
Type Inference and Rule Dependencies in Xcerpt

W lodzimierz Drabent1,2, Artur Wilk1

May 2007

1Dept. of Computer and Information Science,
Linköping University, S 581 83 Linköping, Sweden

2Institute of Computer Science, Polish Academy of Sciences,
ul. Ordona 21, Pl – 01-237 Warszawa, Poland

{wdr, artwi}@ida.liu.se

Abstract. We present a type system for a substantial fragment of the
Web query language Xcerpt. It is a descriptive type system: the typing of
a program is an approximation of its semantics. This paper augments the
previous work on typing single Xcerpt rules, by a type inference method for
possibly recursive Xcerpt programs (consisting of many rules).
The method may be seen as abstract interpretation. We provide a way to
make fixed point computations finite, and to estimate in advance the number
of iterations needed to obtain a fixed point. The latter is necessary, as a test
for a fixed point is too expensive.
We also show how the obtained type information can be used for discovering
dependencies between rules. We expect that besides typical usage of a type
system, such as discovering type errors, the presented methods can be used
for improving efficiency of program evaluation.

1 Introduction

This paper presents a type system for a substantial fragment of the Web query
language Xcerpt [13,12]. It is a descriptive type system: the typing of a program is
an approximation of its semantics. In particular, types are sets (of data objects).
The type system makes possible type derivation (computing an approximation of
the set of the results of a program applied to data from a given set) and type
checking (finding whether the results are included in a specified set of allowed
results). The intended application is to help the programmer in finding errors in
programs, and to provide a static analysis tool for efficient Xcerpt implementation.

Our previous work [2,3,8,14] was focused on typing a single Xcerpt rule. In par-
ticular, recursive programs were not dealt with. The type system was expressed by
an abstract form of a type inference algorithm. A correctness proof [3] and a pro-
totype implementation [14,16] were provided. This paper presents a type inference
method for multiple rule Xcerpt programs, including recursive ones. It employs the
methods of typing single rules from the previous work.

Our approach can be seen as an instance of the abstract interpretation paradigm
[7]. We deal with two immediate consequence operators; one describes the concrete
semantics of Xcerpt, the other describes semantic approximations, expressed by
means of types. A fixed point of the latter operator is an approximation of the
semantics of the program. Generally, a fixed point cannot be obtained by finite
iteration of the operator. We present a way of computing an approximation of the

semantics by a finite computation. For this we introduce an appropriate operator
on types, for which a fixed point is obtained in a finite number of iterations. As it
is too expensive to check whether a fixed point has been reached, we provide a way
to find out the required number of iterations in advance.

We also show how type inference can be used to discover dependencies between
rules. In many cases the proposed approach provides a dependency graph which
is more precise than those of previous approaches [12,14]. Thus we expect it to
be usable, especially in combination with the previous approaches, in constructing
more efficient Xcerpt implementations. We expect that the knowledge on rule de-
pendencies can be employed in scheduling evaluation of rules, and for optimizations
based on knowing the form of data passed between rules [9].

The paper is organized as follows. Section 2 introduces the semantics of Xcerpt
and a formalism for type specification. Section 3 presents a method for type infer-
ence for rules in Xcerpt programs. Section 4 describes a way of approximating rule
dependencies in programs. Finally, Section 5 contains a short summary. We also
provide an appendix with proofs of the theorems of this paper.

2 Preliminaries

2.1 Xcerpt – Introduction

This section is a short and informal introduction to Xcerpt, a rule based query and
transformation language for XML [13,12]. Xcerpt is inspired by logic programming
and in contrast to many other XML query languages it uses patterns instead of
path expressions. In the next section will present a formal semantics of Xcerpt. For
any issues not explained here, see [12] or [2,14].

Informally an Xcerpt program is a set of query rules of the form c← Q con-
sisting of a body and a head. The body of a rule is a query intended to match data
terms. If the query contains variables such matching results in answer substitutions
for variables. The head uses the substitutions to construct new data terms. The
queried data is either specified in the body or is produced by rules of the pro-
gram. There are two kinds of query rules: goal rules produce the final output of the
program, while construct rules produce intermediate data, which can be further
queried by other rules (or the same rule).

XML data is represented in Xcerpt as data terms. Data terms are built from
basic constants and labels using two kinds of parentheses: brackets [] and braces { }.
Basic constants represent basic values such as attribute values and character data
(#PCDATA of XML). A label represents an XML element name. The parentheses
following a label include a sequence of data terms (its direct subterms). Brackets
are used to indicate that the direct subterms are ordered (in the order of their
occurrence in the sequence), while braces indicate that the direct subterms are
unordered. The latter alternative is used to encode attributes of an XML element
by a data term of the form attr{l1[v1], . . . , ln[vn]} where each li is a name of an
attribute and vi is its respective value.

Example 1. This is an XML element and the corresponding data term.

2

<CD price="9.90"> CD [attr{ price[”9.90”] },
<title>Empire Burlesque</title> title[”Empire Burlesque”],
<artist>Bob Dylan</artist> artist [”Bob Dylan”]

</CD>] 2

There are two other kinds of terms in Xcerpt: query terms and construct terms.

Query terms are (possibly incomplete) patterns which are used in a rule body
(query) to match data terms. In particular, every data term is a query term. Gener-
ally query terms may include variables so that a successful matching binds variables
of a query term to data terms1. Such bindings are called answer substitutions. A
result of a query term matching a data term is a set of answer substitutions. For
example a query term a[b, X] matches a data term a[b, c] resulting in the answer
substitution set {{X/c}}. Query terms can be ordered or unordered patterns, de-
noted, respectively, by brackets and braces. For example, a query term a[c, b] is
an ordered pattern and it does not match a data term a[b, c] but a query term
a{ c, b }, which is an unordered pattern, matches a[b, c]. Query terms with double
brackets or braces are incomplete patterns. For example a query term a[[b, d]] is
an incomplete pattern which matches a data term a[b, c, d] (because b, d is a sub-
sequence of b, c, d). As the query term uses brackets the matching subterms of the
data term must occur in the same order as in the pattern. Thus the query term
a[[b, d]] does not match a data term a[d, b, c]. In contrast a query term a{{b, d}}
does. To specify subterms at arbitrary depth a keyword desc is used e.g. a query
term desc d matches a data term a[b[d], c].

A query term q in a rule body may be associated with a resource r storing XML
data or data terms. This is done by a construct of the form in[r, q], called targeted
query term. Its meaning is that q is to be matched against data in r. Query terms
in the body of a rule which have no associated resource are matched against data
generated by rules of the Xcerpt program.

Queries are constructed from (targeted) query terms using logical connectives
such as or, and, and not. A rule body is a query.

A query term q occurring in a query Q is a top query term if it is standalone in
Q i.e. it is not a part of a (targeted) query term. For example, a[b[X]] is the only
top query term of the query and[in[”www.ex.com/ex1.xml”, c[X]], a[b[X]]].

Construct terms are used in rule heads to construct new data terms. They
are similar to data terms, but may contain variables. Data terms are constructed
out of construct terms by applying answer substitutions obtained from a rule body.
Construct terms may also use grouping constructs all and some which are
used to collect all or, respectively, some instances that result from different answer
substitutions.

1 In our examples variables are denoted by letters X, Y, Z and we skip the keyword var

used in Xcerpt to denote variables. We also skip quotation marks for basic constants.
For example, a basic constant ”a” will be denoted as a.

3

Example 2. This is an extension of the “Clique of Friends” example from [12].
Consider an XML document addrBooks.xml represented by a data term:

addr-books[
addr-book [owner[Donald Duck],

entry[name[Daisy Duck], relation[friend], phoneNo[+112345],
address[street[Hayes 51], zip-code[21213],

city[Los Angeles], country[USA]]],. . . ,
entry[. . .]],. . . ,

addr-book [. . .]]

The document is a collection of address books where each address book has its
owner and a set of entries with information about people the owner knows. The
information contains an annotation about the relation between the owner and the
particular person such as: friend, colleague, family. The following Xcerpt program
extracts a relation friend of a friend (foaf) which is the transitive closure of a
relation friend of (fo). The relation fo is computed by the rule p1 and its transitive
closure is computed by the recursive rule p2. The third rule g, which is a goal,
returns a data term with a sequence of pairs representing the relation foaf.

p1 = fo[X, Y]← in[”file:addrBooks.xml”,
addr-books{{ addr-book{{ owner [X], entry{{name[Y], relation[friend] }} }} }}]

p2 = foaf [X, Y]← or[fo[X, Y], and[fo[X, Z], foaf [Z, Y]]]
g = clique-of-friends[all foaf {X, Y }]← foaf [X, Y] 2

2.2 Formal Semantics of Xcerpt

Now we present a formal semantics with respect to which our typing approach will
be proved sound. We define the semantics of Xcerpt programs given a semantics
of single query rules. We employ the semantics of single rules from [2,14], thus we
neglect the constructs of Xcerpt not dealt with by the semantics. A main restriction
is that our data terms represent trees while in full Xcerpt they are used to represent
graphs.

Definition 1 (Xcerpt program). An Xcerpt program P is a pair (P,G) where
P and G are sets of query rules such that G ⊆ P and |G| > 0. The query rules
from G are called goals.

Let p be a query rule and let for each URI ri of an external resource in p, d(ri)
be a data term associated with ri. The query rule p queries each d(ri) and a set of
data terms Z produced by query rules of a program. The set of results of the query
rule p and the set of data terms Z is denoted as res(p, Z) and defined in [14] by
Definition 10. Now we are ready to describe the effect of applying a set of rules to
a set of data terms, and then the semantics of a program.

Definition 2 (Immediate consequence operator for rule results). Let P
be a set of Xcerpt query rules. RP is a function on sets of data terms such that
RP (Z) = Z ∪

⋃
p∈P res(p, Z).

4

Definition 3 (Rule result, no grouping constructs). Let P = (P,G) be an
Xcerpt program without grouping constructs and P ′ = P\G. Given fixed data terms
d(ri) associated with external resources occurring in the rules from P , a data term
d is a result of a rule p in P if d ∈ res(p, Ri

P ′(∅)) for some i ≥ 0.
A result of a program P is a data term which is a result of a goal of P .

Example 3. Let P ′ = { p}, where p = c[X]←or[X, in[r, b[X]] and d(r) = b[a].
Ri

P ′(∅) = { c[a], c[c[a]], . . . , ci[a] }, for i > 0, and res(p, Ri
P ′(∅)) = { c[a], . . . , ci+1[a] }.

2
To define semantics for programs with grouping constructs we employ a notion

of static rule dependency to split programs into strata. This notion is equivalent to
the rule dependency used in [12]. We also introduce a weaker kind of dependency,
as the static dependency does not reflect some issues related to types.

Definition 4 (Static rule dependency). Let P = (P,G) be an Xcerpt program.
A rule c ← Q ∈ P directly statically depends on a rule c′ ← Q′ ∈ P\G, if a top
query term from Q matches some instance of the construct term c′. The fact that
a rule p directly statically depends on a rule p′ is denoted as p �s p′.

A rule p ∈ P statically depends on a rule p′ ∈ P\G if p �+
s p′ (where �+

s is the
transitive closure of �s i.e. p �+

s p′ if p �s p1 �s . . . �s pk �s p′ for some rules
p1, . . . , pk in P\G where k ≥ 0).

Definition 5 (Weak static rule dependency). Let P = (P,G) be an Xcerpt
program. A rule c ← Q ∈ P directly weakly statically depends (shortly, directly
w-depends) on a rule c′ ← Q′ ∈ P\G, if a top query term from Q matches some
instance of the construct term c′′, where c′′ is c′ with every occurrence of a variable
replaced by a distinct variable. The fact that a rule p directly w-depends on a rule
p′ is denoted as p �w p′.

A rule p ∈ P weakly statically depends (shortly, w-depends) on a rule p′ ∈ P\G
if p �+

w p′. The program P is weakly statically recursive (shortly, w-recursive) if
p �+

w p for some p ∈ P . We also say that P\G is w-recursive.

Static dependency between rules implies weak static dependency.

Example 4. Consider the following query rules of an Xcerpt program:

p1 = a[Y]← b[d, e, Y], p2 = b[X, X, Y]← c[X, Y].

It holds: p1 �w p2 but p1 �s p2. 2

A simple algorithm for finding w-dependencies can be obtained by a slight
modification of the typing rules for query terms presented in [2,14]. We skip the
details.

Now we generalize the semantics of Definition 3 to programs with grouping
constructs. The semantics is used in the proofs but not referred to explicitly in the
paper. Thus the rest of this section, except for Definition 8, may be skipped at the
first reading.

If a query rule p in a program contains a grouping construct, it can be executed
only after all data terms queried by p have been obtained. This is ensured in the
following way. The query rules of the program are divided into sets called strata.

5

A query rule p′ with a grouping construct can statically depend only on rules from
a lower stratum. Hence no rule of the same stratum as p′ can produce data that
can be queried by p′. Moreover, for an arbitrary rule p, no rule of a higher stratum
than p can produce data that can be queried by p. The rules from a given stratum
are not executed until the execution of the rules from lower strata is completed.

Definition 6 (Stratification). Let P = (P,G) be an Xcerpt program and P1, . . . , Pn

(n ≥ 0) be disjoint sets of query rules such that P\G = P1 ∪ . . .∪Pn. The sequence
P1, . . . , Pn, G is a stratification of P if for any pair of rules p, p′ ∈ P\G, if p �+

s p′

then p ∈ Pi and p′ ∈ Pj, where 1 ≤ j ≤ i ≤ n and if p has a grouping construct in
its head then j < i.

Any program (P,G) without grouping constructs is stratifiable and its stratifi-
cation is P\G, G. As in [12] we assume that we deal with stratifiable programs.

Example 5. Consider a program P = ({p1, p2, p3, g}, {g}), where:

g = h[X]← a[X], p1 = a[allX]← b[X],
p2 = b[Y]← c[f [Y]], p3 = c[Y]← in[r1, Y].

A sequence {p2, p3}, {p1}, {g} is a stratification of P. 2

Definition 7 (Rule result). Let P = (P,G) be an Xcerpt program, P1, . . . , Pn, G

be a stratification of P. Let Z0 = ∅ and, for j = 1, . . . , n, let Zj = R
lj
Pj

(Zj−1) for

such lj > 0 that R
lj
Pj

(Zj−1) = R
lj+1
Pj

(Zj−1). Given fixed data terms d(ri) associated
with external resources occurring in the rules from P , a data term d is a result of
a rule p in P if d ∈ res(p, Zn). A result of a program P is a result of a goal
rule p ∈ G in P .

According to this definition, if the program loops (i.e. Ri+1
Pj

(Zj−1) 6= Ri
Pj

(Zj−1)
for some j and every i = 1, 2, . . .) then Zj , . . . , Zn do not exist and no result exist,
for any p in P . For simplicity reasons we do not provide a more sophisticated
definition describing results of a looping program (i.e. those obtained before the
program enters the infinite loop). A slight generalization of Def. 6 makes it possible
to describe the semantics of Xcerpt negation, omitted here due to lack of space.

Having defined the set of rule results we can introduce dynamic rule dependency
which, in a sense, describes the data flow of an Xcerpt program.

Definition 8 (Dynamic rule dependency). Let P = (P,G) be an Xcerpt pro-
gram and c ← Q ∈ P and p ∈ P\G be query rules. The rule c ← Q directly
dynamically depends on p (which is denoted as p � p′), if a top query term from
Q matches a result of p in P .

A rule p ∈ P dynamically depends on a rule p′ ∈ P\G if p �+ p′.

It follows that p � p′ implies both p �s p′ and p �w p′.

Example 6. Consider the rules p2, p3 from Example 5: p2 � p3 iff the data term
d(r1), specified by the URI r1, is of the form f [t] (for some data term t), while
p2 �s p3 independently from d(r1).

6

2.3 Type Definitions

Here we present a formalism for specifying a class of decidable sets of data terms
representing XML documents. The formalism, called type definitions [15,5] is similar
to unranked tree automata [4,11] and other related formalisms employed for XML
processing languages such as XDuce [10], CDuce [1] or XCentric [6]. A novelty of our
approach is that we deal with data terms representing mixed trees where the order of
children of a node may be irrelevant. The types defined by type definitions roughly
correspond to the sets of documents defined by various XML schema languages.

First we specify a set of type names T = C ∪ S ∪ V ∪ {Top} which consists
of type constants from the alphabet C, enumeration type names from the
alphabet S, type variables from the alphabet V, and a type name Top.

A type definition associates type names with sets of data terms. The set [[T]]
associated with a type name T is called the type denoted by T (or simply type T).
For T being a type constant or an enumeration type name, the elements of [[T]] are
basic constants. The type [[Top]] is the set of all data terms.

Type constants correspond to basic types of XML schema languages such as
String or Integer. The set of type constants is fixed and finite; for each type constant
T ∈ C the set of basic constants [[T]] is fixed.

A regular expression over an alphabet Σ is ε, φ, any a ∈ Σ and any r1r2, r1|r2

and r∗1 , where r1, r2 are regular expressions. A language L(r) of strings over Σ is
assigned to each regular expression r in a standard way: L(φ) = ∅, L(ε) = {ε}, where
ε is the empty string, L(a) = {a}, L(r1r2) = L(r1)L(r2), L(r1|r2) = L(r1) ∪ L(r2),
and L(r∗1) = L(r1)∗.

Definition 9. A regular type expression is a regular expression over the al-
phabet of type names T . We abbreviate a regular expression rn|rn+1| · · · |rm, where
n ≤ m, as r(n:m), rnr∗ as r(n:∞), rr∗ as r+, and r(0:1) as r?. A regular type ex-
pression of the form

T
(n1,1 : n1,2)
1 · · ·T (nk,1 : nk,2)

k

where k ≥ 0, 0 ≤ ni,1 ≤ ni,2 ≤ ∞ for i = 1, . . . , k, and T1, . . . , Tk are distinct type
names, will be called a multiplicity list.

Multiplicity lists will be used to specify multisets of type names.

Definition 10. A type definition is a set D of rules of the form

T → l[r], T → l{s}, or T ′ → c1 | . . . | cn,

where T is a type variable, T ′ an enumeration type name, l a label, r a regular type
expression, s a multiplicity list, and c1, . . . , cn are basic constants. A rule U→G
∈ D will be called a rule for U in D. We require that for any type name U ∈ V ∪S
occurring in D there is exactly one rule for U in D.

Type definitions are a kind of grammars, they define sets by means of deriva-
tions, where a type variable T is replaced by the right hand side of the rule for T
and a regular expression r is replaced by a string from L(r); if T is a type con-
stant or an enumeration type name then it is replaced by a basic constant from
respectively [[T]], or from the rule for T . For a formal definition see [2,3].

7

Example 7. Consider a type definition D which will be used in the next example:

AddrBs → addr-books[AddrB∗] Owner → owner [Text]
AddrB → addr-book[Owner Entry∗] Name → name[Text]
Entry → entry [Name Rel PhNo∗ Address?] Rel → relation[RelCat]
RelCat → friend | family | colleague | acquaintance PhNo → phoneNo[Text]
Address → address[Street ZipC ? City Country?] Street → street [Text]
ZipC → zip-code[Text] City → city [Text]
Country → country [Text]

D contains a rule for each of type variables: AddrBs, AddrB, Owner, etc., and
a rule for enumeration type name RelCat. Text is a type constant representing the
set of strings of characters (similarly as #PCDATA in DTD).

The set [[AddrBs]] of data terms derivable from the type name AddrBs con-
tains the data term addr-books[. . .] (when completed reasonably) from Exam-
ple 2. Its subterm address[street [Hayes 51], zip-code[21213], city [Los Angeles],
country [USA]] can be derived from the type name Address. 2

In the following sections we will describe derivations of new types given a type
definition D. We assume that whenever a new type is derived the type definition
D is extended by rules defining the new type. The notation [[U]] will be used also
for a set of type names U = {T1, . . . , Tn}. We define it as [[U]] = [[T1]] ∪ . . . ∪ [[Tn]].

3 Type Inference

The section presents a type inference method for multiple rule Xcerpt programs. We
refer to our previous work [2,3,14] where we described type inference for a single
Xcerpt rule. Let p be a query rule which may query intermediate results of the
program (i.e. results of the rules of the program) as well as external resources (e.g.
XML data). We assume that specifications of types of the external resources (such
as DTD’s which can be translated into type definitions) are available and they are
given by a mapping type. The mapping associates each resource r occurring in p
with a type T = type(r) defined by a type definition D. The type contains the
data term d(r) referred to by r (i.e. d(r) ∈ [[T]]). We also assume that U is a type
of intermediate results of the program (i.e. the set [[U]] contains the intermediate
results to be queried by p). The algorithm presented in [2,3,14] derives, for a given
p and U , a set of type names which we will denote by resType(p, U). The set
approximates the set of results of p applied to [[U]]. Formally (for a proof see [3]):

Theorem 1 (Soundness of type inference for a rule). Let D be a type defini-
tion and p be a query rule, where for each targeted query term in[r, q] in p there is
a type name T = type(r) defined in D such that d(r) ∈ [[T]]. Let U be a set of type
names and Z a set of data terms. If Z ⊆ [[U]] then res(p, Z) ⊆ [[resType(p, U)]].

The algorithm is described [2,3,14] at an abstract level by means of typing rules
for various Xcerpt constructs. Due to lack of space we do not discuss its details.

Here we propose a way of deriving a result type of a query rule in a context of a
program (where the set of intermediate result types U is unknown). In other words

8

we propose a way of typing programs instead of single rules. The following algorithm
is based on the fixed point semantics of Xcerpt expressed by the Definitions 3 and
7. It iteratively computes types of intermediate results of query rules given a type
of intermediate results obtained in the previous step (in the first iteration the type
of intermediate results is empty). This process is repeated until a fixed point is
reached i.e. the type of intermediate results does not change in the consecutive
steps.

Definition 11 (Immediate consequence operator for rule result types).
Let P be a set of Xcerpt query rules. TP is a function defined on sets of type names
such that TP (U) =

⋃
p∈P resType(p, U).

In what follows we restrict our considerations to those programs P for which TP

is monotonic (see the Appendix). Then [[T i
P (∅)]] ⊆ [[T j

P (∅)]] for i ≤ j. The following
theorem shows how to infer result types of query rules of a program.

Theorem 2. Let P = (P ′, G) be an Xcerpt program and P = P ′\G. If d is a result
of a rule p in P ′ then there exists i > 0 such that

d ∈ [[resType(p, T i
P (∅))]] ⊆ [[TP ′(T i

P (∅))]].

If [[T j+1
P (∅)]] = [[T j

P (∅)]] for some j > 0 then the above holds for i = j.

For a proof see the Appendix.

Example 8. Consider the Xcerpt program P = ({p1, p2, g}, {g}) from Exam-
ple 2 and the type definition from Example 7. Assume that the XML docu-
ment queried by the rule p1 is of the type AddrBs from the type definition i.e.
type(”file:addrBooks.xml”) = AddrBs. We want to derive the result types of the
rules of the program.

We employ TP where P = {p1, p2}. TP (∅) = resType(p1, ∅) ∪ resType(p2, ∅).
The type inference algorithm returns resType(p1, ∅) = {Fo}, where the type Fo
is defined as Fo → fo[Text Text], and resType(p2, ∅) = ∅ (as the rule p2 does not
query any external data). Thus TP (∅) = {Fo}.

T 2
P (∅) = TP (TP (∅)) = TP ({Fo}) = resType(p1, {Fo}) ∪ resType(p2, {Fo}) =

{Fo} ∪ {Foaf } = {Fo,Foaf }, where the rule for Foaf is Foaf → foaf [Text Text].
Similarly T 3

P (∅) = {Fo,Foaf }. Hence, U∞ = {Fo,Foaf } is a fixed point of TP .
Now, we can obtain the final result types of the rules of P: resType(p1, U

∞) =
{Fo}, resType(p2, U

∞) = {Foaf } and resType(g, U∞) = {Cof }, where the type
Cof is defined as Cof → clique-of-friends{Foaf +}. 2

3.1 Termination

There are two difficulties related to computing a fixed point of TP . First, we have
to check whether the current iteration of TP produces a fixed point. Then, the
iterations TP may not terminate (all the sets [[T i

P (∅)]] may be distinct).
As [[T i

P (∅)]] ⊆ [[T i+1
P (∅)]], for checking [[T i

P (∅)]] = [[T i+1
P (∅)]] it is sufficient

to check if [[T i
P (∅)]] ⊇ [[T i+1

P (∅)]]. This cannot be done efficiently (the task is
EXPTIME-hard), and an algorithm is complicated. Efficient and simple algorithms

9

exist for type definitions satisfying certain restrictions; see [5] for a discussion.
However the restrictions are often not satisfied by the type definitions created by
evaluating TP .

In this section we show that for non w-recursive programs the computing of a
fixed point terminates and determining when the fixed point is obtained is easy.

Proposition 1. Let P be a set of rules and n > 0. If [[Tn−1
P (∅)]] 6= [[Tn

P (∅)]] then
there exist p1, . . . , pn ∈ P such that pn �w · · · �w p1.

Proof. See the Appendix.

From the Proposition it follows that if P is not w-recursive then the fixed point
of TP is reached in at most |P | steps: [[T i

P (∅)]] = [[T i+1
P (∅)]] for any i ≥ |P |. Thus

T
|P |
P (∅) is a fixed point of TP . Moreover, if the longest chain pk �w · · · �w p1 of

rules in P contains k rules then the fixed point is reached in k steps.

3.2 Dealing with Recursion

Weak static recursion in a program P can prevent reaching a fixed point of TP ,
thus it may make impossible finding result types of query rules of P. Now we show
how this problem can be overcome.

One way of assuring that a fixed point will be reached in a w-recursive program
P is breaking the cycles in the graph of relation �w of P. This may be achieved
by selecting a rule p belonging to the cycle, finding an approximation (a superset)
[[Wp]] of the set of results of p in some independent way (described later on), and
removing p from the program. Instead, Wp is added to the type computed at each
iteration. Thus instead of computing T i

P (∅), we compute T̂ i
P (∅), where T̂P (U) =

TP\{p}(U) ∪Wp.
This approach can be applied to break all cycles detected in the graph. Let

P = (P ′, G) and P = P ′ \ G. Assume that P0 = { p1, . . . , pm} are rules removed
from P to break all cycles. Assume also that a set of type names W = Wp1 ∪ . . . ∪
Wpm is an approximation of their results, i.e. that if d is a result of pi in P then
d ∈ [[Wpi

]]. Instead of TP , we employ T̂P , defined by T̂P (U) = TP\P0(U) ∪W . If
all cycles are broken in the the program, i.e. there is no w-recursion in P \ P0,
then the fixed point U∞ of T̂P will be found after at most |P | − m iterations:
U∞ =

⋃∞
i=1 T̂ i

P (∅) =
⋃|P |−m

i=1 T̂ i
P (∅). (This follows from Proposition 1, which also

holds for T̂P with basically the same proof.)
To make the approach work, we must know how to find a correct approximation

Wp of the set of results of a rule p in P. A rough approximation can be obtained
based on the head h of p alone. If no variable occurs twice in h then the approxi-
mation is the type of all instances of h. Otherwise we take the set of all instances
of h′, where h′ is h with each variable occurrence replaced by a distinct variable.
For instance, such approximation for a rule c[a[X], X]← Q is the type T defined
by a type definition D = {T → c[ATop], A→ a[Top] }.

A more precise approximation may be provided by the user. In this case it
should be checked that the approximation is indeed correct. This can be achieved
by checking whether [[resType(p, U∞)]] ⊆ [[Wp]] for each employed approximation

10

Wp of the results of a rule p. (The problems with inefficiency of inclusion check-
ing, discussed at the beginning of Section 3.1, can be avoided by imposing certain
restrictions [5] on the type definition provided by the user.)

We presented a method of approximating the result sets of w-recursive pro-
grams. The following theorem establishes its correctness.

Theorem 3. Let P = (P ′, G) be an Xcerpt program, P = P ′ \G, and P0 ⊆ P such
that P \P0 is not w-recursive. Assume that TP is monotonic. Let W be a set of type
names, and let T̂P (U) = TP\P0(U) ∪W for any set U of type names. Let U∞ =
T̂ k

P (∅) be a fixed point of T̂P (i.e. [[T̂P (U∞)]] = [[U∞]]). If [[resType(p, U∞)]] ⊆ [[W]]
for each p ∈ P0 then

d ∈ [[resType(p, U∞)]] ⊆ [[U∞]] for any result d of a rule p ∈ P ,
d ∈ [[resType(p, U∞)]] ⊆ [[TP ′(U∞)]] for any result d of a rule p ∈ P ′,
[[TP (U∞)]] ⊆ [[U∞]] and [[T j

P (∅)]] ⊆ [[U∞]] for any j > 0.

Moreover, U∞ in the last three lines may be replaced by T j
P (U∞), for any j > 0.

Thus · · · ⊆ [[T i
P (∅)]] ⊆ [[T i+1

P (∅)]] ⊆ · · · ⊆ [[T j+1
P (U∞)]] ⊆ [[T j

P (U∞)]] ⊆ · · · .
For a proof see the Appendix. The theorem shows a way of more precise ap-

proximating the set of program results. After obtaining a fixed point U∞ of T̂P ,
we iteratively apply TP a few times. An intuitive explanation is that in U∞ the
approximation of the results of a rule p ∈ P0 is the same as that given by W .
Analyzing the results of p applied to the data from [[U∞]] may exclude some data
terms from [[W]]. Thus it may improve the approximation of results of p, which in
turn may improve the approximation of results of the rules which w-depend on p.

Example 9. Consider an Xcerpt program P = ({p1, p2, g}, {g}), where

g = r[all X]← c[X], p1 = c[b[X]]← and[c[X], in[res, descX]],
p2 = c[X]← in[res, b[[a[X]]]]

and a type definition D = {A→a[Text], T→b[(A |T |Text)∗]. Assume that the
type of the resource res is T .

We want to approximate the set of results of P. We show that a fixed point
cannot be obtained by computing T i

P (∅) where P = {p1, p2}. Then we apply The-
orem 3. As [[W]] we first use the set of all instances of the head of the w-recursive
rule p1. Then we show how a better approximation can be obtained by employing
a more precise initial specification W .

We first find that, independently from U , resType(p2, U) = {C1}, where the
rule for C1 is C1→ c[Text]. This is because the query in[res, b[[a[X]]]] binds
X to a value from [[Text]]. Thus TP (U) = resType(p1, U) ∪ resType(p2, U) =
resType(p1, U) ∪ {C1}.

Hence TP (∅) = resType(p1, ∅)∪{C1} = ∅∪{C1} = {C1}. Now resType(p1, {C1}) =
{C2}, where type C2 is defined by the rules C2→ c[B1], B1→ b[Text] (as the query
c[X] binds X to a value from [[Text]] and in[res, descX] binds X to a value from
[[{Text , A, T}]]). Hence TP (TP (∅)) = TP ({C1}) = {C2} ∪ {C1}.

Generally we obtain T i
P (∅) = {C1, . . . , Ci} (i > 1), with rules Cj→c[Bj−1],

Bj→b[Bj−1] (for j > 1). All the sets [[T i
P (∅)]] are distinct and the fixed point will

never be reached.

11

We can however approximate the results of P by applying Theorem 3. The
program with p1 removed is not w-recursive. The set of results of p1 can be ap-
proximated by the set [[Ca]] of all the instances of the head of p1; the type Ca is
defined by rules Ca→c[Ba], Ba→b[Top]. We look for a fixed point of T̂P , where
T̂P (U) = T{p2}(U) ∪ {Ca} = resType(p2, U) ∪ {Ca}. By the discussion following
Proposition 1, the fixed point is U∞ = T̂ 1

P (∅) = {C1, Ca}. As an approximation
of the set of results of P we obtain resType(g, {C1, Ca}) = {R} where type R is
defined as R→r[(Text |Ba)+].

To obtain a better approximation we can apply TP to the set U∞. U∞
1 =

TP (U∞) = resType(p1, U
∞) ∪ {C1} = {C ′

1} ∪ {C1}, where type C ′
1 is defined by

the rules C ′
1→c[B′

1], B′
1→b[Text |B′], B′→b[Text |A |T]. This allows to obtain a

more precise type of the goal rule which is resType(g, U∞
1) = {R1}, where type R1

is defined as R1→r[(Text |B′
1)+].

By applying TP to U∞ multiple times we can further improve the precision of
the approximation. U∞

i = T i
P (U∞) = {C1, C

′
i}, where type C ′

i is defined by the
rules C ′

i→c[B′
i], B′

i→b[Text |B′
i−1] for i > 1. This produces a type Ri of results of

P defined as Ri→r[(Text |B′
i)

+].
The above approximations are obtained based on the automatic rough approx-

imation Ca of the set of results of the rule p1. However, the user can provide a
more precise result type of the rule p1 than Ca e.g. a type Cu defined by the
rules Cu→c[Bu], Bu→b[Text |Bu |Cu]. Based on this a fixed point of the operator
T̂ ′

P (U) = T{p2}(U) ∪ {Cu} can be computed, which is U∞
u = {C1, Cu}. To make

sure that the approximation Cu provided by the user is correct we test whether
[[resType(p1, U

∞
u)]] ⊆ [[Cu]]. resType(p1, U

∞
u) = {C}, where type C is defined by the

rules C→c[B], B→b[Text |B]. As [[C]] ⊆ [[Cu]] the test is successful.
To improve the approximation U∞

u of the set of results of p1, p2 we can apply
the operator TP to U∞

u . U∞
u1

= TP (U∞
u) = {C1, C}. Further applications of TP to

U∞
u provide the same results i.e. T i

P (U∞
u) = U∞

u1
, for i > 0. Based on U∞

u1
we obtain

a precise type Ru of the goal rule which is defined as Ru→r[(Text |B)+]. 2

4 Type-based Rule Dependency

In this section we show how to employ the presented type inference methods to
approximate dynamic dependency of rules in a program. The goal is to obtain
better approximations than those given by static dependency. Let P = (P ′, G) be
an Xcerpt program and P = P ′ \G. By a typing of P we mean an approximation
of the set of rule results of P by a set of type names. Formally, U is a typing for P
if [[U]] contains each result of each rule from P . We presented two ways of obtaining
such a typing: finding a fixed point of TP or applying Theorem 3. Let UP be a
typing for P and UP

i = resType(pi, U
P) for each pi ∈ P .

The function resType is not useful for finding dynamic rule dependencies. This
is because the fact resType(pi, U

P
j) 6= ∅ does not imply pi � pj . The rule pi may

query external data so resType may return a non empty type independently of UP
j

(including cases when no data in UP
j is matched by any top query term in pi). The

12

Fig. 1. Relation between dependencies for rules in a program.

inverse implication, i.e. pi � pj implies resType(pi, U
P
j) 6= ∅, is neither true2. Thus

we need some better way of approximating dynamic rule dependencies.
A part of the process of obtaining resType(p, U), described in [2,14,8], is typing

of query terms. Given a query term q and a type T ∈ U of data to which q is applied,
mappings of variables occurring in q to types are constructed. The mappings specify
sets of substitutions (of data terms for variables). If q matches some data term d
from [[T]] then a variable-type mapping Γ is produced; Γ describes a non empty set
of substitutions. (The set contains the result, or some of the results, of matching q
with d.)

The algorithm for resType can be easily augmented to compute a Boolean func-
tion matchesType whose arguments are a query rule p and a set of type names
U ; matchesType(p, U) is true iff a Γ describing a non empty set of substitutions
is obtained for a top query term q from p and a type T ∈ U . Thus the following
holds.

Proposition 2. Let P = (P ′, G) be an Xcerpt program and p, p′ ∈ P ′. If p � p′

then matchesType(p, U) for any set U of type names such that the results of p′ are
contained in [[U]].

Now we can define a new kind of rule dependency.

Definition 12 (Type-based dependency). Let P = (P ′, G) be an Xcerpt pro-
gram, P = P ′ \G, pi ∈ P , UP be a typing of P , and UP

i = resType(pi, U
P). A rule

p ∈ P ′ type-based directly depends on pi (denoted by p �t pi) if matchesType(p, UP
i).

Proposition 3. If p � p′ then p �t p′. If p �t p′ then p �w p′.

On the other hand, neither p �s p′ implies p �t p′ nor p �t p′ implies p �s p′.
Both the type-based rule dependency and the static rule dependency approximate
dynamic rule dependency in a program. Combining them provides better approxi-
mation than any of them separately.

Example 10. Consider a type definition D = {T → l[T1 T2 T ∗
1], T1→ e | f, T2→ e }

and an Xcerpt program P = ({g, p1, p2, p3}, {g}) which queries an external resource
res of type T . Next to the rules of the program there are specifications of the
corresponding result types inferred for them:

2 Consider query rules: p1 = c[X]← and[a[X], b[X]], p2 = a[X]← d[X].

resType(p1, U
P
2) = ∅ although p1 � p2 (unless p2 produces no results).

13

g = a[X]← b[e, f, X] A→ a[T2]
p1 = b[X, Y, Z]← in[res, l[X, Y, Z]] A1 → b[T1 T2 T1]
p2 = b[X, X, Y]← in[res, l[X, Y]] A2 → b[T1 T1 T2]
p3 = b[X, Z, Y]← in[res, l[X, Y, Z]] A3 → b[T1 T1 T2]

The rule g can dynamically depend only on the rule p3 and only this dependency
should be considered by optimal evaluation of the program. The rule g type-based
depends only on the rules p2, p3 and statically depends on the rules p1, p3. (Hence
g �w p1, g �w p2 and g �w p3.) Thus combination of type-based dependency and
static dependency better approximates dynamic dependency than both dependen-
cies separately. 2

5 Summary

The paper presents a method of type inference for Xcerpt. The inferred types
approximate the sets of results of programs (or of particular rules in the programs).
The previous work [2,14] dealt mainly with single rules of Xcerpt, here we add a
treatment of possibly recursive multiple rule programs. The method deals with a
substantial fragment of Xcerpt. We believe it can be easily extended, by providing
a way of deriving at least very rough type approximations for Xcerpt constructs
not dealt with. This work is in progress.

Our approach can be seen as abstract interpretation [7]. The abstract domain
is the set of possible types, the height of the domain is infinite. A special feature is
that in computing a fixed point the number of iterations is known in advance. This
makes it possible to avoid an expensive test for a fixed point (i.e. type inclusion).

Our method allows to perform type checking for programs which is done by
testing whether the inferred type is included in the specified one. The test is not
expensive if the specified type satisfies the conditions of [5].

We also discuss dependencies between rules in Xcerpt programs. From a point
of view of efficient evaluation of programs, dynamic dependency between rules is
essential [9]. Static dependency used previously [12] is only its rough approximation.
We show how a more precise approximation can be obtained by employing type
analysis.

References

1. V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-centric general-purpose
language. In ICFP 2003. ACM Press.

2. S. Berger, E. Coquery, W. Drabent, and A. Wilk. Descriptive typing rules for Xcerpt.
In PPSW 2005, number 3703 in LNCS. Springer Verlag.

3. S. Berger, E. Coquery, W. Drabent, and A. Wilk. Descriptive typing rules for
Xcerpt and their soundness. Technical Report REWERSE-TR-2005-01, REW-
ERSE, 2005. http://rewerse.net/publications/#REWERSE-TR-2005-01. Errata:
http://www.ida.liu.se/∼wlodr/errata.LNCS3703.pdf.

4. A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge
languages over unranked alphabets. Technical Report HKUST-TCSC-2001-0, The
Hongkong University of Science and Technology, April 2001.

14

http://rewerse.net/publications/#REWERSE-TR-2005-01
http://www.ida.liu.se/~wlodr/errata.LNCS3703.pdf

5. F. Bry, W. Drabent, and J. Maluszynski. On subtyping of tree-structured data: A
polynomial approach. In PPSWR 2004, number 3208 in LNCS. Springer Verlag.

6. J. Coelho and M. Florido. “XCentric: A Logic Programming Language for XML
Processing”. In PLAN-X 07.

7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In ACM POPL
1977.

8. W. Drabent. Towards More Precise Typing Rules for Xcerpt. In PPSWR 2006,
number 4187 in LNCS. Springer Verlag.

9. Tim Furche, 2006. Personal communication.
10. H. Hosoya and B. C. Pierce. “XDuce: A Typed XML Processing Language”. In Int’l

Workshop on the Web and Databases (WebDB), Dallas, TX, 2000.
11. W. Martens, F. Neven, and T. Schwentick. Which XML Schemas Admit 1-Pass

Preorder Typing? In ICDT, number 3363 in LNCS, 2005.
12. S. Schaffert. Xcerpt: A Rule-Based Query and Transformation Language for the Web.

PhD thesis, University of Munich, Germany, 2004. http://www.wastl.net/download/
dissertation/dissertation schaffert.pdf.

13. S. Schaffert and F. Bry. Querying the Web Reconsidered: A Practical Introduction
to Xcerpt. In Extreme Markup Languages 2004.

14. A. Wilk. Descriptive Types for XML Query Language Xcerpt, 2006. Licentiate Thesis.
Linköping University.
http://www.diva-portal.org/liu/abstract.xsql?dbid=7542.

15. A. Wilk and W. Drabent. On types for XML query language Xcerpt. In Principles
and Practice of Semantic Web Reasoning 2003, LNCS. Springer Verlag.

16. A. Wilk and W. Drabent. A prototype of a descriptive type system for Xcerpt. In
Principles and Practice of Semantic Web Reasoning 2006, LNCS. Springer-Verlag.

15

http://www.wastl.net/download/dissertation/dissertation_schaffert.pdf
http://www.wastl.net/download/dissertation/dissertation_schaffert.pdf
http://www.diva-portal.org/liu/abstract.xsql?dbid=7542

APPENDIX
for

Type Inference and Rule Dependencies in Xcerpt
by W. Drabent and A. Wilk

May 2007

The appendix provides proofs of Theorems 2, 3 and Proposition 1. The proofs
are based on the following property proved in [1]:

Theorem 1. Let D be a type definition and p be a query rule, where for each
targeted query term in[r, q] in Q there is a type name T = type(r) defined in D
such that d(r) ∈ [[T]]D. Let U be a set of type names and Z a set of data terms. If
Z ⊆ [[U]] then res(p, Z) ⊆ [[resType(p, U)]].

We will also use the properties of resType expressed by the following two lem-
mas. In this report we are interested only in those Xcerpt rules and Type Definitions
for which Lemma 1 holds.

Lemma 1. If [[U]] ⊆ [[U ′]] then [[resType(p, U)]] ⊆ [[resType(p, U ′)]].

Lemma 2. Let p, p′ be a pair of rules, U,U ′′ be sets of type names and U ′ =
resType(p′, U ′′). If p �w p′ then [[resType(p, U ∪ U ′)]] = [[resType(p, U)]].

Corollary 1 (Monotonicity of TP). Let P be a set of rules and U,U ′ be sets
of type names such that [[U]] ⊆ [[U ′]]. Then [[TP (U)]] ⊆ [[TP (U ′)]] and [[T i

P (∅)]] ⊆
[[T i+1

P (∅)]] for i = 0, 1,

Proof. Follows from Lemma 1. 2

Lemma 3. Let P, P ′ be sets of rules such that P ′ ⊆ P . Let U = T i
P (∅) for some

i > 0 and Z be a set of data terms. If Z ⊆ [[U]] then Rj
P ′(Z) ⊆ [[T j

P (U)]] for each
j = 0, 1,

Proof. By Theorem 1, for each rule p ∈ P ′, res(p, Z) ⊆ [[resType(p, U)]]
⊆ [[

⋃
p∈P resType(p, U)]] = [[TP (U)]]. This implies that

⋃
p∈P ′ res(p, Z) ⊆ [[TP (U)]].

Also Z ⊆ [[U]] ⊆ [[TP (U)]], by Corollary 1. Thus RP ′(Z) = Z ∪
⋃

p∈P ′ res(p, Z) ⊆
[[TP (U)]]. Hence Rj

P ′(Z) ⊆ [[T j
P (U)]], by induction on j. 2

Lemma 4. Let P = (P ′, G) be an Xcerpt program, P1, . . . , Pn, G be a stratification
of P and P = P ′\G. Let Z0 = ∅ and, for j = 1, . . . , n, let Zj = R

lj
Pj

(Zj−1) for such

lj > 0 that R
lj
Pj

(Zj−1) = R
lj+1
Pj

(Zj−1). Then, for j = 1, . . . , n,

Zj ⊆ [[T kj

P (∅)]] where kj =
j∑

m=1

lm.

16

Proof. By induction on j. For j = 0 the conclusion trivially holds. Assume Zj−1 ⊆
[[T kj−1

P (∅)]]. By Lemma 3, R
lj
Pj

(Zj−1) ⊆ [[T lj
P (T

kj−1
P (∅))]] = [[T lj+kj−1

P (∅))]] =

[[T kj

P (∅))]]. So Zj ⊆ [[T kj

P (∅)]]. 2

Theorem 2. Let P = (P ′, G) be an Xcerpt program and P = P ′\G. If d is a result
of a rule p in P ′ then there exists i > 0 such that

d ∈ [[resType(p, T i
P (∅))]] ⊆ [[TP ′(T i

P (∅))]].

If [[T j+1
P (∅)]] = [[T j

P (∅)]] for some j > 0 then the above holds for i = j.

Proof. Let P1, . . . , Pn, G be a stratification of P. Let Z0 = ∅ and for j = 1, . . . , n,
Zj = R

lj
Pj

(Zj−1) for such lj > 0 that R
lj
Pj

(Zj−1) = R
lj+1
Pj

(Zj−1).
By Lemma 4, Zn ⊆ [[T kn

P (∅)]], where kn =
∑n

m=1 lm. Let i = kn. By Definition
7 and Theorem 1, d ∈ res(p, Zn) ⊆ [[resType(p, T kn

P (∅))]].
By Definition 11, [[resType(p, U)]] ⊆ [[TP ′(U)]] for any U . Thus the first conclu-

sion of the Theorem holds.
If [[T j+1

P (∅)]] = [[T j
P (∅)]] then [[T i

P (∅)]] ⊆ [[T j
P (∅)]] for any i ≥ 0. Thus d ∈

[[resType(p, T i
P (∅))]] ⊆ [[resType(p, T j

P (∅))]] and the conclusion holds with i re-
placed by j. 2

Proposition 1. Let P be a set of rules and n > 0. If [[Tn−1
P (∅)]] 6= [[Tn

P (∅)]] then
there exist p1, . . . , pn ∈ P such that pn �w · · · �w p1.

Proof. For n = 1 the proposition holds trivially, as ∅ 6= [[TP (∅)]] implies that
P is nonempty. So assume that n > 1. Let U i = T i

P (∅). We have TP (U) =⋃
p∈P resType(p, U) by the definition of TP , and

resType(p, U i) = resType
(

p,
⋃

p′ ∈ P
p �w p′

resType(p′, U i−1)
)

(1)

for i > 0, by Lemma 2. From [[Un−1]] 6= [[Un]] it follows that TP (Un−2) 6= TP (Un−1)
and then resType(pn, Un−2) 6= resType(pn, Un−1) for some pn ∈ P .

By (1), if resType(p, U i−1) 6= resType(p, U i) then there exists a rule p′ ∈ P
such that p �w p′ and if i > 1 then resType(p′, U i−2) 6= resType(p′, U i−1). From
this by induction we obtain that if resType(pn, Un−2) 6= resType(pn, Un−1) then
there exist p1, . . . , pn ∈ P such that pn �w · · · �w p1. 2

Theorem 3. Let P = (P ′, G) be an Xcerpt program, P = P ′ \ G, and P0 ⊆ P

such that P \P0 is not w-recursive. Let W be a set of type names, and let T̂P (U) =
TP\P0(U)∪W for any set U of type names. Let U∞ = T̂ k

P (∅) be a fixed point of T̂P

(i.e. [[T̂P (U∞)]] = [[U∞]]). If [[resType(p, U∞)]] ⊆ [[W]] for each p ∈ P0 then

d ∈ [[resType(p, U∞)]] ⊆ [[U∞]] for any result d of a rule p ∈ P ,
d ∈ [[resType(p, U∞)]] ⊆ [[TP ′(U∞)]] for any result d of a rule p ∈ P ′,
[[TP (U∞)]] ⊆ [[U∞]] and [[T j

P (∅)]] ⊆ [[U∞]] for any j > 0.

Moreover, U∞ in the last three lines may be replaced by T j
P (U∞), for any j > 0.

17

Proof. Notice that [[TP\P0(U
∞)]] ⊆ [[U∞]], as [[TP\P0(U

∞)]] ∪ [[W]] ⊆ [[U∞]]. Notice
also that [[resType(p, U∞)]] ⊆ [[U∞]] for p ∈ P0. Hence [[TP (U∞)]] ⊆ [[U∞]], as
TP (U) = TP\P0(U) ∪

⋃
p∈P0

[[resType(p, U)]]. From monotonicity of TP we obtain
by induction that [[U∞]] ⊇ [[TP (U∞)]] ⊇ [[T 2

P (U∞)]] ⊇ · · ·, and that [[T i
P (U∞)]] ⊇

[[T i
P (∅)]] for i ≥ 0. Hence · · · ⊆ [[T i

P (∅)]] ⊆ [[T i+1
P (∅)]] ⊆ · · · ⊆ [[T j+1

P (U∞)]] ⊆
[[T j

P (U∞)]] ⊆ · · · ⊆ [[U∞]] for each i, j ≥ 0. Thus, by Theorem 2 any result of a
rule p of P ′ is in [[resType(p, T j

P (U∞))]], for each j ≥ 0. The latter is a subset of
[[TP ′(U∞)]] and a subset of [[T j

P (U∞)]] if p ∈ P . 2

References

1. S. Berger, E. Coquery, W. Drabent, and A. Wilk. Descriptive typing rules for
Xcerpt and their soundness. Technical Report REWERSE-TR-2005-01, REWERSE,
2005. http://rewerse.net/publications/#REWERSE-TR-2005-01. Errata: http://

www.ida.liu.se/∼wlodr/errata.LNCS3703.pdf.

18

http://rewerse.net/publications/#REWERSE-TR-2005-01
http://www.ida.liu.se/~wlodr/errata.LNCS3703.pdf
http://www.ida.liu.se/~wlodr/errata.LNCS3703.pdf

