It is declarative
On declarative programming in Prolog

Wrtodzimierz Drabent
Institute of Computer Science, Polish Academy of Sciences (IP1 PAN);

IDA, Linkopings universitet, Sweden

www.lipipan.waw.pl/~drabent/

LOPSTR 2021
Version 1.0 compiled September 14, 2021

1/ 38

www.ipipan.waw.pl/~drabent/

This file includes examples, slides and slide overlays not used
in the presentation

2/ 38

Introduction Outline

Logic Programming (LP)

introduced as a declarative programming paradigm
Prolog — implementation of LP

However it seems
the declarative aspect is often neglected, or diminished

3/38

Introduction Outline

Ex.: Now, we compute the factorial usign bottom up method so we start with the trivial
problem of computing the factorial of 0 and continue with the factorial of 1, 2 and so on till
the factorial of N is known. [..] we [..] store the computed facts using additional parameters.
[..] we remember [..] the factorial of M in the M-th step.

fact_bu(N,F):-fact_bul(0,1,N,F).
fact_bul (N,F,N,F).
fact_bul (N1,F1,N,F):-
Ni<N, N2 is Ni+1, F2 is N2*F1, fact_bul(N2,F2,N,F).

(From a Prolog tutorial [Bart4k'98])

Declarative descriptions:
% fact_bul(N',F' N,F)-if0< N <N and F' = N'l then F = N!
or —F=F'«(N'+1)« (N'+2) % ---x N

We do not understand a program
without understanding the relations it defines.

4 /38

Introduction Outline

This talk

A look at the basics of LP

LP in Prolog

Practical Prolog programming can be declarative
or

Prolog can be used for LP

to an extent larger than usually supposed/understood/meant.

5/ 38

Introduction Outline

Program correctness in LP

Imperative .
. partial correctness
programming:
LP: correctness completeness
correctness = the answers of the program are as required

completeness = all required answers are answers of the program

Df.: correctness™ = correctness + completeness

(full correctness?)
(double correctness?)

6/ 38

Outline — main issues of the talk

Introduction; basic notions.

1. Reasoning (declaratively) about correctness™ of programs.
Role of approximate specifications.

2. A systematic way of constructing correct™ programs.
from specifications.
Limitations of semantics preserving program transformations.

3. Declarative diagnosis (aka.algorithmic debugging) made useful.

7 /38

Basics Basics e Ex. approximate Ex.

Introduction

Basics of LP

Specifications

v

v

» Correctness and completeness
» Examples

» Approximate specifications

8/ 38

Basics Basics e Ex. approximate Ex.

Basics of LP

terminology clash
logic <> Prolog

Df.: Query — conjunction Ay, ..., A, of atoms (atomic formulae)

Program — set of clauses Ay« Ay, ..., A,
Answer of a program P — query () such that P = Q

(correct answer)

computed answer substitution

!

SLD-resolution — obtaining answers Q@ from an initial query Q

Computed vs. correct answers?
We do not need to distinquish them
~» soundness and completeness of SLD-resolution

9 /38

Basics e Ex. approximate Ex.

Notation

P a theory P = A — A logical consequence of P
S an interpretation SEA - Atruein S

‘HIB (Herbrand base) — the set of ground atoms
Mp={Ae€HB|PE A} - the least Herbrand model of P

10 / 38

Basics Basics e Ex. approximate Ex.

Specifications

LP — relational programming.

A logic programmer has to understand the relations defined by her program.

Specification — should describe for each predicate symbol
a relation on ground terms. So:

Df.: Specification — Herbrand interpretation S C ‘HB
(L.e. a set of ground atoms).

Ex.:
SO

member

= {memf(e;,[e1,...,en]) EHB|1<i<n}
List membership

11 / 38

Basics Basics e Ex. approximate Ex.

Specifications

LP — relational programming.

A logic programmer has to understand the relations defined by her program.

Specification — should describe for each predicate symbol
a relation on ground terms. So:

Df.: Specification — Herbrand interpretation S C ‘HB
(L.e. a set of ground atoms).

The relation for p: [p] = {t| p(t) € S}

Ex.:
SO

member

= {memf(e;,[e1,...,en]) EHB|1<i<n}
List membership

11 / 38

Basics Basics e Ex. approximate Ex.

Note

Specifications (in LP)
play the role of loop invariants (in imperative programming)
or assertions

crucial for program understanding

“understanding a loop means understanding its invariant”

(maybe without explicitly referring to this notion)
[Furia,Meyer,Velder'14 ACM C.Surveys]
[Dijkstra’??]

12 / 38

Basics Basics e Ex. approximate Ex.

Note
crucial for program understanding
Specifications (in LP) N4
play the role of loop invariants (in imperative programming)
or assertions

“understanding a loop means understanding its invariant”
(maybe without explicitly referring to this notion)
[Furia,Meyer,Velder'14 ACM C.Surveys]
[Dijkstra’??]

A bit of code:
- Is ¢ here the number of the last
A[Z] ces <— already processed element of A?
Or the first unprocessed one?

On programmers who have not learnt about invariants:
if they understand what they are doing they are relying on some intuitive understanding
of the invariant anyway, like Moliére’s Mr. Jourdain speaking in prose without knowing it.

12 / 38

Basics Basics e Ex. approximate Ex.

Note
o crucial for program understanding
Specifications (in LP) N4

play the role of loop invariants (in imperative programming)
or assertions

“understanding a loop means understanding its invariant”

(maybe without explicitly referring to this notion)
[Furia,Meyer,Velder'14 ACM C.Surveys]
[Dijkstra’??]

LP: understanding a program = understanding the relations
it defines

12 / 38

Basics 3asics x. approximate Ex.

Correctness™ of programs

Let S — a specification, P — a program.

Df.: P is correct w.r.t. S when Mp C S.
P is complete w.rt. S when S C Mp.

Declarative notions,
independent from any operational semantics

LOGIC + CONTROL works, as
correctness™ independent from coNTROL

13/ 38

Basics Basics e Ex. approximate Ex.

Detalls, answers of correct / complete programs

Non-atomic, non-ground answers

Th.: P correct wrt.Q: @ an answer of P = S E Q.
P complete w.rt.Q: SEQ = @ ananswer of P,

when @ ground, or the alphabet of function symbols infinite, or...

Ex.: (the extra conditions at completeness)

Alphabet {f/1,a/0}, P ={p(f(X)). p(a).}, S=HB=Mp.
P complete w.rt. S.
S Ep(Y), but p(Y) is not an answer of P.

14 / 38

Basics 3asics Ex. approximate Ex.

Examples (specifications, correctness, completeness)

Appending lists
Seop = {app(k,l,m) € HB | k,1,m are lists, k"l =m },
~ means list concatenation.

The same in another notation:
{app([z1, - okl [y1, - s ymls (20, 20, Y1, - ym]) € HB | k,m € N}

Standard program app: app([], L, L).
app([H|K], L, [H

M) < app(K, L, M).

APP complete w.rt. Y,

15/ 38

Ex. approximate Ex.

Basics

Examples (specifications, correctness, completeness)

Appending lists
Seop = {app(k,l,m) € HB | k,1,m are lists, k"l =m },
~ means list concatenation.

The same in another notation:
{app([z1, - okl [y1, - s ymls (20, 20, Y1, - ym]) € HB | k,m € N}

Standard program app: app(||, L,

L).
app([H|K], L, [H|M]) < app(K, L, M).

APP complete w.rt. Sy, but not correct. APP = app([],6,6)

AppP does not define the list appending relation (Mapp # S5,,)-
(There are even opinions that APP is a wrong program.
It is not, see the next slide.)

15/ 38

Basics 3asics X. approximate Ex.

Example (cont'd)

APP correct w.r.t. the following specifications

if £ and [are lists
Sappa = & app(k,l,m) € HB | then m is a list
and k"l =m

for list
appending

if m is a list
Sapp2 = & app(k,l,m) € HB | then k and [are lists fsoprliltLtSi:]g
and k™l =m

16 / 38

Basics 3asics Ex. approximate Ex.

Example (cont'd)

APP correct w.r.t. the following specifications

if £ and [are lists
Sappa = & app(k,l,m) € HB | then m is a list
and k"l =m

if m is a list
Sapp2 = § app(k,l,m) € HB | then k and [are lists
and k"l =m

k is a list,

if l or mis a list
then [, m are lists
and K"l =m

Sapp = § app(k,l,m) € HB

Sapp - 5’alop,l N Sapp,?

16 / 38

for list
appending

for list
splitting

more
precise,
for most
usages

Basics

approximate

Approximate specifications

Usual
situation:

Approximate specification:

Correctness™:

specification for completeness

—_——~

required

irrelevant

specification for correctness

~~

(Scomph Scorr)
Scompl g MP g Scorr

17 / 38

HB

Basics

approximate

Approximate specifications

Usual
situation:

Approximate specification:

Correctness™:

specification for completeness
——

required

irrelevant

specification for correctness

When we build a program,

not known in advance if a given A € Scompr \ Scorr 1S ih Mp

~~

(Scompb Scorr)
Scompl g MP g Scor'r

17 / 38

HB

e Ex. approximate E

Basics

Approximate specifications

specification for completeness
——

Usual required lrrel:éva nt HB

situation:

~~

specification for correctness

Approximate specification: (Scompt, Scorr)
Correctness™: Secompt © Mp C Seorr

Mp may differ in different programs for the same task
or at various stages of program development

17 / 38

Basics

approximate

Approximate specifications

specification for completeness
——

Usual

situation:

HB

required | irrelevant

~~

specification for correctness

Approximate specification: (Scompi, Scorr)

Correctness™: Secompt € Mp C Seorr

Semantics preserving program transformations — too restrictive =1
Example: [D_"18 TPLP]

17 / 38

Basics 3asics X. approximate Ex.

Approximate specification, example, insertion sort
Ex. (we cannot know in advance, if A € Mp):

insert/3 — inserting a number into a sorted list

Should we accept A = insert(2,[3.1],[2,3,1])?

18 / 38

Basics 3asics X. approximate Ex.

Approximate specification, example, insertion sort
Ex. (we cannot know in advance, if A € Mp):

insert/3 — inserting a number into a sorted list

Should we accept A = insert(2,[3,1],[2,3,1])? It's irrelevant!
Sinsert): A € Singert \ Sy

Approximate specification: (S insert

nsert?

18 / 38

Basics 3asics x. approximate Ex.

Approximate specification, example, insertion sort
Ex. (we cannot know in advance, if A € Mp):

insert/3 — inserting a number into a sorted list

Should we accept A = insert(2,[3,1],[2,3,1])? It's irrelevant!
Sinsert): A € Singert \ Sy

Approximate specification: (S insert

nsert?

, n & 7, or
Sinsert = insert(n, l, 1) l; not a sorted list » U SY
cH

insert
of integers

18 / 38

Basics 3asics x. approximate Ex.

Approximate specification, example, insertion sort
Ex. (we cannot know in advance, if A € Mp):
insert/3 — inserting a number into a sorted list
Should we accept A = insert(2,(3,1],[2,3,1])? It's irrelevant!
Approximate specification: (S, Sinsert), A € Sinsert \ SV

nsert

g0 [insert(n,ly,13) | l1,ly are sorted lists of integers,
msert € HB | elms(ly) = {n} U elms(l;)
where elms(l) — the multiset of elements of [
insert(n,ly, ls) fn € Z and
Sinsert = 76177-[215’ [; is a sorted list of integers,
then insert(n,ly,ls) € SO0

18 / 38

Correctnesst Correctness Ex. Completeness Ex. Comments

Reasoning (declaratively) about correctness™
of programs

» Proving correctness

» Proving completeness

19 / 38

Correctness

Correctness Ex. Completeness Ex. Comments

Proving program correctness

Th.[Clark’79]: (the simplest theorem of LP _°)
Let S — a specification, P — a program.

If S = P then P correct w.rt. S.

Proof: SEP = MpC SO

Note: S = P means
for each ground instance H < By,..., B, of a clause of P

if By, ..

.,B,€e Sthen He S

20 / 38

Correctnesst Correctness Ex. Completeness Ex. Comments

Proving program correctness

Th.[Clark’79]: (the simplest theorem of LP _°)
Let S — a specification, P — a program.

If S = P then P correct w.rt. S.
Proof: SEP = MpC SO

Note: S = P means

for each ground instance H < By,..., B, of a clause of P
if By,...,B, € Sthen He S

The Th. — a declarative way to prove a declarative property.

The Th. should be well-known, but is unacknowledged.

Instead, more complicated methods based on operational semantics, on
pre- and postconditions for LD-resolution [Bossi+Cocco’89,Apt’97,...].

20/ 38

Correctnesst Correctness Ex. Completeness Ex. Comments

Exam p le correctness proof

‘For each H + By,...,B, € ground(P), if By,...,B, € S then H € S.‘

Program + specification:

SPLIT: s(] 11, 1D)- (1)
s([X|Xs], [X|Ys], Zs) + s(Xs,Zs,Ys). (2)

S = {S(l,ll,lg) | l,ll,ZQ are l'lStS, 0< |l1| - |l2| <1 },
Proof: where |l| — the length of a list [.
Consider a ground instance s([h|t], [h|ta], t1) < s(t,t1,t2) of (2).
Assume s(t,t1,t2) € S. Thus [h|t], [h|t2], t1 are lists. Let m = |t1|—|t2].
As m € {0,1}, we have |[Alto]| — |t1|=1—m € {0,1}.
So the head s([hlt], [h|t2],t1) is in S. The proof for (1) is trivial.

Thus program SPLIT correct w.r.t. specification .S.

21/ 38

Correctnesst Correctness Ex. Completeness Ex. Comments

Example correctness proof 2
If S = P then P correct w.rt. S.

We need to show:
for each H+By,..., B, € ground(P) if By,...,B, € Sthen H € S

if [or m is a list then
k,l,m are lists and k"l = m

app

Spon = {a,pp(k,l,m) € HB
APP: app([],L,L). app([H|K],L,[H|M]) < app(K,L,M).

Nontrivial part of a correctness proof for app w.r.t. S
H B

AN

[
app*

Take a ground app([h|k], 1, [h|m]) + app(k,l,m), assume B € S, ;
assume [or [h|m] is a list, show that [h|k]"l = [h|m]; so H € Sapp.
(lormisalist = k,I,m arelists = k"l =m)

22/ 38

Correctnesst Correctness Ex. Completeness Ex. Comments

Example correctness proof 2
If S = P then P correct w.rt. S.

We need to show:
for each H+By,..., B, € ground(P) if By,...,B, € Sthen H € S

if [or m is a list then
k,l,m are lists and k"l = m

app

Spon = {a,pp(k,l,m) € HB

APP: app([],L,L). app([H|K], L,[H|M]) < app(K, L, M).

)

Nontrivial part of a correctness proof for app w.r.t. S
H B

AN

[
app*

Take a ground app([h|k], 1, [h|m]) + app(k,l,m), assume B € S, ;
assume [or [h|m] is a list, show that [h|k]"l = [h|m]; so H € Sapp.
(lormisalist = k,I,m arelists = k"l =m)

Similar to informal reasoning about a program

by a competent declarative programmer.
22/ 38

Correctnesst Correctness Ex. Completeness Ex. Comments

Example correctness proof 3
MIDDLE: middle(Mid, L) < m(Mid, L, L). (1)
m(E, [], [E]]). (2)
m(E,_,_|L1], [|L2)) ¢ m(E, L1, L2). (3)
SM = {mzddle(bl, [bl, ce ,bgi_l]) e HB | 1> O}
U{mf(t,l,t') € HB |t is not a list }
U {Tfl(bi, [CLl, . ../CLQ,L',l], [bl .. .7bn]) € HB | n > 7> O}

If S| =P then P correct w.rt. S.

We need to show:
for each H<Bs,..., B, € ground(P) if By,...,B, € S then H € S.

Non-obvious part of a correctness proof for MIDDLE w.r.t. Sy

Take a ground instance H < B of (3). Show that
if B € Sy then H € Sy

23/ 38

Correctness Correctness Ex.

Completeness Ex. Comments

Example correctness proof 3 (cont’d)
m(E, [, _|L1], [|L2]) <= m(E, L1, L2). (3)

SM = {middle(bi, [bl, .. .,bgi_l]) € HB | 7> 0}

U{m(t,l,t') € HB | t' is not a list }

U{m(bi,[(ll,...,agifl},[bl,...,bn]) c HB | n>1> O}

H B
Take a ground instance m(e, [e1, ea|l1], [es]l2]) <= m(e, l1,12) of (3).
Assume B € Sp;. Then
1. Iy is not a list, thus H € Sy, or
2.e= b, 1 = [al, R ,azi_l], Iy = [bl, R ,bn], n>1>0. Hence
H =m(b;,e1,e2,a1,...,a2-1],[e3,b1,...,by]). Renumber it:
H =m(b; 4, [a],...

’a/2(i+1)71}’ [/17 ERE '/n,—‘,—l])'

where (n+1) > (i + 1)
Thus H € Sy O

24 | 38

> 0.

Correctnesst Correctness Ex. Completeness Ex. Comments

Example correctness proof 3 (cont’d)
m(E, [, _|L1], [|L2]) <= m(E, L1, L2). (3)

SM = {middle(bi, [bl, .. .,bQZ’_l]) € HB | 7> 0}
U{m(t,l,t') € HB |t is not a list }
U {m(bl [(1,1, c ,(1/21',1}, [bl, - ,bn]) c HB | n>1> O}

H B

Take a ground instance m(e, [e1, ea|l1], [es]l2]) <= m(e, l1,12) of (3).
Assume B € Sp;. Then
1. Iy is not a list, thus H € Sy, or
2.e= b, 1 = [al, R ,azi_l], Iy = [bl, R ,bn], n>1>0. Hence
H= m(bi, [61, €2,a71, ..., (122'_1], {63, by, ... 7an' Renumber it:

H = nl(b(i+1a [a’llv s :alg(prl)fl}v [/17) r/n,-t,-l])'

where (n+1) > (i+1) > 0.

Thus H € Sy O

Similar to informal reasoning about a program

by a competent declarative programmer.
24 | 38

Correctness Correctness Ex. Completeness Ex. Comments

Reasoning about program completeness

Surprising: the subject has been neglected! =

Except for
[Deransart+Matuszynski'93], [Sterling+Shapiro’94] (informally),
[D_+Mitkowska'05], [D_"16,'18]; | am not aware of any other work.

[Hogger'84], [Kowalski'85] — the notion of completeness,
but not reasoning about it.

25/ 38

Correctness

Correctness Ex. Completeness Ex. Comments

Semi-completeness

‘ completeness = semi-completeness + termination ‘

Df.: P is complete for a query Q w.rt. S if for any ground Q8
SEQO = Q0 is an answer for P.

(P produces all the required answers for @.)

Df.: P is semi-complete w.r.t..S if P is complete w.r.t. S for any
query for which there exists a finite SLD-tree.

(P produces all the required answers, if the computation terminates.)

Lemma: If P is semi-complete w.r.t. S, and

P terminates (under some selection rule) for each query A € S
then P is complete w.r.t. S.

26 / 38

Correctness Correctness Ex. Completeness Ex. Comments

Sufficient condition for completeness

‘ completeness = semi-completeness + termination

Df: H € HB is covered by P w.rt. S if there is a clause
(H+A, ..., A,) € ground(P) in which Ay,... A, €S5.

(A covered atom can be produced by a clause of P
from atoms required by S to be produced.)

Th. (sufficient condition):
If each atom from S is covered w.r.t..S by P
then P is semi-complete w.r.t. S.

Proving program termination — not discussed here.

27 | 38

Correctnesst Correctness Ex. Completeness Ex. Comments

Example

Seop = {app(k,l,m) € HB | k,l,m are lists, k"l =m },

appP: app([]|,L,L).
app([H|K], L, [H|M]) < app(K, L, M).

Let H € S°

app’

1. H =app([],1,1). H € ground(apP)

2. H=app(k,l,m), k#1], k"l =m. So H is the head of
app([h|K'], 1, [h|m']) < app(K',1,m’) and app(K',1,m’) € S

app’

We show that H is covered by ApP w.r.t. S .

Thus APP semi-complete w.r.t. SJ .

We know that P terminates for any query from S.

0
Hence ApP complete w.r.t. Sy, .

28 / 38

Correctnesst Correctness Ex. Completeness Ex. Comments

Reasoning about completeness, comments

Not fullg declarative, as termination is an operational property.
(Proving semi-completeness purely declarative)

But termination has to be established anyway.

So the not fully declarative approach seems reasonable.

A declarative sufficient condition exists [Deransart+Matuszynski'93].
But it leads to completeness proofs similar to
proving semi-completeness + termination.

Semi-completeness alone: Computation terminates =
all required (by the specification) answers have been produced.

29 / 38

Correctnesst Correctness Ex. Completeness Ex. Comments

+

Proving correctness™, comments

In my opinion
the sufficient conditions for correctness & (semi-) completeness

» are declarative — abstract from operational semantics
(except for termination, which is needed anyway)

» are simple (cf. Hoare rules for imperative programming)
» correspond to a natural way of thinking by a declarative programmer

» can be used in every-day programming
at various levels of (in)formality

» provide a guide how to reason about programs

30/ 38

Constructing Example Comments Transformations

Constructing correct™ programs

How to construct a program
for an approximate specification S = (S compl, Scorr)

Provide clauses so that

O each atom A € S¢,y1 is covered (w.rt. Scompi) by some clause

® each clause satisfies the sufficient condition for correctness

(w.rt. Scorr)
(this produces a program correct and semi-complete w.rt. S;

31/ 38

Constructing Example Comments Transformations

Constructing correct™ programs

How to construct a program
for an approximate specification S = (S compl, Scorr)

Provide clauses so that

O each atom A € S¢,y1 is covered (w.rt. Scompi) by some clause

® each clause satisfies the sufficient condition for correctness

(w.rt. Scorr)
(this produces a program correct and semi-complete w.rt. S;

not enough, p(X)<p(X) possible)

31/ 38

Constructing Example Comments Transformations

Constructing correct™ programs

How to construct a program
for an approximate specification S = (S compl, Scorr)

Provide clauses so that

O each atom A € S¢,y1 is covered (w.rt. Scompi) by some clause

® each clause satisfies the sufficient condition for correctness

(w.rt. Scorr)
(this produces a program correct and semi-complete w.rt. S;

not enough, p(X)<p(X) possible)

® the clauses satisfy some sufficient condition for termination

informally: p(3) < ..., p(%),...
/I\

bigger terms smaller terms

Result: a program correct and complete [D_"18]

31/ 38

Constructing Example Comments Transformations

A more interesting example — file ex.insert*.pdf

32 /38

Constructing Example Comments Transformations

Constructing correct™ programs, example
Splitting a list into its odd- and even- numbered elements.

S ={s(l,oe(l),ee(l)) € HB |l is a list }

where oe(l) — the list of odd elements of list

(oe(ler, ..., en]) = le1,€3,...])

ee(l) — the list of even elements of list [
(e.q. s([1,2,3,4,5],]1,3,5],[2,4]) € 5)

An unusual case of exact specification!

Construct a program correct™ w.r.t. (S, 5).

33 /38

Constructing Example Comments Transformations

Constructing correct™ programs, example

Summary of the approach: 1. each atom A € Sy is covered
2. each clause correct w.r.t. Scorr
3. termination...

{s(l,0e(l),ee(l)) | I is a list}. Two kinds of elements of S:
[

S =
os({1 00, 1)
2. A = s([hlt], [h]ee(t)], oe(t))

34 / 38

Constructing Example Comments Transformations

Constructing correct™ programs, example

Summary of the approach: 1. each atom A € Sy is covered
2. each clause correct w.r.t. Scorr
3. termination...

S ={s(l,oe(l),ee(l)) |l is a list}. Two kinds of elements of S:
1.s([,[1,[])- Covered by clause Cy = s([],[].[]). S E Ci.
2. A = s([hlt], [h]ee(t)], oe(t))

34 / 38

Constructing Example Comments Transformations

Constructing correct™ programs, example

Summary of the approach: 1. each atom A € Sy is covered
2. each clause correct w.r.t. Scorr
3. termination...

S ={s(l,oe(l),ee(l)) |l is a list}. Two kinds of elements of S:
s([,[],[])- Covered by clause Cy = s([],[],[]). S F Ci.
2. A = s([hlt], [h]ee(t)], oe(t))

We need a B € S for clause body.
Preferably subterms of arguments of A should be used (for termination).
What about [h]t] ~ ¢ ?

34 / 38

Constructing Example Comments Transformations

Constructing correct™ programs, example

Summary of the approach: 1. each atom A € Sy is covered
2. each clause correct w.r.t. Scorr
3. termination...

S ={s(l,oe(l),ee(l)) |l is a list}. Two kinds of elements of S:
s([,[],[])- Covered by clause Cy = s([],[],[]). S F Ci.
2. A = s([hlt], [h]ee(t)], oe(t))

We need a B € S for clause body.
Preferably subterms of arguments of A should be used (for termination).
What about [ht] ~ t ? B = s(t,

34 / 38

Constructing Example Comments Transformations

Constructing correct™ programs, example

Summary of the approach: 1. each atom A € Sy is covered
2. each clause correct w.r.t. Scorr
3. termination...

S ={s(l,oe(l),ee(l)) |l is a list}. Two kinds of elements of S:
s([,[],[])- Covered by clause Cy = s([],[],[]). S F Ci.
2. A = s([hlt], [h]ee(t)], oe(t))

We need a B € S for clause body.
Preferably subterms of arguments of A should be used (for termination).
What about [h[t] ~ ¢ ? B = s(t,o0e(t), ee(t)) ?

34 / 38

Constructing Example Comments Transformations

Constructing correct™ programs, example

Summary of the approach: 1. each atom A € S¢pp; is covered
2. each clause correct w.r.t. Sconr
3. termination...

S ={s(l,oe(l),ee(l)) | lis a list}. Two kinds of elements of S:
s([1,11,[])- Covered by clause Cy = s([],[],[]). S E Cy.
2. A = s([hlt], [h]ee(t)], oe(t))

We need a B € S for clause body.
Preferably subterms of arguments of A should be used (for termination).
What about [h[t] ~ ¢ ? B = s(t,0e(t), ee(t)) ?

This suggests A<+ B € ground(P)

34 / 38

Constructing Example Comments Transformations

Constructing correct™ programs, example

Summary of the approach: 1. each atom A € S¢pp; is covered
2. each clause correct w.r.t. Sconr
3. termination...

S ={s(l,oe(l),ee(l)) | lis a list}. Two kinds of elements of S:
s([I,[],[])- Covered by clause Cy = s([],[],[]). S F Ci.

2. A = s([hlt], [h]ee(t)], oe(t))

We need a B € S for clause body.

Preferably subterms of arguments of A should be used (for termination).

What about [h[t] ~ t ? B = s(t,0e(t), ee(t)) ?

This suggests Co = s([H|T|,[H|ET),OT) «+ s(T,OT, ET).
(Each) A covered by Cs. S |= (.

P terminates for any query s([eq, ..., ey, t,t') (maybe nonground).
P = {Cy,Cy} correct & complete w.r.t. S.

34 / 38

Constructing Example Comments Transformations

Constructing correct™ programs, comments

Summary of the approach: 1. each atom A € S¢omp is covered
2. each clause correct w.r.t. S.or
3. termination...

This proposal is rather obvious

| see it as

good practices of competent programmers made explicit

1= Approximate specifications crucial

Beginning with exact specification Scomp = Scorr is often
unnecessary & counterproductive

We should not/cannot decide in advance
what insert/3 (of insertion sort) should do with unsorted lists
what append/3 should do with non-lists

35/ 38

Constructing Example Comments Transformations

On semantics-preserving program transformations

Program development: Py,..., P, Vi Scompi € Mp; C Seorr

The programs may be not equivalent
— distinct relations for the same predicate in P;, P;

{a(t) € Mp; } # {a(t) € Mp;}

The paradigm of
semantics-preserving program transformations

too restrictive
Ex.: Construction of SAT-solver [D_"18, Howe+King'12]
Py, P,, P3, P; distinct semantics of the main predicates in P;, P.

Prolog program

[D_"18] illustrates the methods presented here + ...

36/ 38

Constructing Example Comments Transformations

More precisely
Program development: Py,..., P, Vi Scompri € Mp; C Seorri
The specification is constant for some main predicates, so

Vi Scompl,q g {Q({) S MP’L} g Scorr,q

37 / 38

Declarative diagnosis (algorithmic debugging)

All the declarativeness gone, when it comes to debugging

Next file of slides

38 / 38

	Introduction
	Outline

	Basics
	Basics
	Correctness, completeness
	Examples
	Approximate specifications
	Example, insertion sort

	Correctness+
	Proving program correctness
	Example correctness proofs
	Proving completeness
	Example completeness proof
	Proving correctness+, comments

	Constructing correct+ programs
	Example
	Comments
	On semantics-preserving program transformations

	Declarative diagnosis

