
On Negation As Instantiation

Alessandra Di Pierro and W lodzimierz Drabent

1996-12-15

Dipartimento di Informatica, Universit�a di Pisa,

Corso Italia 40, 56125 Pisa, Italy

dipierro@di.unipi.it

IPIPAN, Polish Academy of Sciences, Ordona 21, Pl { 01-237 Warszawa,

and IDA, Link�oping University, S - 581 83 Link�oping

wdr@ida.liu.se

Abstract

Given a logic program P and a goal G, we introduce a notion which

states when an SLD-tree for P [fGg instantiates a set of variables V

with respect to another one,W . We call this notion weak instantiation,

as it is a generalisation of the instantiation property introduced by Di

Pierro, Martelli and Palamidessi. A negation rule based on instanti-

ation, the so-called Negation As Instantiation rule (NAI), allows for

inferring existentially closed negative queries, that is formulas of the

form 9:Q, from logic programs. We show that, by using the new no-

tion, we can infer a larger class of negative queries, namely the class of

the queries of the form 8

W

9

V

:Q and of the form 8

W

9

V

8

Z

:Q, where

Z is the set of the remaining variables of Q.

1 Introduction

In order to infer negative literals from a logic program, Clark [2] introduced

the Negation As Failure (NAF) rule and de�ned its declarative semantics

in terms of the completion, Comp(P), of a program P . However, this rule

1

allows us to infer only a small part of the negative information which could

be drawn from a program, namely the universally closed negative literals

(more generally, universally closed negated queries). NAF works as a test:

For a program P and a query Q it is able to check whether Comp(P) j= :Q

(or, equivalently, Comp(P) j= 8:Q).

One generalisation of NAF is constructive negation: Methods of �nding

instances Q� of a given query Q such that :Q� is a logical consequence of

Comp(P).

Recently another generalisation of negation as failure was proposed. It is

the Negation As Instantiation (NAI) rule [3], which allows us to derive exis-

tentially closed negative literals (or negated queries). The semantical justi�-

cation of this inference rule is still the completion of the program, but over an

extended language L

�

, containing in�nitely many constant symbols, denoted

by Comp

L

�

(P). As shown in [3], if, for a program P and a query Q, there

exists an SLD-tree that instantiates variables x, then Comp

L

�

(P) j= 9:Q

and, moreover, Comp

L

�

(P) j= 9x:Q.

1

Actually, as shown in Section 3.1,

the existence of such a tree implies that Comp

L

�

(P) j= 9x8y:Q (where

y = var(Q) n x). Moreover, we will show that the reverse (completeness)

holds too, in the case of de�nite programs and queries. However, if we are

interested in deriving formulae of the form 89x:Q, NAI is bound to be in-

complete, even for positive programs and queries: There are programs and

goals for which Comp

L

�

(P) j= 9x:Q, but there does not exist a tree for Q

that instantiates x.

In this paper we generalise the notion of instantiation introduced in [3].

With the new notion of weak instantiation we are able to derive conclusions

of the form Comp

L

(P) j= 9x:Q also in cases when Comp

L

(P) 6j= 9x8y:Q.

Thus, we de�ne a negation rule based on the new notion of weak instantiation

and prove both its soundness and completeness with respect to Comp

L

(P).

For the semantics to be correct, an extension L of the language of the program

is needed. Alternatively, we present a condition under which the semantics

is correct for the language of P and Q.

As a �rst step, in this paper we consider positive programs and queries

only.

1

Deriving this formula is called in [3] \amalgamation of NAF and NAI". For the de�-

nition of an instantiating tree see section 3 below.

2

2 Preliminaries

We refer to [1, 11] for the basics of logic programming, including the negation

as failure rule and the Clark completion semantics. For the purposes of this

paper, a program P is a de�nite Horn clause program and a query Q is a

conjunction of atoms.

A language L consists of the (well-formed) logical formulas built out of

three disjoint sets of symbols: a set of function symbols, a set of predicate

symbols and a set Var of variable symbols. Each function and predicate

symbol is associated with a number representing its arity. Function symbols

whose arity is 0 are also called constant symbols. We denote by Term the set

of terms t; u : : : built of Var and the set of function symbols.

A substitution is a mapping � : Var ! Term such that the set Dom(�) =

fx j �(x) 6� xg (domain of �) is �nite, where the symbol `�' denotes syn-

tactic identity (of terms, etc.). A substitution � is also denoted by the

set fx

1

=t

1

; : : : ; x

n

=t

n

g, where fx

1

; : : : ; x

n

g = Dom(�) and t

i

� �(x

i

) for

i = 1; : : : ; n. We will usually write x� for �(x). The empty substitution

is denoted by ". The notion of substitution can be naturally extended to

terms. The composition �� of the substitutions � and � is de�ned as the

functional composition. The pre-ordering � on substitutions is such that

� � � i� there exists �

0

such that ��

0

= �.

The application of the substitution � to the atom A is denoted by A�.

The relation A � A

0

(A is less instantiated than A

0

) holds i� there exists �

such that A� = A

0

. A is called a variant of A

0

if there exist � and �

0

such

that A� = A

0

, and A

0

�

0

= A; � (�

0

) is called a renaming for A (A

0

).

For a formula F , we use 8F , 9F to denote respectively 8x

1

; : : : ; 8x

n

F

and 9x

1

; : : : ; 9x

n

F , where x

1

; : : : ; x

n

are all the free variables occurring in F .

For a given language L, Comp

L

(P) is the Clark completion of the program

P over the language L, and CET

L

the Clark equality theory for L, included

in Comp

L

(P). When the language is known, the Clark completion of P

is indicated by Comp(P). Usually, it is the language whose function and

predicate symbols are those occurring in the program P and the considered

query Q. We will refer to it as the language of P and Q.

We will use the notation jxj to indicate the length of the tuple x.

3

3 Negation As Instantiation

The basic observation leading to the idea of negation as instantiation is that

fresh constant symbols, that is constant symbols which do not belong to the

language of the program and the goal under consideration, can play the role

of existentially quanti�ed variables. In fact, if every branch of an SLD-tree

for P [f Ag either fails or instantiates some of the variables of A, then

for a ground substitution � instantiating all variables to distinct fresh con-

stants, the corresponding SLD-tree for P [f A�g �nitely fails. Thus, by

the soundness of NAF, we can deduce :A�, and �nally 9:A. Therefore, it is

su�cient to extend the underlying language by in�nitely many constant sym-

bols, to obtain the appropriate reference theory for validly inferring formulas

like 9:A. As shown in [3], the Negation As Instantiation (NAI) rule is, in-

deed, sound and complete with respect to the completion of P , Comp

L

�

(P),

over the extended language L

�

. The formal de�nition of the notion of in-

stantiation, used in the above informal description of NAI, is given by means

of the property Inst.

De�nition 3.1 (Instantiation) Let V = fx

1

; : : : ; x

n

g, � be a substitution

(and p be an auxiliary predicate symbol of arity n).

Inst(�; V), p(x

1

; : : : ; x

n

)� 6� p(x

1

; : : : ; x

n

):

In words, the property Inst(�; V) holds i� � is not a renaming for p(x

1

; : : : ; x

n

),

(p(x

1

; : : : ; x

n

)� is not a variant of p(x

1

; : : : ; x

n

)). Note that if � instantiates

V , then it instantiates any V

0

� V .

An equivalent de�nition, that will come in handy in the proofs and de�-

nitions given further on, is as follows.

Proposition 3.2 Inst(�; V) i�

� there exists x 2 V such that x� 62 Var ; or

� there exist x; y 2 V such that x� � y� 2 Var :

Proof

(if) Obvious.

(only if) By contradiction, assume that for all x; y 2 V , x� and y� are two

distinct variables. Then, :Inst(�; V) holds.

4

2

De�nition 3.3 (Instantiating SLD-tree) Let P be a program, Q a query,

V � var(Q). Let TR be an SLD-tree for P and Q. Then TR instantiates V

i� for every branch � of TR one of the following holds:

� � �nitely fails, or

� Inst(�

1

� � � �

k

; V) holds, where �

1

� � � �

k

are the substitutions labelling

the �rst k edges of �, for some k � 1.

This de�nition di�ers from (but is equivalent to) the original one. Note

that if TR instantiates V then the set of those of its nodes whose accumulated

substitutions do not instantiate V is �nite (by K�onig's lemma). Thus in the

de�nition above there exists an n such that, for all branches, n > k � 1. So

it is su�cient to inspect the tree only to some restricted depth, in order to

check that it instantiates V . This is why the original de�nition calls such

tree \�nitely instantiating".

The operational semantics for NAI is de�ned by the Failure by Finite

Instantiation set (the FFI set), consisting of all atoms A, for which there

exists an SLD-tree which instantiates the variables occurring in A in the

sense explained above. This has been shown to correspond to the set of

atoms whose existentially quanti�ed negation is a logical consequence of

Comp

L

�

(P), where L

�

is the language of P enriched with in�nitely many

new constant symbols.

Theorem 3.4 (Soundness and completeness of the NAI rule; [3])

Comp

L

�

(P) j= 9:A i� A 2 FFI :

3.1 Strong soundness and completeness of NAI

Actually, the existence of an instantiating tree for P and Q implies more

than just 9:Q. In [3, 4] it is shown that it implies 9x:Q provided the tree

instantiates x. (This usage of NAI is called there amalgamation of NAI and

NAF). We show something more:

5

Theorem 3.5 (Strong soundness of NAI) Let P be a program, Q a

query, x a tuple of variables occurring in Q. Let y be the remaining variables

of Q. If there exists an SLD-tree for P and Q that instantiates x then

Comp

L

�

(P) j= 9x8y:Q

For a proof of this theorem, observe that an SLD-tree for P [f Ag

which instantiates �x is an SLD-tree for P [f Ag which instantiates �x

w.r.t. the empty set, in the sense explained in Section 4.1. Then, Theorem

4.13 applies. Clearly, 9x8y:Q implies 8y9x:Q, but not vice-versa. Hence,

the notion of an instantiating tree is not su�cient to infer formulas of the

form 8y9x:Q. The way of inferring such formulas will be presented in the

next section.

Now, we show that the reverse of Theorem 3.5 holds for the NAI rule.

Theorem 3.6 (Strong completeness of NAI)

Let P be a program, Q a query, and x � var(Q). Let z be the remaining

variables of Q.

If Comp

L

�

(P) j= 9�x8z:Q, then there exists an SLD-tree for P [f Qg

which instantiates �x.

For a proof of this theorem, see its generalisation, Theorem 4.16.

4 A new notion of instantiation

In this section we �rst discuss some limitations of negation as instantiation.

In the following subsections we introduce a more general notion of weak in-

stantiation, show how it can be used to derive negative information from

programs and discuss its semantics. Then we study soundness and complete-

ness properties of negation as weak instantiation.

The notion of instantiation de�ned in [3] does not allow to derive as much

negative information as possible. There exist queries Q for which 9x:Q is

true in the completion semantics (equivalently, 89x:Q is true) and yet there

are no SLD-trees for Q that instantiate x.

Example 4.1 Consider the program

P = f r(z; z) g

6

Observe that Comp

L

�

(P) j= 9x:r(x; y). However, Comp

L

�

(P) 6j= 9x8y:r(x; y).

Hence, by the soundness theorem (Theorem 3.5) there does not exist an SLD-

tree for P [f r(x; y)g that instantiates x. So, we are unable to infer

9x:r(x; y).

Example 4.2 Consider the program

P

0

= f r(z; f(z)) g

Observe that Comp

L

�

(P) j= 9x:r(x; y). Again, the amalgamation rule

cannot infer the formula 9x:r(x; y), as the SLD-tree for P [f r(x; y)g

does not instantiate fxg, according to the de�nition of Inst.

The point is that a substitution which links the existentially quanti�ed

variables x and the free variables y, or the free variables with some terms

containing x, should be considered as instantiating x. In other words, we

want to de�ne a notion of \relative instantiation" such that the substitution

= fx=z; y=zg of Example 4.1, as well as the substitution

0

= fx=z; y=f(z)g

of Example 4.2, turn out to be instantiating fxg with respect to fyg.

4.1 Weak instantiation

De�nition 4.3 (Weak instantiation)

Let V = fx

1

; : : : ; x

n

g, W = fy

1

; : : : ; y

m

g be two disjoint sets of variables,

and let � be a substitution. We say that � instantiates V w.r.t. W , in symbols

Winst(�; V;W), i�

- Inst(�; V), or

- V � and W� have a common variable.

Note that for W = ;, Winst(�; V;W) is equivalent to Inst(�; V), (weak

instantiation subsumes instantiation).

The following proposition provides an alternative de�nition of weak in-

stantiation.

Proposition 4.4 A substitution � instantiates V w.r.t. W i�

- there exists x 2 V such that x� is not a variable, or

7

- there exist x; y 2 V such that x and y are distinct, and x� � y� is a

variable, or

- there exist x 2 V and y 2 W such that x� is a variable occurring in y�.

De�nition 4.5 (Weakly instantiating SLD-tree) Let P be a program,

Q a query, V;W � Var two disjoint sets of variables. Let TR be an SLD-tree

for P and Q. Then TR instantiates V w.r.t. W i� for every branch � of TR

one of the following holds:

� � �nitely fails, or

� Winst(�

1

� � � �

k

; V;W) is true, where �

1

; : : : ; �

k

are the substitutions

labelling the �rst k edges of � for some k � 1.

TR is called a weakly instantiating tree for P and Q.

Observe that this de�nition subsumes both that of a �nitely failed SLD-tree

([1]) and that of an instantiating SLD-tree ([3]). In fact, if V [W is the set of

the variables occurring in Q, then the case V = ; corresponds to the case of

a �nitely failed tree (the predicate Winst is false); on the other hand, when

W = ; a weakly instantiating tree is just a �nitely instantiating tree under

the De�nition 3.2 of [3].

4.2 Negation by Weak Instantiation

The notion of weak instantiation can be used to derive negative information

from programs. Namely, for a program P , a query Q and disjoint tuples x, y

of variables of Q, if an SLD-tree for P and Q instantiates x w.r.t. y then we

can infer 9x:Q. This is justi�ed by the fact that the formula 9x:Q is true

in the completion semantics of P . For the details see Theorem 4.13. We call

this rule the Negation by Weak Instantiation (NWI) rule. We show some

examples to clarify its possible use.

Example 4.6 Let plus be a predicate whose third argument is the sum of the

others. It can be de�ned by the following program.

PLUS = f plus(x; 0; x) ;

plus(x; s(y); s(z)) plus(x; y; z) g:

8

PLUS [f plus(x; s

2

(0); y)g has an SLD-tree, TR, that instantiates the

goal variable x w.r.t. y (TR consists of one branch in which y is bound

to s

2

(x)). From the NWI rule, we can derive 9x:plus(x; s

2

(0); y). Indeed,

Comp(PLUS) j= 8y9x:plus(x; s

2

(0); y).

Note that TR does not instantiate x according to the original notion of

instantiation. In fact, in this case, the formula 9x8y:plus(x; s

2

(0); y) is not

true.

Now we show an example where the NWI rule behaves like the amalga-

mation rule.

Example 4.7 Consider the program PLUS of Example 4.6.

We have that Comp(PLUS) j= 8y9x:plus(x; y; s

n

(0)). From the NWI rule,

we can derive 9x:plus(x; y; s

n

(0)). In fact, Inst(�

i

; fxg) holds for all i =

1; : : : ; n, where �

i

is the composition of the substitutions labelling the �rst

i + 1 edges of the i-th branch. Hence, PLUS [f plus(x; y; s

n

(0))g has an

SLD-tree which instantiates the goal variable x w.r.t. y.

Note that, in this case the tree also instantiates x, and that one can derive

by NAI a stronger formula 9x8y:plus(x; y; s

n

(0)):

4.3 Implementation

Negation by Weak Instantiation may be implemented by using jxj new func-

tion symbols f of arity jyj. Then, under a given selection rule, query Q

0

=

Qfx=f(y)g �nitely fails i� the SLD-tree for Q instantiates x w.r.t. y. Finite

failure of Q

0

can be established in a standard way, by the usual (unsound)

implementation of negation as failure (built-in \+ of Prolog).

Note that for such implementation to be correct it is necessary to use uni-

�cation with occur check. (Otherwise, for instance, query p(f(y); y) incor-

rectly \succeeds" with program fp(v; v)g, although the SLD-tree for p(x; y)

instantiates x w.r.t. y).

Now we present a more e�cient implementation in Prolog. In this imple-

mentation, not all the uni�cations are to be performed with occur check. We

add two new arguments to every predicate symbol of the program P . Their

role is to carry information about x and y. To check that the SLD-tree for a

query Q (under the Prolog selection rule) instantiates variables X

1

; : : : ; X

n

9

w.r.t. Y

1

; : : : ; Y

m

we add two arguments [X

1

; : : : ; X

n

] and [Y

1

; : : : ; Y

m

] to each

atom of Q. Let Q

0

be the goal obtained in such way.

To the program we add a procedure notinst whose role is to check if

X

1

; : : : ; X

n

are not instantiated w.r.t. Y

1

; : : : ; Y

m

:

notinst(Xs; Ys) : �

n+ n+ unify with occur check(Xs; [f

1

(Ys); : : : ;f

n

(Ys)]);

where f

1

; : : : ; f

n

are distinct function symbols not occuring in P or Q. Prolog

built-in predicate unify_with_occur_check performs a sound uni�cation of

its two arguments. Double negation as failure is used here to forget the

substitution resulted from the uni�cation.

Each clause

H B

1

; : : : ; B

k

k � 0

of P is transformed into

H(Xs; Ys) : � notinst(Xs; Ys); B

1

(Xs; Ys); : : : ; B

k

(Xs; Ys)

where A(X; Y) stands for atom A with added arguments X and Y . Let P

0

be the resulting program.

It is easy to see that Q

0

with P

0

fails i� the SLD-tree under Prolog se-

lection rule for Q and P instantiates X

1

; : : : ; X

n

w.r.t. Y

1

; : : : ; Y

m

. Indeed,

during the computation the additional arguments are instantiated to (the

current instances of) [X

1

; : : : ; X

n

] and [Y

1

; : : : ; Y

m

]. From De�nition 4.3 (or

Proposition 4.4) it follows that notinst(Xs,Ys) fails i� the current accumu-

lated substitution instantiates X

1

; : : : ; X

n

w.r.t. Y

1

; : : : ; Y

m

.

4.4 The logical semantics of the instantiation

In this section we give a logical characterization of the predicate Winst (and

then of Inst, as a particular case), in terms of the models of CET .

The fact we will exploit is that an accumulated substitution � for (a pre�x

of) a branch of an SLD-tree, when rewritten as an equation set, results in

a solved form equation set, � being an idempotent substitution ([12]). We

recall the de�nition of solved form equation set as given in [12].

An equation set is solved if it has the form fx

1

= t

1

; : : : ; x

n

= t

n

g, and

the x

i

's are distinct variables which do not occur in the right hand side of

any equation. The variables x

i

are called eliminable; the remaining variables

10

are called parameters. A variable x

i

depends on a variable y, if y is a variable

in t

i

in the solved form.

In [12] to an idempotent substitution � = fv

1

=t

1

; : : : ; v

n

=t

n

g the equation

set eqn(�) = fv

1

= t

1

; : : : ; v

n

= t

n

g is associated; clearly it is in solved form.

For an equation in eqn(�) of the form x = v, where x; v are variables,

consider the following transformation. Replace all the occurrences of v by x

in the right hand sides of the other equations in eqn(�), and x = v by v = x.

Let V be a set of variables. Let e(�) be the equation set obtained from

eqn(�) by repeatedly replacing, as described above, equations of the form

x = v, where x 2 V and v is a variable not in V , until no such equations

remain. Clearly, if � does not instantiate V , then this procedure terminates.

Moreover, e(�) is in solved form and equivalent to eqn(�).

Lemma 4.8 Let � be an idempotent substitution, V;W two disjoint sets of

variables, and let e(�) be de�ned as above. Let Z = var(�) n (V [W). Then

:Winst(�; V;W)) in e(�)

� all x 2 V are parameters, and

� only the variables in Z depend

on the variables in V .

Proof

If :Winst(�; V;W), then � does not instantiate V . So e(�) is well-de�ned.

By Proposition 4.4,

:Winst(�; V;W) i� for all x; x

0

2 V; x� and x

0

� are distinct variables,

and

for all x 2 V; and y 2 W;x� does not occur in y�:

Thus, in eqn(�) all equations of the form x = t; x 2 V are such that t is

a variable not in V . Moreover, if for some x

1

; x

2

2 V and variables v

1

; v

2

,

equations x

1

= v

1

and x

2

= v

2

occur in eqn(�), then v

1

6� v

2

. So, in e(�) a

variable x 2 V can only appear in equations of the form v = x, or in the right

hand side of equations z = t, derived from some equation z = t

0

occurring

in eqn(�), with t

0

containing x�. This means that all x 2 V are parameters

in e(�). Moreover, by the hypothesis, the latter equations cannot be of the

form y = y� with y 2 W . Therefore, in e(�), only the variables in Z depend

on the variables in V .

2

11

Proposition 4.9 Let �, V;W;Z be as in Lemma 4.8. Let L be a language

containing the function symbols occurring in �. Assume that L contains at

least two function symbols. Then

Winst(�; V;W) i� CET

L

j= 8

W

9

V

8

Z

:eqn(�);

Proof

(only if) Let M be a model of CET

L

and �

0

an arbitrary valuation of the vari-

ables in W . We show how to extend �

0

to a valuation � of the variables

in V [W , such that 8

Z

:eqn(�) is true under � in M . This means

M j= 8

W

9

V

8

Z

:eqn(�).

By Proposition 4.4, Winst(�; V;W) i� one of the following three cases

occurs:

1. For some x 2 V , x� is not a variable.

Choose � such that the value �(x) is not in the range of the inter-

pretation of the main function symbol of x�. Then 9

Z

x = x�

is false under �. As x = x� occurs in eqn(�), we have that

M j=

�

8

Z

:eqn(�).

2. For some x; x

0

2 V , x 6� x

0

, x� and x

0

� are the same variable.

Take � such that �(x) 6= �(x

0

). Then 9

Z

(x = x�; x

0

= x

0

�) is false

under �. As x = x� and x

0

= x

0

� occur in eqn(�), we have that

9

Z

eqn(�) is false under �.

3. For some x 2 V and y 2 W , x� is a variable occurring in y�.

Consider an extension �

0

of �

0

such that the equation y = y� is

true under �

0

. In a model of CET

L

, a value of a term uniquely de-

termines the values of its sub-terms (by induction on the structure

of the term, from the fact that in CET f(t) = f(s) implies t = s).

So �

0

(x�) is unique. Now, choose � such that �(x) 6= �

0

(x�). We

have that 9

Z

(x = x�; y = y�) is false under �. Hence 8

Z

:eqn(�)

is true under �, as y = y� occurs in eqn(�), and either x = x�

occurs in eqn(�), or x and x� are the same variable.

(if) Let e(�) be as in Lemma 4.8. Suppose by contradiction :Winst(�; V;W).

Then by Lemma 4.8, we have that any x 2 V can only occur in e(�)

as a parameter, and only variables in Z can depend on some x 2 V .

12

Let M be a model of CET

L

and � a valuation for the variables in W

which makes 9

V

9

Z

e(�) true. Then 8

V

9

Z

e(�) is also true under �, hence

M j= 9

W

8

V

9

Z

e(�)), i.e. M j= :(8

W

9

V

8

Z

:e(�)). This contradicts the

hypothesis, as e(�) is equivalent to eqn(�).

2

Note that the assumptions on the language are required only in the \only

if" part of the proof.

This result will be the base for proving the completeness of the weak

instantiation.

4.5 Correctness of NWI

In this section we prove soundness of negation as weak instantiation w.r.t.

the completion semantics. First we assume that the underlying language

has some \new" function symbols (a symbol of arity > 0 or in�nitely many

constants). Note that using such an extended language is quite usual in logic

programming (for example cf. [9]). We may view any Prolog implementation

as using a language with in�nitely many function symbols (of any arity). At

the end of the section we discuss additional requirements on instantiating

trees under which the \new" function symbols are not needed.

The next lemma is a generalisation of the \only if" part of Proposition 4.9

to the case of n � 1 substitutions.

Lemma 4.10 Let �

1

; : : : ; �

n

be some idempotent substitutions, V;W two dis-

joint sets of variables, and Z =

S

n

i=1

var(�

i

) n (V [W). Let L be a language

containing the function symbols occurring in �

1

; : : : ; �

n

. Assume that L con-

tains in�nitely many constant symbols, or alternatively one non-constant

function symbol which does not occur in �

1

; : : : ; �

n

. Suppose that for i =

1; : : : ; n �

i

instantiates V with respect to W . Then

CET

L

j= 8

W

9

V

n

^

i=1

8

Z

:eqn(�

i

)

.

Proof

13

Assume that �

1

; : : : ; �

n

instantiate V with respect to W . Let M be

a model of CET

L

and �

0

an arbitrary valuation of the variables in W .

We show how to extend �

0

to a valuation � of the variables in V [W ,

such that

V

i

8

Z

:eqn(�

i

) is true under � in M . This means that M j=

8

W

9

V

V

i

8

Z

:eqn(�

i

).

Consider an extension � of �

0

to the variables of W [V . Consider an i

(1 � i � n). By Proposition 4.4, one of the following three cases occurs:

1. For some x 2 V , x�

i

is not a variable. Then, as in the proof of Propo-

sition 4.9, we obtain that a su�cient condition for

M j=

�

8

Z

:eqn(�

i

) (1)

is that the value �(x) is not in the range of the interpretation of any

function symbol occurring in �

i

.

2. For some x; x

0

2 V , x 6� x

0

, x�

i

and x

0

�

i

are the same variable. As in

the proof of Proposition 4.9 we obtain that (1) holds if the values of

the variables of V in � are distinct.

3. For some x 2 V and y 2 W , x�

i

is a variable occurring in y�

i

. As in

the proof of Proposition 4.9, there exists a value �

i

(in the domain of

M) such that if equation y = y�

i

is true under � then �(x�

i

) = �

i

.

Value �

i

depends only on valuation �

0

and term y�

i

, and is unique. If

�(x�

i

) 6= �

i

then (1).

It remains to construct a valuation � such that the abovementioned su�cient

conditions for (1) are satis�ed for all i.

Let S be the set of all �

i

's de�ned above. Let k = jV j. If L has an

in�nite set of constants then there exist distinct constants c

1

; : : : ; c

k

that do

not occur in �

1

; : : : ; �

n

and their values in M are outside S (as S and the

substitutions are �nite). Take a � as above with the values of the variables

from V being the values of c

1

; : : : ; c

k

in M . The su�cient conditions are

satis�ed and we obtain M j=

�

V

n

i=1

8

Z

:eqn(�

i

).

If L has a one-argument function symbol f not occurring in �

1

; : : : ; �

n

then consider a value � in the domain of M and values �

j

= f

j

M

(�) (where

f

M

is the interpretation of f in M and j > 0). Taking a � as above with the

values of the variables from V being (distinct) �

j

1

; : : : ; �

j

k

, not occurring in

14

S, we again obtain M j=

�

V

n

i=1

8

Z

:eqn(�

i

). Generalisation of this reasoning

for the arity of f being greater than 1 is obvious.

2

Under a certain condition on �

1

; : : : ; �

n

, the requirement on new function

symbols could be removed from the last lemma. Assume that for each x 2 V

there exists a non-ground term t

x

(in language L) such that if x�

i

is not a

variable then x�

i

is not uni�able with t

x

, for i = 1; : : : ; n. In such a case

CET

L

j= 8 t

x

6= x�

i

. Assume also that t

x

does not have a common variable

with any of the terms x�

1

; : : : ; x�

n

and that L has an in�nite set of ground

terms.

Now we can repeat the previous proof under these assumptions. Let S

x

be

the set of all values of t

x

in M (under arbitrary variable valuations), for each

x 2 V such that some x�

i

is not a variable. (For the remaining variables of

V , let S

x

be the domain of M). In case 1: of the proof, a su�cient condition

for (1) to hold is that �(x) 2 S

x

. Cases 2: and 3: remain unchanged. As each

S

x

is in�nite, a valuation � can be chosen such that for every x 2 V its value

is in S

x

n S and the values of the variables of V are distinct. Thus (1) holds

for every i = 1; : : : ; n.

Lemma 4.11 Let Q be a node of an SLD-tree, and let Q

1

; : : : ; Q

n

, (n � 0)

be its children. Then

Comp

L

(P) j= Q$

n

_

i=1

9w (eqn(�

i

) ^Q

i

)

where �

i

are the mgu's corresponding to Q

i

and w are those variables of

�

1

; : : : ; �

n

, Q

1

; : : : ; Q

n

that do not occur in Q.

This is a version of Lemma 15.3 of [11] and of Lemma 4.1 of [5], and the

proof is similar.

In the proof of the soundness theorem we use the notion of a cross-section

(or a frontier) of an SLD-tree.

De�nition 4.12 A cross-section of an SLD-tree is any �nite set S of nodes

of the tree such that every successful or in�nite branch has exactly one node

in S.

15

Theorem 4.13 (Soundness of NWI) Let P be a program, Q a query,

x; y a sequence of distinct variables occurring in Q. Let z be the remaining

variables of Q. Let L be an extension of the language of P and Q, which has

in�nitely many constants or has a non-constant function symbol occurring

neither in P nor in Q. If there exists an SLD-tree for P and Q weakly

instantiating x w.r.t. y, then

Comp

L

(P) j= 8y9x8z:Q:

Obviously, Comp

L

(P) j= 8y9x8z:Q implies Comp

L

(P) j= 9x:Q.

Proof

By the hypothesis there exists a cross-section fQ

i

g

i2[1;n]

of the SLD-tree

for P and Q with the accumulated substitutions f�

i

g

i2[1;n]

such that for all

i 2 [1; n] Winst(�

i

; x; y). From Lemma 4.11 by simple induction we obtain

Comp

L

(P) j= :Q$

n

^

i=1

8w :(eqn(�

i

) ^Q

i

):

By adding quanti�ers on both sides of $, we obtain

Comp

L

(P) j= 8y9x8z:Q$ 8y9x

n

^

i=1

8z; w :(eqn(�

i

) ^Q

i

): (2)

Now by Lemma 4.10 CET

L

j= 8y9x

V

n

i=1

8w; z :eqn(�

i

), hence the formula

to the right hand side of $ in (2) is a logical consequence of Comp

L

(P).

Thus

Comp

L

(P) j= 8y9x8z:Q:

2

Note that Theorem 3.5 (strong soundness of negation as instantiation)

follows immediately from Theorem 4.13 with y = ;.

Now we discuss some conditions on an SLD-tree, that allows us to weaken

the requirements on the language L.

Consider an SLD-tree TR weakly instantiating x w.r.t. y. Then there

exists a cross-section of TR with the accumulated substitutions �

1

; : : : ; �

n

,

which instantiate x w.r.t. y. Let L be a language including the symbols of

P and Q. We will say that TR modestly instantiates x w.r.t. y i� it has a

cross-section with the accumulated substitutions �

1

; : : : ; �

n

such that

16

� every �

i

(i = 1; : : : ; n) instantiates x w.r.t. y and

� for each x 2 x there exists a non-ground term t

x

(in language L) such

that

{ t

x

does not have a common variable with x�

1

; : : : ; x�

n

and

{ if x�

i

is not a variable then x�

i

is not uni�able with t

x

, for i =

1; : : : ; n.

For modestly instantiating trees, Theorem 4.13 holds with a weaker require-

ment on the language L. Namely it is su�cient that the set of terms of L is

in�nite. The proof remains the same, it however refers to the modi�cation

of Lemma 4.10 discussed after its proof.

4.6 Completeness of NWI

In this section we show that negation by weak instantiation is complete

w.r.t. Comp

L

(P), for any fair selection rule. In our proof we use the Lloyd-

Topor transformation [13] and a constructive negation method (the SLDFA-

resolution of [5]), which is sound and complete for the Kunen semantics.

De�nition 4.14 Let P be a program , Q a query, F = 8y9x8z:Q, and

p; q; r new predicate symbols. Consider the following general logic program

P

0

= P [f p :q(y);

q(y) :r(x; y);

r(x; y) Q g

We call P

0

the Lloyd-Topor transformation of P with respect to F .

Clearly, by the de�nition of the completion we have that :p $

:9y:9x:9zQ $ 8y9x8z:Q holds w.r.t. the new program (it is a logical

consequence of Comp(P

0

)).

Lemma 4.15 Let P be a program, Q a conjunction of atoms, x; y a sequence

of distinct variables occurring in Q, and z the remaining variables of Q. Let

F be 8y9x8z:Q and P

0

the Lloyd-Topor transformation of P with respect to

F .

If there exists an SLDFA �nitely failed tree for P

0

and query p then there

exists an SLD-tree for P and Q (via the same selection rule) that weakly

instantiates x w.r.t. y.

17

Comment: SLDFA resolution uses constraints instead of substitutions. These

constraints are arbitrary �rst order formulae with = as the only predicate

symbol. The goals are of the form �; L where L is a sequence of literals and

� is a satis�able (w.r.t. CET) constraint. For the details cf. [5].

Proof

Let us assume a �xed selection rule throughout the proof.

Any SLDFA failed tree for p is of the form

p

j

:q(y)

provided that there exist some computed answers �

1

; : : : ; �

n

for q(y) such that

CET j= �

1

_ : : : _ �

n

(3)

(cf. [5, De�nition 3.9.4]). No other SLDFA failed trees for p exist. A con-

straint �

i

is a computed answer for q(y) i� it is obtained from an SLDFA-

refutation of the form

q(y) :r(x; y) �

i

where �

i

is 9x�

i

and �

i

is a fail answer for r(x; y). The latter means that

freevar(�

i

) � x [y and there exists an SLDFA failed tree for �

i

; r(x; y) for

a given selection rule. Note that an SLDFA failed tree exists for �

i

; r(x; y)

i� an SLDFA failed tree exists for �

i

; Q. Also, if there exists such a tree

for �;Q and for �

0

; Q then an SLDFA failed tree exists for (� _ �

0

); Q (this

follows from soundness and completeness of SLDFA-resolution or by a simple

construction).

So there exists an SLDFA failed tree T for �;Q, where � is �

1

_ : : : _ �

n

and from (3) we obtain

CET j= 8y9x�: (4)

Consider the �xed selection rule. If a failed tree for �;Q exists then �

can be computed by pruning pre-failed trees, as described in Section 6 of [5].

More precisely, a fail answer �

0

for Q, more general than �, can be found.

Consider the pre-failed tree T

0

for Q. (It is the same tree as the SLD-tree

for Q, it di�ers only by the form of the goals. In SLDFA-resolution, instead

18

of applying an mgu to a goal, the corresponding conjunction of equations is

added to the goal.) Then there exists a cross-section

S = f �

1

; L

1

; : : : ; �

m

; L

m

g

of T

0

such that each non failed branch of T

0

has a goal in S, and such that

� ! �

0

where �

0

=

m

^

i=1

8 z v :�

i

and v are the variables of the tree not occurring in Q (cf. [5, Section 6]). From

(4) we have CET j= 8y9x

V

i

8z v:�

i

. This implies that CET j= 8y9x8z v:�

i

,

for i = 1; : : : ; m.

Let T

00

be the SLD-tree for Q. Let �

i

be the accumulated substitution for

the node of T

00

corresponding to the node �

i

; L

i

of T

0

(i = 1; : : : ; m). Then

eqn(�

i

) is equivalent to �

i

w.r.t. CET (cf. eg. [6, 14]).

By Proposition 4.9, �

i

instantiates x w.r.t. y. Then T

00

instantiates x

w.r.t. y, as in every non failed branch of T

00

there is a node corresponding to

a node from S.

2

Theorem 4.16 (Completeness of NWI) Let P be a program, Q a query,

x; y a sequence of distinct variables occurring in Q, and z the remaining

variables of Q. Let L be any language whose set of function symbols contains

those of the language of P and Q, and has at least two elements.

If Comp

L

(P) j= 8y9x8z:Q, then for any fair selection rule there exists an

SLD-tree for P and Q weakly instantiating x w.r.t. y.

Proof

Comp

L

(P) j= 8y9x8z:Q i� Comp

L

(P

0

) j= :p i� Comp

L

(P

0

) j=

3

:p

(as P

0

is call consistent and query :p is strict with respect to P

0

[10]). If

Comp

L

(P

0

) j=

3

:p, then Comp

L

0

(P

0

) j=

3

:p for any extension L

0

of L. Con-

sider an L

0

with an in�nite set of function symbols.

By the completeness of the SLDFA-resolution (cf. [5, Theorem 5.1]), if

Comp

L

0

(P

0

) j=

3

:p then for any fair selection rule there exists an SLDFA

�nitely failed tree for p. Then, by Lemma 4.15, for the same selection rule

there exists an SLD-tree for P and Q that weakly instantiates x w.r.t. y.

2

19

5 Conclusions and future work

In this paper we studied what it means that in an SLD-tree certain variables

are instantiated in a certain way. This work is a continuation of [3, 4]. First

we showed that if an SLD-tree with the root Q instantiates (in the sense of

[3]) some variables x, then this implies not only 9x:Q, but also 9x8y:Q

(where y are the remaining variables of Q; cf. Theorem 3.5). Then, we

introduced a new notion of weak instantiation. Even when 9x8y:Q does

not hold, weak instantiation makes it possible to derive formulae of the form

9x:Q (or, equivalently, 8y9x:Q) and of the form 8y

1

9x8y

2

:Q, (where y

1

y

2

is y). The semantics of reference is given by Clark's completion over a certain

extended language. We proved both soundness and completeness of negation

as weak instantiation. We also presented an additional condition under which

no extension of the language is needed.

As shown in Section 4.6, the formulae derivable by negation as weak in-

stantiation can also be computed using constructive negation and a program

transformation. However, the latter solution, although more general, is more

complicated and expensive. For instance, constructive negation uses quanti-

�ed equational formulae instead of substitutions. In contrast, (weak) instan-

tiation refers to the substitutions obtained by the standard SLD-resolution.

In line with the approach of [7, 8], the weak instantiation can be seen as

one of the so-called observable properties of a program P . The set of atoms A

for which a 898-closure of :A can be inferred from P represents yet another

failure set for the program P , along with the standard �nite failure set FF,

the failure by instantiation set FFI of [3], etc. (see [4] for a classi�cation

of the semantical characterisations of the various operational properties of

a logic program). The correctness and the completeness results shown in

this paper give a model-theoretic characterisation of the new observable. We

plan to provide it with an equivalent �xpoint characterisation. We expect to

employ (a suitable modi�cation of) the immediate consequence operator, T

c

,

of the C-semantics [7, 8].

In this paper we dealt with de�nite programs only. In the context of

this work it is natural to consider programs and goals with negation. Def-

inition 4.5 of a weakly instantiating tree can be applied to SLDNF-trees; it

seems that the soundness proof from Section 4.5 can be easily generalised for

this case. The semantics of interest is, as in the case of SLDNF-resolution

[10, 15, 6], the three-valued completion semantics of Kunen [9]. Another gen-

20

eralization is to permit sub-formulae of the form 8y9x8z:Q in programs and

goals. In this case negative literals are to be treated by negation as failure

and quanti�ed negative literals by negation as instantiation. We believe that

such operational semantics is sound w.r.t. Kunen's semantics. We expect a

completeness property similar to those in [10, 15] or [6].

6 Acknowledgments

The research of Alessandra Di Pierro was carried out during a post-doc stay

at the Department of Computer and Information Science, Link�oping Univer-

sity, in the context of the HCM project \Logic Program Synthesis and Trans-

formation" (CHRX-CT93-0414). The research of W lodzimierz Drabent was

partly supported by Polish Academy of Sciences and by Swedish Research

Council for Engineering Sciences (dnr 221-93-942).

References

[1] K. R. Apt. Logic Programming. In J. van Leeuwen, editor, Handbook of

Theoretical Computer Science, volume B: Formal Models and Semantics.

Elsevier, Amsterdam and The MIT Press, Cambridge, 1990.

[2] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors,

Logic and Data Bases, pages 293{322. Plenum Press, 1978.

[3] A. Di Pierro, M. Martelli, and C. Palamidessi. Negation as Instantiation.

Information and Computation, 120(2):263{278, 1995.

[4] A. Di Pierro. Negation and In�nite Computations in Logic Program-

ming. PhD thesis, Universit�a di Pisa, 1994. Technical Report 3/94.

[5] W. Drabent. What is failure? An approach to constructive negation.

Acta Informatica, 32:27{59, 1995.

[6] W. Drabent. Completeness of SLDNF-resolution for Non-Floundering

Queries. Journal of Logic Programming, 27(2):89{106, May 1996.

21

[7] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative Mod-

eling of the Operational Behavior of Logic Languages. Theoretical Com-

puter Science, 69(3):289{318, 1989.

[8] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A Model-

Theoretic Reconstruction of the Operational Semantics of Logic Pro-

grams. Information and Computation, 103(1):86{113, 1993.

[9] K. Kunen. Negation in logic programming. Journal of Logic Program-

ming, 4:289{308, 1987.

[10] K. Kunen. Signed Data Dependencies in Logic Programs. Journal of

Logic Programming, 7(3):231{245, 1989.

[11] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag,

Berlin, 1987. Second edition.

[12] J. L. Lassez, M. J. Maher, and K. Marriott. Uni�cation Revisited. In

J. Minker, editor, Foundations of Deductive Databases and Logic Pro-

gramming, pages 587{625. Morgan Kaufmann, Los Altos, Ca., 1988.

[13] J. W. Lloyd and R. W. Topor. Making Prolog more Expressive. Journal

of Logic Programming, 1(3):225{240, 1984.

[14] C. Palamidessi. Algebraic properties of idempotent substitutions. In

M. S. Paterson, editor, Proc. of the 17th International Colloquium on

Automata, Languages and Programming, volume 443 of Lecture Notes

in Computer Science, pages 386{399. Springer-Verlag, Berlin, 1990.

[15] R. F. St�ark. Input/output dependencies of normal logic programs. Jour-

nal of Logic and Computation, 4:249{262, 1994.

22

