It's declarative
On declarative programming in Prolog
2nd part

(includes many extra slides)

Witodzimierz Drabent

Version 1.0, compiled September 14, 2021

1/ 22

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

Declarative Diagnosis (DD)

locating errors in programs, declaratively

21122

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

An observation

Debugging at the periphery of teaching or research

Often
one teaches a programming language

without teaching programming;
even when one teaches programming

one does not teach debugging.

[M.Ducassé|

Debugging — difficult to teach, to study, to find example buggy programs.

Here we discuss diagnosis, i.e. locating errors in programs.

(Debugging = diagnosis + error correction)

3/22

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

Declarative diagnosis (algorithmic debugging)

All the declarativeness gone, when it comes to debugging =

The Prolog debugger — purely operational;

worse, declarative-programmer-unfriendly:
information needed by a declarative-programmer
difficult to obtain from the debugger [D_'20 LOPSTR]

Declarative Diagnosis (DD), a.k.a. algorithmic debugging
[Shapiro’'83,Pereira’86,Natish..,Nadjm-Tehrani et al'89,...]
Abandoned; no available tools.

We explain why DD has been abandoned
how to use DD effectively [D_"16]

4 122

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

DD (Declarative Diagnosis)

program, symptom

i
queries
. - user
DD algorithm
(oracle)
<~
answers
d
located
error

Queries — the intended declarative semantics of the program
User can locate the error without looking at the program

solely in terms of declarative semantics

517122

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

DD, roughly

A symptom for incorrectness — a wrong answer
for incompleteness — a missing answer

An error — the/a reason that

- . incorrectness
the sufficient condition for . does not hold
incompleteness
a clause incorrectness

In the program, corresponds to the ror

a procedure incompleteness

proof tree incorrectness

Diagnosis — search of a or an e
g SLD-tree incompleteness

BTW diagnosis by proof failure possible (without symptoms)
— a failed proof attempt can show why the sufficient condition is violated

6/22

rro

r

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

Incorrectness diagnosis
P — program, S — specification. P not correct w.r.t. S.
Symptom (incorrect answer) — atom A such that
PEA but SEHA

Error (the/a reason of incorrectness) — an incorrect clause:
a C' € P such that S F£ C,

Notice: no errors = the program correct

7122

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

Incorrectness diagnosis

P — program, S — specification. P not correct w.r.t. S.

Symptom (incorrect answer) — atom A such that
PEA but SEHA

Error (the/a reason of incorrectness) — an incorrect clause:
a C' € P such that S F£ C,

Notice: no errors = the program correct

Incorrectness diagnosis algorithm: Given a symptom, finds an error.
?

Asks questions about atoms, S |= B.

Main idea — search of the proof tree for symptom A.

7122

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

Incorrectness diagnosis algorithm

Given a symptom, find an error.
Search of the proof tree for symptom A.

Algorithm: Start at the root A.
— S | B; for each child" B; of A = error found,
- S Bj = search the subtree with root B;.

"This includes the case of no children
8/22

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

Incorrectness diagnosis, example [Shapiro’'83]
e A specification (for correctness) for insertion sort:

S = { isort(l,1") € HB

' is a sorted permutation
of a list [of numbers

if n is a number and
insert(n,l,l') € HB | [is an ordered list of numbers
then !’ is [with n added and is ordered

u{i>j|...}U...

9/ 22

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

Incorrectness diagnosis, example [Shapiro’'83]

e A specification (for correctness) for insertion sort:

. . /
5= { isort(l, ') € HB of a list [of numbers

' is a sorted permutation}

if n is a number and
insert(n,l,l') € HB | [is an ordered list of numbers u...
then !’ is [with n added and is ordered

e The program answers Y = [2,3,1] for isort(]2,1,3],Y) .

9/ 22

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

Incorrectness diagnosis, example [Shapiro’'83]
e A specification (for correctness) for insertion sort:

S = { isort(l,1") € HB

' is a sorted permutation
of a list [of numbers

if n is a number and

insert(n,l,l') € HB | [is an ordered list of numbers u...

then I’ is [with n added and is ordered
e The program answers Y = [2,3,1] for isort(]2,1,3],Y) .

e Proof tree: isort([2,1,3],[2,3,1])

isort([1,3],[3,1]) insert(2,[3,1],[2,3,1])
isort([3], [3]) insert(1,[3],[3,1])
3>1 insert(1,[],[1])
Incorrect (w.r.t..S) atoms marked red, incorrect clause instance red and blue

Error found without looking at the program!
9/ 22

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

Incorrectness diagnosis, example cont’d

The algorithm asked questions about some atoms in the proof tree,
and found the error (incorrect clause instance):

insert(1,[3],[3,1]) :- 3 > 1, insert(1,[],[1]).

The clause in the program:

insert (X, [Y|Ys],[YIZs]) :- Y > X, insert(X,Ys,Zs).

10 / 22

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

Incorrectness. On the notion of error

An error — incorrect clause.

(The algorithm gives incorrect clause instance,
in a sense, more informative than a clause.)

More precise error location — impossible.
We cannot state which atom of the clause is wrong.
Ex.:
insert (X, [YIYs],[Y|Zs]) :- Y > X, insert(X,Ys,Zs).
may be corrected as

insert (X, [YI|Ys],[Y|Zs]) :- Y < X, insert(X,Ys,Zs).
or
insert (Y, [X1Ys],[X|Zs]) :- Y > X, insert(Y,Ys,Zs).

11/ 22

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

Incompleteness diagnosis

Program P not complete w.r.t. S” Le. S Z Mp

Incompleteness symptom: An atomic query A
for which some answer required by SY has not been produced
despite a finite SLD-tree.

Incompleteness error: A not covered atom B € §°
(reason of incompleteness) by P w.rt. S°

An error p(...) locates whole procedure (predicate definition) p.
More precise locating — impossible.

Diagnosis algorithm, roughly

extracts from SLD-tree atomic queries with their answers.

Search for one which is a symptom and does not depend on other symptoms.
Questions: Is A, A6y,..., Af,, a symptom?

12/ 22

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

Incompleteness diagnosis, example

e A specification (for completeness) for insertion sort:

0_). / I' is a sorted permutation
50 = {ZSOM(Z’Z) € HB ’ of a list I of numbers } -

{insert(n, LIy e HB

[is an ordered list of numbers, n is a number
" is | with n added and is ordered

U{i>j|...}U...

13/ 22

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

Incompleteness diagnosis, example

e A specification (for completeness) for insertion sort:

0_). / I' is a sorted permutation
50 = {ZSOM(Z’Z) € HB ’ of a list I of numbers } -

{insert(n, LIy e HB

[is an ordered list of numbers, n is a number
" is | with n added and is ordered o

e Query A =isort([4,1,3],L) fails with the same isort program

13/ 22

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

Incompleteness diagnosis, example

e A specification (for completeness) for insertion sort:

0_). / I' is a sorted permutation
50 = {ZSOM(Z’Z) € HB ’ of a list I of numbers } -

{insert(n,l,l’) c 4B [is an ordered list of numbers, n is a number}

" is | with n added and is ordered

e Query A =isort([4,1,3],L) fails with the same isort program

e Incompleteness questions asked and answered about:
(Y = yes, some answers are missing; N — no)

isort([1,3], Zs) with answers Zs = [3,1], Zs = [1, 3] N
insert(4,[3,1], L) no answers N
As = insert(4,[1,3],L) no answers Y
1>4 no answers 4=<1 no answers NN

e A3 found, some its instance Agf is an error
A3 uncovered by P w.rt. S,

13/ 22

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

Comments

e Incorrectness: Error — a clause.
Incompleteness: Error — a procedure (predicate definition).

More precise diagnosis — impossible.

14 | 22

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

Comments

e Incorrectness: Error — a clause.
Incompleteness: Error — a procedure (predicate definition).

More precise diagnosis — impossible.

e Often: incorrectness and incompleteness occur together.

Wrong answers instead of correct ones.

When incorrectness found during incompleteness diagnosis
(like dsort([1,3], Zs) ~» Zs = [3,1], Zs = [1, 3))
— switch to incorrectness diagnosis.

14 | 22

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

Comments

e Incorrectness: Error — a clause.
Incompleteness: Error — a procedure (predicate definition).

More precise diagnosis — impossible.

e Often: incorrectness and incompleteness occur together.

Wrong answers instead of correct ones.

When incorrectness found during incompleteness diagnosis
(like dsort([1,3], Zs) ~» Zs = [3,1], Zs = [1, 3))
— switch to incorrectness diagnosis.

e Crucial: a possibility of using approximate specifications.

14 | 22

Diagnosis DD Incorrectness Ex. 4 Incompleteness Ex. + Why&how

Reasons for DD being neglected

> No freedom: fixed order of queries to answer

> ...

» Exact specification (intended model) required from the user &1
But she does not know it (and it does not matter)

E.g. member(e,) for a non-list ¢,
append(l, t,t') for non-lists ¢, ¢/,
insert(e,l,y) in insertion sort, for unsorted I,

15/ 22

Diagnosis DD Incorrectness Ex. 4 Incompleteness Ex. + Why&how

Reasons for DD being neglected

> No freedom: fixed order of queries to answer

> ...

» Exact specification (intended model) required from the user &1
But she does not know it (and it does not matter)

E.g. member(e,) for a non-list ¢,
append(l, t,t') for non-lists ¢, ¢/,
insert(e,l,y) in insertion sort, for unsorted I,

The user knows an approximate specification (Scompi; Scorr)

The standard Declarative Diagnosis works!
when instead of the intended model we use
» Scorr for incorrectness diagnosis

> Scompt for incompleteness diagnosis

15/ 22

Diagnosis DD Incorrectness Ex. 4 Incompleteness Ex. + Why&how

Reasons for DD being neglected

> No freedom: fixed order of queries to answer

> ...

» Exact specification (intended model) required from the user &1
But she does not know it (and it does not matter)

E.g. member(e,) for a non-list ¢,
append(l, t,t') for non-lists ¢, ¢/,
insert(e,l,y) in insertion sort, for unsorted I,

The user knows an approximate specification (Scompi; Scorr)

The standard Declarative Diagnosis works!

when instead of the intended model we use No need for

» Scorr for incorrectness diagnosis inadmissible atoms,
3-valued DD,. ..

> Scompt for incompleteness diagnosis [Pereira’86, Naish'00,...]

15/ 22

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

The standard Declarative Diagnosis works
with approximate specifications!

Seems an obvious observation, but somehow unnoticed

The state of Prolog debugging, lack of DD tools — harmful

Debugging must be operational = the advantages of LP disappear

DD tools easy to construct.
Future work: incompleteness diagnosis for other selection rules (delays)

We have simple&naive prototypes, useful in many cases
including debugging themselves

Experience: DD can substantially simplify locating errors
A proof tree browser - a useful incorrectness diagnoser

Dear Prolog vendors, DD tools, please!

16 / 22

Diagnosis DD Incorrectness Ex. + Incompleteness Ex. + Why&how

Future work

Formalization of specifications,
automating proof checking / proving

Programs with negation (but see [D_&Mitkowska'05])
Implementing DD tools

Experimenting, teaching

17 | 22

Summary

We focus on declarative programming;

prefer abstracting from any operational semantics.

» Reasoning on correctness™ independently of any operational semantics.
(with a minor exception)

Simple methods. Can be used (informally) in practical programming.

» Importance of approximate specifications.
Intended model considered harmful.
We did not need types.

» Approximate specifications make declarative diagnosis useful.

» A simple approach of constructing provably correct™ programs.

Can be used (informally) in practical programming.

» Semantics-preserving program transformations — too restrictive.

18 | 22

Summary

Thanks!

for your attention

www.ipipan.waw.pl/“drabent/

19 / 22

www.ipipan.waw.pl/~drabent/

Summary

Thanks!

for your attention

www.ipipan.waw.pl/“drabent/

Most of the references to be found in
[D_"18] Drabent, W. Logic + control: On program construction and verification.
Theory and Practice of Logic Programming 18, 1, 1-29. 2018.

A final version of these slides with contain a reference list

19 / 22

www.ipipan.waw.pl/~drabent/

Summary

References
K. R. Apt. From Logic Programming to Prolog. Prentice-Hall. 1997.

[Bartak'98] Bartak, R. Guide to Prolog Programming. 1998.
http://kti.mff.cuni.cz/ bartak/prolog/

A. Bossi, N. Cocco. Verifying Correctness of Logic Programs. In TAPSOFT,
Vol.2 (Lecture Notes in Computer Science), Vol. 352, J. Diaz, F. Orejas (Eds.),
96-110, Springer, 1989.

Clark, K. L. Predicate logic as computational formalism. Tech. Rep. 79/59,
Imperial College, London. December, 1979.

Deransart, P. and Matuszynski, J. A Grammatical View of Logic Programming.
The MIT Press, 1993.

[D_+Mitkowska'05] W. Drabent, M. Mitkowska. Proving correctness and
completeness of normal programs — a declarative approach. Theory and
Practice of Logic Programming 5, 6 (2005), 669-711.

[D_"16] DRrABENT, W. Correctness and completeness of logic programs.
ACM Trans. Comput. Log. 17, 3, 18:1-18:32. 2016.

20/ 22

http://kti.mff.cuni.cz/~bartak/prolog/

Summary

[D_'18] Drabent, W. Logic + control: On program construction and verification.
Theory and Practice of Logic Programming 18, 1, 1-29. 2018.

[D_'20] Drabent, W. The Prolog debugger and declarative programming. In:
Gabbrielli M. (eds) LOPSTR 2019. Lecture Notes in Computer Science,
vol. 12042, Springer. pp. 193-208.

Furia, C.A., Meyer, B., Velder, S. Loop Invariants: Analysis, Classification,
and Examples. ACM Comput. Surv. 46, 3, Article 34 (January 2014), 51 pages.

C.J.Hogger. Introduction to Logic Programming. Academic Press, London, 1984.

Howe, J. M. KING, A.. A pearl on SAT and SMT solving in Prolog. Theor.
Comput. Sci. 435, 43-55. 2012.

R. A. Kowalski. The Relation between Logic Programming and Logic
Specification. In Mathematical Logic and Programming Languages, C. Hoare,
J. Shepherdson (Eds.). Prentice-Hall, 11-27, 1985.

Also in Phil. Trans. R. Soc. Lond. A, Vol 312, 1984, 345-361.

21/ 22

Summary

Naish, L.: A three-valued declarative debugging scheme. In: 23rd
Australasian Computer Science Conference (ACSC 2000). pp.166-173.
IEEE Computer Society (2000). DOI: 10.1109/ACSC.2000.824398.

Pereira, L.M.: Rational debugging in logic programming. In: Shapiro, EY.
(ed.) ICLP’86. Lecture Notes in Computer Science, vol.225, pp.203-210.
Springer (1 986) Extended version at https://userweb.fct.unl.pt/ " lmp/

Shapiro, E. Algorithmic Program Debugging. The MIT Press, 1983.

L. Sterling and E. Shapiro. The Art of Prolog (2 ed.). The MIT Press, 1994.

22/ 22

https://userweb.fct.unl.pt/~lmp/

	Declarative diagnosis
	Diagram
	Incorrectness diagnosis
	Example
	Notion of error
	Incompleteness diagnosis
	Example
	Comments
	Why forgotten

	Summary

