using an mgu �

k

. Then from

(SC) follows the postcondition for (b; a

0

�

k

) .

l > k :

Let the lemma hold for every number less than l . Then

G

k

= (a

1

; : : : ; a

n

; b

1

; : : : ; b

m

)�

k

is derived from G

k�1

and a clause C

k

= a

0

 a

1

; : : : ; a

n

, n > 0. The substitution �

k

is

an mgu of b and a

0

.

19

There exist r

0

; : : : ; r

n

such that r

0

= k , r

n

= l and, for i = 1; : : : ; n ,

G

r

i

= (a

i+1

; : : : ; a

n

; b

1

; : : : ; b

m

)�

k

: : : �

r

i

;

the derivation has a (r

i�1

+1),r

i

-subrefutation, and r

i

is the least index for which it

holds. The (r

i�1

+1),r

i

-subrefutation can be understood as a successful execution of the

procedure call a

i

�

k

: : : �

r

i�1

.

Let �

0

= �

k

and for i = 1; : : : ; n

�

i

= �

r

i�1

+1

: : : �

r

i

jvariables(a

i

�

k

: : : �

r

i�1

);

and �

i

= �

i�1

�

i

(�

i

may be treated as a computed answer substitution for goal

a

i

�

k

: : : �

r

i�1

). We want to prove that �

0

; :::; �

n

is a valuation sequence for b and C

k

.

It remains to show that conditions 3 and 4 of De�nition 4.2 hold.

Let G = G

k

or G = G

k�1

�

k

. From the Corollary it follows that for i = 0; : : : ; n � 1

if

G�

k+1

: : : �

r

i

= G�

1

: : : �

i

then

G�

k+1

: : : �

r

i+1

= G�

1

: : : �

i+1

:

By induction G�

k+1

: : : �

r

i

= G�

1

: : : �

i

for i = 0; : : : ; n . Hence

b�

n

= b�

k

: : : �

l

;

a

i

�

i�1

= a

i

�

k

: : : �

r

i�1

(�)

(and dom(�

i

) � variables(a

i

�

i�1

) which is condition 3 of De�nition 4.2),

a

i

�

i

= a

i

�

k

: : : �

r

i

:

By Lemma 5.1 applied to the (r

i�1

+1),r

i

-subrefutation (where G

r

i�1

= a

i

�

i�1

; : : :

by (*)) variables(�

i

) � variables(�

r

i�1

+1

: : : �

r

i

) � variables(a

i

�

i�1

; C

r

i�1

+1

; : : : ; C

r

i

) . Hence

variables(�

i

)\variables((a

0

; : : : ; a

n

)�

i�1

) � variables(a

i

�

i�1

) (since variables in the deriva-

tion are standardized apart and variables((a

0

; : : : ; a

n

)�

i�1

) \ variables(C

j

) = ; for j >

r

i�1

). We have proved that �

0

; : : : ; �

n

is a valuation sequence for b and C

k

.

Now, by (SC1), the precondition for a

1

�

0

is satis�ed.

If the precondition for a

i

�

i�1

is satis�ed then the postcondition for (a

i

�

i�1

; a

i

�

i

) is

satis�ed (for every i = 1; : : : ; n , by the inductive assumption).

The preconditions for a

2

�

1

; : : : ; a

n

�

n�1

hold (by (SC2)).

The postcondition for (b; b�

n

) holds (by (SC3)).

But b�

n

= b�

k

: : : �

l

which completes the proof. ut

20

LEMMA 5.3

Let G

0

; G

1

; : : : ;C

1

; C

2

; : : : ; �

1

; �

2

; : : : be an SLD-derivation of a program for which

(SC) is satis�ed. Then for every s the �rst atomic formula of G

s

satis�es its precondition.

ut

PROOF by induction on s .

If s = 0 then the thesis follows immediately from (SC1). Let the lemma hold for

every number less than s . Two cases are possible.

1.

G

s

= (a

1

; : : : ; a

n

; b

1

; : : : ; b

m

)�

s

; n > 0

G

s�1

= b; b

1

; : : : ; b

m

The precondition for b is satis�ed and G

s

is derived from G

s�1

and a clause a

0

a

1

; : : : ; a

n

. �

s

is an mgu of b and a

0

. From (SC1) it follows that the precondition for

a

1

�

s

is satis�ed.

2. (n in the previous case is 0)

There exists k < s (k � 0) such that

G

s

= (b

1

; : : : ; b

m

)�

k

: : : �

s

G

s�1

= (b

0

; b

1

; : : : ; b

m

)�

k

: : : �

s�1

G

k

= (a

1

; : : : ; a

t

; b

1

; : : : ; b

u

; : : : b

m

)�

k

G

k�1

= b; b

u+1

; : : : ; b

m

:

Let k be the greatest such number (when k = 0 then let G

�1

= goal , �

0

= � and C

0

be the goal clause goal : : :). Repeating the construction from the proof of Lemma 5.2

using a

1

; : : : ; a

t

; b

1

; : : : ; b

u

instead of a

1

; : : : ; a

n

and introducing r

v

only for v � t (r

0

= k ,

r

t

= s) we prove that the precondition for b

1

is satis�ed. The evaluation sequence under

consideration (for b and C

k

) is �

0

; :::; �

t+u

where �

i

= �

i�1

�

i

. �

i

is as in the previous

proof for i = 1; :::; t . For i = t+1; :::; t+u , �

i

= � . We omit details of the proof. ut

Theorem 4.1 follows immediately from lemmas 5.3 and 5.2.

21

6. RELATED WORK

In this section the inductive assertion method for logic programs is compared with

other approaches targeting related goals. They are

the inductive assertion method for imperative programs,

the method of Courcelle and Deransart for proving properties of attribute grammars,

abstract interpretation and

declarative semantics.

Among known approaches to proving program correctness our method mostly resem-

bles the inductive assertion method of [Floyd]. The basic idea is the same: attaching

formulae to program points. The program is correct if whenever the control reaches a

point the corresponding formula is true (provided that the formula at the entry is true;

which is always the case in our method). However, the methods of [Floyd] and [Hoare]

cannot be applied to logic programs. The main reason is the di�erent nature of the variable

in logic programming.

The main di�erence between our method and those of [Floyd] and [Hoare] is that they

make use of syntactic proof rules (see also [Loeckx, Sieber] as a textbook reference). In

the axiomatic method of Hoare, proof rules are the most apparent feature of the method.

The proofs are, however, not fully syntactic because they refer to semantic properties of

the underlying domain (when proving validity of implications used in the consequence

rule). In [Floyd] syntactic rules are used to produce veri�cation conditions that have to

be proved valid in the related domain. Proofs in our method are semantic, they are based

on properties of substitution composition, substitution application and uni�cation.

It seems rather di�cult to express our method in terms of proof rules in the style of

Hoare. The basic rule of the axiomatic method concerns assignment. The corresponding

rule in logic programming should describe the inuence of a successful procedure call on

the clause variables. This is much more di�cult since the e�ects of uni�cation are more

complicated than those of assignment.

The paper [Courcelle, Deransart] presents a method for proving correctness of at-

tribute grammars and discusses its application to logic programs. The application is

based on the correspondence between attribute grammars and logic programs [Deransart,

Ma luszy�nski]. It makes possible proving properties of proof trees of logic programs. How-

ever, as presented in [Courcelle, Deransart], this does not include run-time properties

22

because only complete proof trees are considered. This corresponds to completed compu-

tations. In such trees the predicate arguments at tree nodes have their �nal values that in

general are not equal to those at the moments of respective procedure calls or successes.

In the setting of [Courcelle, Deransart] our method deals with partial proof trees (only

those that can be created from the initial goal by using Prolog computation rule). This

also includes trees which correspond to derivations which eventually fail. The properties

which can be expressed and proved within our method concern only particular nodes

in such a tree. A precondition concerns the leftmost nonempty leaf, if any. A unary

postcondition concerns nodes corresponding to procedure calls that \has just succeeded"

(so the argument values are the same as at the moment of success). These nodes are roots

of complete proof (sub-) trees. There may be several such nodes in a partial proof tree. A

binary postcondition relates a pair of corresponding nodes in two trees that represent two

elements of one SLD-derivation. In contrast to our method, the approach of [Courcelle,

Deransart] deals with all nodes of (complete) proof trees.

Common in both methods is the structure of proofs. To prove a property of a program,

a \small" proof for every clause is made. Both are partial correctness methods.

An important approach to program properties derivation is abstract interpretation.

Briey speaking, its principle is \performing simulated computations in a domain of ap-

proximations to the values encountered in actual computations" [Jones, S�ndergaard].

Such simulated computation is always �nite. As a result it gives a description of a super-

set of the set of all values which may occur during any actual computation (of the program

under analysis). An abstract interpreter is universal in the sense that it can be applied

to any program. Abstract interpretation of logic programs was used for, among others,

generating mode declarations, sharing analysis, occur check reduction and type inferring

(see [Bruynooghe et al] for references).

The main di�erence between abstract interpretation and the inductive assertion method

is that the former in an automatic way generates program properties. The domain of ap-

proximations, which is a set of possible properties, is �xed for a given abstract interpreter.

It has to be a lattice, �nite or of �nite height. On the other hand, our approach provides a

method for (non-automatic) proving of properties that are already given. The properties

are expressed as assertions. There is no limitation on the set of possible properties.

Both methods are partial correctness approaches. They deal neither with termination

nor completeness. The respective properties correspond to supersets of the sets of actual

23

answers.

Abstract interpretation treats a program as a whole while our proofs are structural.

They are built out of a sub-proof for every clause. Modifying a program clause requires

repeating the whole abstract interpretation process in the �rst case but only repeating

the proof for this clause in the second. However, if the modi�cation makes the asserted

program incorrect then also some assertions have to be changed and proofs for the clauses

a�ected should be redone.

As an example, mode inference will be discussed. It was dealt with in the framework

of abstract interpretation by [Mellish] and [Debray, Warren]. The analyzer from the �rst

paper will be referred here as A, the other as B. Example 4.1 presents a proof that a certain

mode declaration is correct for a given program. This mode declaration cannot be found

neither by analyzer A nor B. This is because of too restricted domains of approximations.

To �nd the mode declaration for s it is necessary to know that p

�

3

is a list of non-variable

elements, but the analyzer A supports no description between \ground term" and \term

whose arguments are variables" and B supports only \any" between \ground term" and

\variable". (Actually, this shows why the analyzer A is not able to �nd an adequate

mode declaration for the procedure split in the program serialize [Bowen et al], since the

procedure s is a simpli�ed version of split). To �nd the mode declaration from Example 4.2

it is necessary to treat the calls of q in clauses (1) and (2) in a di�erent way. This is possible

in our approach (implications in a binary postcondition can be used for this purpose) but

impossible in A and most of abstract interpretation methods. Analyzer B is an exception.

It uses a domain that describes not sets but relations (between procedure arguments at

the moment of call and upon a success). This gives increase of power corresponding, in a

sense, to introducing binary assertions in the proof method.

In the abstract interpretation the same apparatus is applied to every program while a

proof method like ours can use assertions tailored to the program (and to the problem on

hand, cf. Examples 2.1, 2.2, 2.3, 4.1 where four distinct assertions are given to the same

procedure). It seems that for every abstract interpreter (designed for inferring certain

property, eg. mode declaration) there exists a counterexample (a program for which the

property is true but not derivable by this abstract interpreter).

As the metalanguage of the inductive assertion method is not formally de�ned, the

questions of completeness are not discussed in this paper. However, we will show that

24

it is \complete w.r.t. declarative semantics" in the sense that for any program its partial

correctness with respect to the declarative semantics can be proved using the method.

Let P be a program. For any predicate symbol p in P , let ~p be a (new) predicate

symbol (with the same arity) in the metalanguage of assertions. The intended interpreta-

tion of ~p is the declarative semantics of p . So we assume that ~p is true on terms t

1

; :::; t

m

i� all the ground instances of p(t

1

; :::; t

m

) are in the least Herbrand model of P .

Let for any p the corresponding assertion be

p : pre true; post ~p(p

�

1

; :::; p

�

m

) .

Here is a proof that P with such assertions is correct.

Let a

0

 a

1

; :::; a

n

be a clause of P , let �

0

; :::; �

n

be a corresponding valuation

sequence. Implications 1 and 2 of the veri�cation criterion are trivially true.

Assume that a

1

�

1

; :::; a

n

�

n

satisfy their postconditions. Then a

1

�

n

; :::; a

n

�

n

satisfy

their postconditions too. (a

0

 a

1

; :::; a

n

)�

n

is a true implication in every model of P ,

hence all the ground instances of a

0

�

n

are in the least Herbrand model of P and the

postcondition for a

0

�

n

holds. Q.E.D.

So every property implied by the declarative semantics can be proved using the method

presented here (more precisely: is implied by a property provable by our method). This

concerns of course only partial correctness properties that means those of the form \for

any answer of the program a given formula is true".

7. CONCLUSIONS

In this paper, the inductive assertion method for logic programs was introduced and

proved sound. The metalanguage of assertions was de�ned. The assertions can describe

properties that are inexpressible in terms of the declarative semantics. The veri�cation

theorem makes it possible to prove the partial correctness of programs with respect to

their assertions. The method is called \inductive assertion method" because it is a logic

programming counterpart of the well-known inductive assertion method of [Floyd].

We think that the ability of stating and proving assertions is important for the fol-

lowing reasons:

1. Assertions may improve the legibility of some logic programs. They may be treated

as formalized comments specifying the actual form of procedure calls and successes.

25

2. Prolog programmers quite often reason about their programs in terms of execution

(this is reected by comments, mode declarations, etc.). By introducing assertions one

makes explicit some facts upon which this reasoning is based.

3. Intuitive principles of reasoning about logic programs can be formulated as a

systematic method for proving the correctness of a logic program.

4. The declarative semantics gives no formal explanation of the concept of the \logical

variable" essential in many applications. The introduction of a metalanguage that refers

to non-ground terms should make it possible to handle this concept in a more rigorous

way.

5. It may be conceivable to use a metalanguage similar to the one presented here in

logic programming systems. A debugging tool might use assertions to perform additional

checking. A compiler might use them to guide optimizations.

Our method is valid for the Prolog computation rule and for every search strategy

(thus including cut and OR-parallelism). It was shown that it is in a sense stronger than

declarative semantics. Comparisons with abstract interpretation and the proof methods

of [Floyd] and [Courcelle, Deransart] were presented. Extensions of the method to deal

with some extra-logical built-in procedures of Prolog were discussed. They can provide

formal semantics for such procedures for which the declarative semantics is inapplicable.

This makes possible, for example, proving safe use of negation or the absence of run-time

errors caused by Prolog arithmetic.

Our opinion is that programs should be written and executed in such a way that

only their declarative semantics matters. However, the practice shows that it is not the

case. Non-declarative properties also are important and theoretically sound methods to

deal with them are needed. This paper is intended to contribute to �lling this gap in the

theory of logic programming.

REFERENCES

[Apt, van Emden] Apt, K.R. and van Emden, M.H., \Contributions to the Theory of

Logic Programming", J.ACM. 29, 3 (July 1982), 841-862

[Bowen et al] D.L. Bowen, L. Byrd, F.C.N. Pereira, L.M. Pereira and D.H.D. Warren,

\Prolog-20 user's manual", 1984

26

[Bruynooghe et al] M. Bruynooghe, G. Janssens, A. Callebaut and B. Demoen, Abstract

interpretation: towards the global optimization of Prolog Programs, Report CW 56,

Computer Science Department, K. U. Leuven, May 1987; to appear in Proceedings of

IEEE Symposium on Logic Programming, San Francisco 1987

[Courcelle, Deransart] B. Courcelle and P. Deransart, Proofs of partial correctness for

attribute grammars with applications to recursive procedures and logic programming,

to appear in Information and Control 1987

[Debray, Warren] S. K. Debray and D. S. Warren, Automatic mode inference for Prolog

programs, in: 1986 Symposium on Logic Programming (IEEE Computer Society Press,

1986) 78{88

[Deransart, Ma luszy�nski] P. Deransart and J. Ma luszy�nski, Relating Logic Programs and

Attribute Grammars, Journal of Logic Programming 3, No. 2 (1985) 119{158

[Drabent, Ma luszy�nski 1] W. Drabent and J. Ma luszy�nski, Proving runtime properties of

logic programs, Research Report LITH-IDA-R-86-23, Link�oping University, July 1986

[Drabent, Ma luszy�nski 2] W. Drabent and J. Ma luszy�nski, Inductive assertion method

for logic programs, in: H. Ehrig et. al. ed., TAPSOFT'87, vol. 2 (Lecture Notes in

Computer Science no. 250, Springer Verlag, 1987) 167{181

[Floyd] Floyd, R.W., \Assigning Meanings to Programs", Proc.Symp.Appl.Math., Vol.

19: Mathematical Aspects of Computer Science (J.T.Schwartz, ed.), pp. 19{32, Amer-

ican Mathematical Society, Providence, Rhode Island, 1967

[Hoare] Hoare,C.A.R. \An Axiomatic Basis for Computer Programming", Comm. ACM

12, 10 (Oct. 1969), 576{580,583

[Hogger] Hogger,C.J. \Derivation of Logic Programs", J.ACM 28, 2 (April 1981), 372{

392

[Jones, S�ndergaard] N. D. Jones and H. S�ndergaard, A semantics based framework for

the abstract interpretation of Prolog, to appear in: S. Abramsky and C. Hankin, ed.,

Abstract Interpretation of Declarative Languages (Ellis Horwood 1987)

[Lloyd] J. W. Lloyd, Foundations of Logic Programming (Springer-Verlag, Berlin 1984)

[Loeckx, Sieber] J. Loeckx and K. Sieber, The Foundations of Program Veri�cation, sec-

ond edition (Wiley { Teubner, Stuttgart 1987)

[Mellish] Mellish,C.S. \Abstract Interpretation of Prolog Programs", Third International

Conference on Logic Programming, London, July 1986 and \The Automatic Gener-

ation of Mode Declarations for Prolog Programs", DAI Reaserch Paper 163, Dept of

27

Arti�cial Intelligence, University of Edinburgh, 1981

[Tarlecki] Tarlecki,A., \A Language of Speci�ed Programs", Science of Computer Pro-

gramming 5 (1985) 59{81

[Vasak, Potter] T. Vasak and J. Potter, Characterisation of terminating logic programs,

in: 1986 Symposium on Logic Programming (IEEE Computer Society Press, 1986)

140{147

28

