
Introduction Basics Correctness+ Constructing Diagnosis

It is declarative
On declarative programming in Prolog

Włodzimierz Drabent

Institute of Computer Science, Polish Academy of Sciences (IPI PAN);
IDA, Linköpings universitet, Sweden
www.ipipan.waw.pl/~drabent/

LOPSTR 2021
Version 1.0 compiled September 14, 2021

1 / 38

Introduction Basics Correctness+ Constructing Diagnosis

This file includes examples, slides and slide overlays not used
in the presentation

2 / 38

Introduction Basics Correctness+ Constructing Diagnosis Outline

Logic Programming (LP)

introduced as a declarative programming paradigm
Prolog – implementation of LP
However it seems
the declarative aspect is often neglected, or diminished

3 / 38

Introduction Basics Correctness+ Constructing Diagnosis Outline

Ex.: Now, we compute the factorial usign bottom up method so we start with the trivial
problem of computing the factorial of 0 and continue with the factorial of 1, 2 and so on till
the factorial of N is known. [...] we [...] store the computed facts using additional parameters.
[...] we remember [...] the factorial of M in the M-th step.

fact_bu(N,F):-fact_bu1(0,1,N,F).

fact_bu1(N,F,N,F).

fact_bu1(N1,F1,N,F):-

N1<N, N2 is N1+1, F2 is N2*F1, fact_bu1(N2,F2,N,F).

(From a Prolog tutorial [Barták’98])

Declarative descriptions:

% fact_bu1(N ′, F ′, N, F) – if 0 ≤ N ′ ≤ N and F ′ = N ′! then F = N !

or – F = F ′ ∗ (N ′+1) ∗ (N ′+2) ∗ · · · ∗N

We do not understand a program
without understanding the relations it defines.

4 / 38

www.ipipan.waw.pl/~drabent/

Introduction Basics Correctness+ Constructing Diagnosis Outline

This talk

A look at the basics of LP

LP in Prolog

Practical Prolog programming can be declarative
or
Prolog can be used for LP

to an extent larger than usually supposed/understood/meant.

5 / 38

Introduction Basics Correctness+ Constructing Diagnosis Outline

Program correctness in LP

Imperative
programming : partial correctness

↙ ↘
LP : correctness completeness

correctness = the answers of the program are as required
completeness = all required answers are answers of the program

Df.: correctness+
(full correctness?)
(double correctness?)

= correctness + completeness

6 / 38

Introduction Basics Correctness+ Constructing Diagnosis Outline

Outline – main issues of the talk

Introduction; basic notions.

1. Reasoning (declaratively) about correctness+ of programs.
Role of approximate specifications.

2. A systematic way of constructing correct+ programs.
from specifications.

Limitations of semantics preserving program transformations.

3. Declarative diagnosis (aka. algorithmic debugging) made useful.

7 / 38

Introduction Basics Correctness+ Constructing Diagnosis Basics • Ex. approximate Ex.

Introduction

I Basics of LP
I Specifications
I Correctness and completeness
I Examples
I Approximate specifications

8 / 38

Introduction Basics Correctness+ Constructing Diagnosis Basics • Ex. approximate Ex.

Basics of LP terminology clash
logic ↔ Prolog

↙
Df.: Query – conjunction A1, . . . , An of atoms (atomic formulae)

Program – set of clauses A0 ← A1, . . . , An,
Answer of a program P – query Q such that P |= Q
(correct answer)

SLD-resolution – obtaining answers Q

computed answer substitution
↓
θ from an initial query Q

Computed vs. correct answers?
We do not need to distinguish them

 soundness and completeness of SLD-resolution

9 / 38

Introduction Basics Correctness+ Constructing Diagnosis Basics • Ex. approximate Ex.

Notation

P a theory P |= A – A logical consequence of P
S an interpretation S |= A – A true in S

HB (Herbrand base) – the set of ground atoms
MP = {A ∈ HB | P |= A } – the least Herbrand model of P

10 / 38

Introduction Basics Correctness+ Constructing Diagnosis Basics • Ex. approximate Ex.

Specifications

LP – relational programming.
A logic programmer has to understand the relations defined by her program.

Specification – should describe for each predicate symbol
a relation on ground terms. So:

Df.: Specification – Herbrand interpretation S ⊆ HB
(i.e. a set of ground atoms).

The relation for p: [[p]] = {~t | p(~t) ∈ S}

Ex.:
S0
member = {mem(ei, [e1, . . . , en]) ∈ HB | 1 ≤ i ≤ n }

List membership

11 / 38

Introduction Basics Correctness+ Constructing Diagnosis Basics • Ex. approximate Ex.

Note
Specifications (in LP)

crucial for program understanding
↙

play the role of loop invariants
or assertions

(in imperative programming)

“understanding a loop means understanding its invariant”
(maybe without explicitly referring to this notion)

[Furia,Meyer,Velder’14 ACM C.Surveys]
[Dijkstra’??]

A bit of code:
. . .
. . . A[i] . . .
. . .

←−
Is i here the number of the last
already processed element of A ?
Or the first unprocessed one?

On programmers who have not learnt about invariants:
if they understand what they are doing they are relying on some intuitive understanding
of the invariant anyway, like Molière’s Mr. Jourdain speaking in prose without knowing it.

12 / 38

Introduction Basics Correctness+ Constructing Diagnosis Basics • Ex. approximate Ex.

Note
Specifications (in LP)

crucial for program understanding
↙

play the role of loop invariants
or assertions

(in imperative programming)

“understanding a loop means understanding its invariant”
(maybe without explicitly referring to this notion)

[Furia,Meyer,Velder’14 ACM C.Surveys]
[Dijkstra’??]

LP: understanding a program = understanding the relations
it defines

12 / 38

Introduction Basics Correctness+ Constructing Diagnosis Basics • Ex. approximate Ex.

Correctness+ of programs

Let S – a specification, P – a program.

Df.: P is correct w.r.t. S when MP ⊆ S.
P is complete w.r.t. S when S ⊆MP .

Declarative notions,
independent from any operational semantics

LOGIC + CONTROL works, as
correctness+ independent from control

13 / 38

Introduction Basics Correctness+ Constructing Diagnosis Basics • Ex. approximate Ex.

Details, answers of correct / complete programs

Non-atomic, non-ground answers

Th.: P correct w.r.t.Q: Q an answer of P ⇒ S |= Q.
P complete w.r.t.Q: S |= Q ⇒ Q an answer of P ,

when Q ground, or the alphabet of function symbols infinite, or. . .

Ex.: (the extra conditions at completeness)

Alphabet {f /1, a/0}, P = {p(f(X)). p(a).}, S = HB =MP .
P complete w.r.t. S.
S |= p(Y), but p(Y) is not an answer of P .

14 / 38

Introduction Basics Correctness+ Constructing Diagnosis Basics • Ex. approximate Ex.

Examples (specifications, correctness, completeness)

Appending lists
S0
app = { app(k, l,m) ∈ HB | k, l,m are lists, k l̂ = m },

ˆ means list concatenation.(
The same in another notation:
{ app([x1, . . . , xk], [y1, . . . , ym], [x1, . . . , xk, y1, . . . , ym]) ∈ HB | k,m ∈ N }

)

Standard program app: app([], L, L).
app([H|K], L, [H|M])← app(K,L,M).

app complete w.r.t. S0
app , but not correct. app |= app([], 6, 6)

app does not define the list appending relation (MAPP 6= S0
app).

(There are even opinions that app is a wrong program.
It is not, see the next slide.)

15 / 38

Introduction Basics Correctness+ Constructing Diagnosis Basics • Ex. approximate Ex.

Example (cont’d)

app correct w.r.t. the following specifications

Sapp,1 =

 app(k, l,m) ∈ HB

∣∣∣∣∣∣
if k and l are lists
then m is a list
and k l̂ = m

 for list
appending

Sapp,2 =

 app(k, l,m) ∈ HB

∣∣∣∣∣∣
if m is a list
then k and l are lists
and k l̂ = m

 for list
splitting

Sapp =

 app(k, l,m) ∈ HB

∣∣∣∣∣∣∣∣
k is a list,
if l or m is a list
then l,m are lists
and k l̂ = m


more
precise,
for most
usages

Sapp ⊂ Sapp,1 ∩ Sapp,2

16 / 38

Introduction Basics Correctness+ Constructing Diagnosis Basics • Ex. approximate Ex.

Approximate specifications

Usual
situation:

MP︷ ︸︸ ︷
specification for completeness︷ ︸︸ ︷

required

1

irrelevant erroneous

HB︸ ︷︷ ︸
specification for correctness

Approximate specification: (Scompl , Scorr)

Correctness+: Scompl ⊆MP ⊆ Scorr

When we build a program,
not known in advance if a given A ∈ Scompl \ Scorr is in MP

Semantics preserving program transformations – too restrictive +
Example: [D_’18 TPLP]

17 / 38

Introduction Basics Correctness+ Constructing Diagnosis Basics • Ex. approximate Ex.

Approximate specifications

Usual
situation:

MP︷ ︸︸ ︷
specification for completeness︷ ︸︸ ︷

required

1

irrelevant erroneous

HB︸ ︷︷ ︸
specification for correctness

Approximate specification: (Scompl , Scorr)

Correctness+: Scompl ⊆MP ⊆ Scorr

MP may differ in different programs for the same task

or at various stages of program development

Semantics preserving program transformations – too restrictive +
Example: [D_’18 TPLP]

17 / 38

Introduction Basics Correctness+ Constructing Diagnosis Basics • Ex. approximate Ex.

Approximate specification, example, insertion sort

Ex. (we cannot know in advance, if A ∈MP):
insert/3 – inserting a number into a sorted list
Should we accept A = insert(2, [3, 1], [2, 3, 1]) ? It’s irrelevant!
Approximate specification: (S0

insert , Sinsert), A ∈ Sinsert \ S0
insert

Sinsert =

 insert(n, l1, l2)
∈ HB

∣∣∣∣∣∣
n 6∈ Z, or
l1 not a sorted list
of integers

 ∪ S0
insert

18 / 38

Introduction Basics Correctness+ Constructing Diagnosis Basics • Ex. approximate Ex.

Approximate specification, example, insertion sort

Ex. (we cannot know in advance, if A ∈MP):
insert/3 – inserting a number into a sorted list
Should we accept A = insert(2, [3, 1], [2, 3, 1]) ? It’s irrelevant!
Approximate specification: (S0

insert , Sinsert), A ∈ Sinsert \ S0
insert

S0
insert =

{
insert(n, l1, l2)

∈ HB

∣∣∣∣ l1, l2 are sorted lists of integers,
elms(l2) = {n} ∪ elms(l1)

}
where elms(l) – the multiset of elements of l

Sinsert =

 insert(n, l1, l2)
∈ HB

∣∣∣∣∣∣
if n ∈ Z and
l1 is a sorted list of integers,
then insert(n, l1, l2) ∈ S0

insert


18 / 38

Introduction Basics Correctness+ Constructing Diagnosis Correctness Ex. Completeness Ex. Comments

Reasoning (declaratively) about correctness+
of programs

I Proving correctness
I Proving completeness

19 / 38

Introduction Basics Correctness+ Constructing Diagnosis Correctness Ex. Completeness Ex. Comments

Proving program correctness
Th. [Clark’79]: (the simplest theorem of LP ··̂)

Let S – a specification, P – a program.

If S |= P then P correct w.r.t. S.
Proof: S |= P ⇒ MP ⊆ S �

Note: S |= P means
for each ground instance H ← B1, . . . , Bn of a clause of P
if B1, . . . , Bn ∈ S then H ∈ S

The Th. – a declarative way to prove a declarative property.
The Th. should be well-known, but is unacknowledged.
Instead, more complicated methods based on operational semantics, on
pre- and postconditions for LD-resolution [Bossi+Cocco’89,Apt’97,. . .].

20 / 38

Introduction Basics Correctness+ Constructing Diagnosis Correctness Ex. Completeness Ex. Comments

Example correctness proof

For each H ← B1, . . . , Bn ∈ ground(P), if B1, . . . , Bn ∈ S then H ∈ S.

Program + specification:

split: s([], [], []). (1)
s([X|Xs], [X|Y s], Zs)← s(Xs,Zs, Y s). (2)

S = { s(l, l1, l2) | l, l1, l2 are lists, 0 ≤ |l1| − |l2| ≤ 1 },

where |l| – the length of a list l.Proof:
Consider a ground instance s([h|t], [h|t2], t1)← s(t, t1, t2) of (2).
Assume s(t, t1, t2) ∈ S. Thus [h|t], [h|t2], t1 are lists. Let m = |t1|−|t2|.
As m ∈ {0, 1}, we have |[h|t2]| − |t1| = 1−m ∈ {0, 1}.
So the head s([h|t], [h|t2], t1) is in S. The proof for (1) is trivial.

Thus program split correct w.r.t. specification S.

21 / 38

Introduction Basics Correctness+ Constructing Diagnosis Correctness Ex. Completeness Ex. Comments

Example correctness proof 2
If S |= P then P correct w.r.t. S.

We need to show:
for each H←B1, . . . , Bn ∈ ground(P) if B1, . . . , Bn ∈ S then H ∈ S

S ′app =

{
app(k, l,m) ∈ HB

∣∣∣∣ if l or m is a list then
k, l,m are lists and k l̂ = m

}
app: app([], L, L). app([H|K], L, [H|M])← app(K,L,M).

Nontrivial part of a correctness proof for app w.r.t.S′
app:

Take a ground
H︷ ︸︸ ︷

app([h|k], l, [h|m])←
B︷ ︸︸ ︷

app(k, l,m), assume B ∈ S′app ;
assume l or [h|m] is a list, show that [h|k]̂ l = [h|m]; so H ∈ Sapp.

(l or m is a list ⇒ k, l,m are lists ⇒ kˆl = m)

Similar to informal reasoning about a program
by a competent declarative programmer.

22 / 38

Introduction Basics Correctness+ Constructing Diagnosis Correctness Ex. Completeness Ex. Comments

Example correctness proof 3
middle: middle(Mid , L)← m(Mid , L, L). (1)

m(E, [_], [E|_]). (2)
m(E, [_, _|L1], [_|L2])← m(E,L1, L2). (3)

SM = {middle(bi, [b1, . . . , b2i−1]) ∈ HB | i > 0 }
∪ {m(t, l, t′) ∈ HB | t′ is not a list }
∪ {m(bi, [a1, . . . , a2i−1], [b1, . . . , bn]) ∈ HB | n ≥ i > 0 }

If S |= P then P correct w.r.t. S.
We need to show:

for each H←B1, . . . , Bn ∈ ground(P) if B1, . . . , Bn ∈ S then H ∈ S.

Non-obvious part of a correctness proof for middle w.r.t.SM

Take a ground instance H ← B of (3). Show that
if B ∈ SM then H ∈ SM.

23 / 38

Introduction Basics Correctness+ Constructing Diagnosis Correctness Ex. Completeness Ex. Comments

Example correctness proof 3 (cont’d)
m(E, [_, _|L1], [_|L2])← m(E,L1, L2). (3)

SM = {middle(bi, [b1, . . . , b2i−1]) ∈ HB | i > 0 }
∪ {m(t, l, t′) ∈ HB | t′ is not a list }
∪ {m(bi, [a1, . . . , a2i−1], [b1, . . . , bn]) ∈ HB | n ≥ i > 0 }

Take a ground instance
H︷ ︸︸ ︷

m(e, [e1, e2|l1], [e3|l2])←
B︷ ︸︸ ︷

m(e, l1, l2) of (3).
Assume B ∈ SM. Then
1. l2 is not a list, thus H ∈ SM, or
2. e = bi, l1 = [a1, . . . , a2i−1], l2 = [b1, . . . , bn], n ≥ i > 0. Hence
H = m(bi, [e1, e2, a1, . . . , a2i−1], [e3, b1, . . . , bn]). Renumber it:

H = m(b′i+1, [a
′
1, . . . , a

′
2(i+1)−1], [b

′
1, . . . , b

′
n+1]),

where (n+ 1) ≥ (i+ 1) > 0.
Thus H ∈ SM. �

Similar to informal reasoning about a program
by a competent declarative programmer.

24 / 38

Introduction Basics Correctness+ Constructing Diagnosis Correctness Ex. Completeness Ex. Comments

Reasoning about program completeness

Surprising: the subject has been neglected ! ··_
Except for
[Deransart+Małuszyński’93], [Sterling+Shapiro’94] (informally),
[D_+Miłkowska’05], [D_’16,’18]; I am not aware of any other work.

[Hogger’84], [Kowalski’85] – the notion of completeness,
but not reasoning about it.

25 / 38

Introduction Basics Correctness+ Constructing Diagnosis Correctness Ex. Completeness Ex. Comments

Semi-completeness

completeness = semi-completeness + termination

Df.: P is complete for a query Q w.r.t.S if for any ground Qθ
S |= Qθ ⇒ Qθ is an answer for P .

(P produces all the required answers for Q.)

Df.: P is semi-complete w.r.t.S if P is complete w.r.t.S for any
query for which there exists a finite SLD-tree.

(P produces all the required answers, if the computation terminates.)

Lemma: If P is semi-complete w.r.t.S, and
P terminates (under some selection rule) for each query A ∈ S
then P is complete w.r.t. S.

26 / 38

Introduction Basics Correctness+ Constructing Diagnosis Correctness Ex. Completeness Ex. Comments

Sufficient condition for completeness

completeness = semi-completeness + termination

Df.: H ∈ HB is covered by P w.r.t.S if there is a clause
(H←A1, . . . , An) ∈ ground(P) in which A1, . . . , An ∈ S.

(A covered atom can be produced by a clause of P
from atoms required by S to be produced.)

Th. (sufficient condition):
If each atom from S is covered w.r.t.S by P

then P is semi-complete w.r.t.S.

Proving program termination – not discussed here.

27 / 38

Introduction Basics Correctness+ Constructing Diagnosis Correctness Ex. Completeness Ex. Comments

Example
S0
app = { app(k, l,m) ∈ HB | k, l,m are lists, k l̂ = m },

app: app([], L, L).
app([H|K], L, [H|M])← app(K,L,M).

Let H ∈ S0
app. We show that H is covered by app w.r.t.S0

app.
1. H = app([], l, l). H ∈ ground(app)
2. H = app(k, l,m), k 6= [], k l̂ = m. So H is the head of
app([h|k′], l, [h|m′])← app(k′, l,m′) and app(k′, l,m′) ∈ S0

app.
Thus app semi-complete w.r.t. S0

app.
We know that P terminates for any query from S.
Hence app complete w.r.t. S0

app.

28 / 38

Introduction Basics Correctness+ Constructing Diagnosis Correctness Ex. Completeness Ex. Comments

Reasoning about completeness, comments

Not fully declarative, as termination is an operational property.
(Proving semi-completeness purely declarative)

But termination has to be established anyway.
So the not fully declarative approach seems reasonable.

A declarative sufficient condition exists [Deransart+Małuszyński’93].
But it leads to completeness proofs similar to

proving semi-completeness + termination.

Semi-completeness alone: Computation terminates ⇒
all required (by the specification) answers have been produced.

29 / 38

Introduction Basics Correctness+ Constructing Diagnosis Correctness Ex. Completeness Ex. Comments

Proving correctness+, comments

In my opinion
the sufficient conditions for correctness & (semi-) completeness

I are declarative – abstract from operational semantics
(except for termination, which is needed anyway)

I are simple (cf. Hoare rules for imperative programming)
I correspond to a natural way of thinking by a declarative programmer
I can be used in every-day programming

at various levels of (in)formality
I provide a guide how to reason about programs

30 / 38

Introduction Basics Correctness+ Constructing Diagnosis Example Comments Transformations

Constructing correct+ programs
How to construct a program

for an approximate specification S = (Scompl , Scorr)

Provide clauses so that

Ê each atom A ∈ Scompl is covered (w.r.t. Scompl) by some clause

Ë each clause satisfies the sufficient condition for correctness
(w.r.t. Scorr)

(this produces a program correct and semi-complete w.r.t. S ;
not enough, p(~X)←p(~X) possible)

Ì the clauses satisfy some sufficient condition for termination
informally: p(~s

↑
bigger terms

)← . . . , p(~t
↑

smaller terms

), . . .

Result: a program correct and complete [D_’18]

31 / 38

Introduction Basics Correctness+ Constructing Diagnosis Example Comments Transformations

A more interesting example – file ex.insert*.pdf

32 / 38

Introduction Basics Correctness+ Constructing Diagnosis Example Comments Transformations

Constructing correct+ programs, example

Splitting a list into its odd- and even- numbered elements.

S = { s(l, oe(l), ee(l)) ∈ HB | l is a list }

where oe(l) – the list of odd elements of list l
(oe([e1, . . . , en]) = [e1, e3, ...])

ee(l) – the list of even elements of list l
(e.g. s([1, 2, 3, 4, 5], [1, 3, 5], [2, 4]) ∈ S)

An unusual case of exact specification!

Construct a program correct+ w.r.t. (S, S).

33 / 38

Introduction Basics Correctness+ Constructing Diagnosis Example Comments Transformations

Constructing correct+ programs, example
Summary of the approach: 1. each atom A ∈ Scompl is covered

2. each clause correct w.r.t. Scorr

3. termination. . .

S = { s(l, oe(l), ee(l)) | l is a list }. Two kinds of elements of S:
1. s([], [], []). Covered by clause C1 = s([], [], []). S |= C1.
2. A = s([h|t], [h|ee(t)], oe(t))

We need a B ∈ S for clause body.
Preferably subterms of arguments of A should be used (for termination).
What about [h|t] t ? B = s(t, oe(t), ee(t)) ?
This suggests A←B ∈ ground(P)

(Each) A
covered by C2. S |= C2.
P terminates for any query s([e1, . . . , en], t, t′) (maybe nonground).
P = {C1, C2} correct & complete w.r.t.S.

34 / 38

Introduction Basics Correctness+ Constructing Diagnosis Example Comments Transformations

Constructing correct+ programs, example
Summary of the approach: 1. each atom A ∈ Scompl is covered

2. each clause correct w.r.t. Scorr

3. termination. . .

S = { s(l, oe(l), ee(l)) | l is a list }. Two kinds of elements of S:
1. s([], [], []). Covered by clause C1 = s([], [], []). S |= C1.
2. A = s([h|t], [h|ee(t)], oe(t))

We need a B ∈ S for clause body.
Preferably subterms of arguments of A should be used (for termination).
What about [h|t] t ? B = s(t, oe(t), ee(t)) ?
This suggests C2 = s([H|T], [H|ET], OT)← s(T,OT,ET).

(Each) A covered by C2. S |= C2.
P terminates for any query s([e1, . . . , en], t, t′) (maybe nonground).
P = {C1, C2} correct & complete w.r.t.S.

34 / 38

Introduction Basics Correctness+ Constructing Diagnosis Example Comments Transformations

Constructing correct+ programs, comments

Summary of the approach: 1. each atom A ∈ Scompl is covered
2. each clause correct w.r.t. Scorr

3. termination. . .

This proposal is rather obvious
I see it as

good practices of competent programmers made explicit

+ Approximate specifications crucial
Beginning with exact specification Scompl = Scorr is often
unnecessary & counterproductive
We should not/cannot decide in advance

what insert/3 (of insertion sort) should do with unsorted lists
what append/3 should do with non-lists

35 / 38

Introduction Basics Correctness+ Constructing Diagnosis Example Comments Transformations

On semantics-preserving program transformations

Program development: P1, . . . , Pn ∀i Scompl ⊆MP i ⊆ Scorr

The programs may be not equivalent
– distinct relations for the same predicate in Pi, Pj

{ q(~t) ∈MP i } 6= { q(~t) ∈MP j }

The paradigm of
semantics-preserving program transformations

too restrictive

Ex.: Construction of SAT-solver [D_’18, Howe+King’12]
P1, P2, P3, P

↑
Prolog program

; distinct semantics of the main predicates in P1, P2.

[D_’18] illustrates the methods presented here + . . .

36 / 38

Introduction Basics Correctness+ Constructing Diagnosis Example Comments Transformations

More precisely
Program development: P1, . . . , Pn ∀i Scompl ,i ⊆MP i ⊆ Scorr ,i

The specification is constant for some main predicates, so
∀i Scompl ,q ⊆ { q(~t) ∈MP i } ⊆ Scorr ,q

37 / 38

Introduction Basics Correctness+ Constructing Diagnosis

Declarative diagnosis (algorithmic debugging)

All the declarativeness gone, when it comes to debugging

Next file of slides

38 / 38

	Introduction
	Outline

	Basics
	Basics
	Correctness, completeness
	Examples
	Approximate specifications
	Example, insertion sort

	Correctness+
	Proving program correctness
	Example correctness proofs
	Proving completeness
	Example completeness proof
	Proving correctness+, comments

	Constructing correct+ programs
	Example
	Comments
	On semantics-preserving program transformations

	Declarative diagnosis

