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Ex.: Now, we compute the factorial usign bottom up method so we start with the trivial
P g p

problem of computing the factorial of 0 and continue with the factorial of 1, 2 and so on till
the factorial of N is known. [..] we [..] store the computed facts using additional parameters.
[..] we remember [...] the factorial of M in the M-th step.

fact_bu(N,F):-fact_bul(0,1,N,F).

fact_bul(N,F,N,F).

fact_bul(N1,F1,N,F):-

This file includes examples, slides and slide overlays not used N1<N, N2 is Ni+1, F2 is N2#F1, fact_bul(N2,F2,N,F).

in the presentation . ,
(From a Prolog tutorial [Bartak’98))

Declarative descriptions:
% fact_bul(N',F',N,F)-if0 < N <N and F' = Nl then F = N!
or —F=Fsx(N'+1)% (N'+2)*---x N

We do not understand a program
without understanding the relations it defines.
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ThlS talk Outllne — main issues of the talk

A look at the basics of LP Introduction; basic notions.

1. Reasoning (declaratively) about correctness™ of programs.
Role of approximate specifications.

LP in Prolog

2. A systematic way of constructing correct™ programs.
Practical Prolog programming can be declarative from specifications.
Limitations of semantics preserving program transformations.
or

Prolog can be used for LP 3. Declarative diagnosis (aka.algorithmic debugging) made useful.

to an extent larger than usually supposed/understood/meant.
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Program correctness in LP Introduction

Imperative .
partial correctness

programming : )
VRN » Basics of LP
» Specifications
LP: correctness completeness P
» Correctness and completeness
correctness = the answers of the program are as required > Examples
completeness = all required answers are answers of the program > Approximate specifications

Df.: correctness™ = correctness + completeness

(full correctness?)
(double correctness?)
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Basics Basics e Ex. approximate Ex.

Basics of LP

terminology clash
logic <> Prolog

Df.: Query — conjunction Ay, ..., A,, of atoms (atomic formulae)

) ?

Program — set of clauses Aj <+ Ay,..., A,

Answer of a program P — query () such that P = @

(correct answer)

computed answer substitution

0

SLD-resolution — obtaining answers Q6 from an initial query @

Computed vs. correct answers?
We do not need to distinqguish them

~» soundness and completeness of SLD-resolution
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Basics e Ex. approximate Ex.

Notation

P = A - A logical consequence of P
SEA - Atruein S

P a theory
S an interpretation

‘HB (Herbrand base) — the set of ground atoms
Mp={Ae€HB| P} A} - the least Herbrand model of P
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Basics Basics e Ex. approximate Ex

Specifications

LP — relational programming.

A logic programmer has to understand the relations defined by her program.

Specification — should describe for each predicate symbol
a relation on ground terms. So:

Df.: Specification — Herbrand interpretation S C HB

(L.e. a set of ground atoms).

The relation for p: [p] = {t| p(t) € S}

Ex.:

0
Smember

= {mem(e;,[e1,...,en]) EHB|1<i<n}
List membership
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Basics e Ex. approximate Ex

Note

Specificati crucial for program understanding
pectiications (in LP) N
play the role of loop invariants (in imperative programming)
or assertions

“understanding a loop means understanding its invariant”
(maybe without explicitly referring to this notion)
[Furia,Meyer,Velder'14 ACM C.Surveys]
[Dijkstra’??]
A bit of code:
Is ¢ here the number of the last

. A[Z] . <— already processed element of A?
Or the first unprocessed one?

On programmers who have not learnt about invariants:
if they understand what they are doing they are relying on some intuitive understanding
of the invariant anyway, like Moliére’s Mr. Jourdain speaking in prose without knowing it.
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Basics e Ex. approximate Ex

Basics

Basics Basics e Ex. approximate Ex.
Note Detalls, answers of correct / complete programs

R crucial for program understanding

Specifications (in LP) N4
play the role of loop invariants (in imperative programming) Non-atomic, non-ground answers
or assertions
“understanding a loop means understanding its invariant” Th.: P correct wrt.Q: @ an answer of P = S | Q.
(maybe without explicitly referring to th.is notion) , P complete w.rt.Q: SkE=Q = Q an answer of P,
[Furia,Meyer,Velder'14 ACM C.Surveys] when @ ground, or the alphabet of function symbols infinite, or...

[Dijkstra’??]

LP: understanding a program = understanding the relations Ex.: (the extra conditions at completeness)

it defines
Alphabet {f/1,a/0}, P ={p(f(X)). p(a).}, S =HB=Mp.
P complete w.r.t. S.
S Ep(Y), but p(Y) is not an answer of P.
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Basics e Ex. approximate Ex

Basics ® Ex. approximate Ex.

Correctness™ of programs Examples (specifications, correctness, completeness)

Appending lists

Let S — a specification, P — a program. - , np
P prog Seop = L app(k,l,m) € HB | k,l,m are lists, k"l =m },
~ means list concatenation.
Df.: P is correct w.r.t. S when Mp C S. The same in another notation:
P is complete w.r.t. S when S C Mp. {app([z1, .. 2k), Y1y s Ym), [T1 o Ty YLy -+ Ym]) € HB | k,m € N}
Declarative notions, Standard program app:  app( ||, L, L ).

independent from any operational semantics app([H|K], L, [H|M]) < app( K, L, M ).

LOGIC + CONTROL works, as APP complete w.r.t. S3 -, but not correct.  aPP = app([], 6, 6)

correctness™ independent from coNTROL ‘ . . ‘
app does not define the list appending relation (Mapp # Sy,,)-

(There are even opinions that ApP is a wrong program.
It is not, see the next slide.)
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X. approximate Ex Basics Basics e [Ex. approximate Ex

Basics

Example (cont'd) Approximate specifications
APP correct w.r.t. the following specifications
if £ and [ are lists specification for completeness
_ . . for list
Sapp,t = § app(k,l,m) € HB g:]zn];\ll is a list apponding —
=m
Usual . T
o is a list citustion: required erel[(\é:vant HB
_ . for list
Sapp.2 = § app(k,l,m) € HB thednkkAland [ are lists aplitting -
an =m ~
specification for correctness
]Tt ';s a list, [ i Approximate specification:  (Scompis Scorr)
it [ or m is a list : +.
Sapp = % app(k,1,m) € HB then .m are lists precise, Correctness™: Secompt © Mp C Scorr
d k’,\l o usages ) ) ]
an =m Mp may differ in different programs for the same task
Sapp C Sappt N Sapp.2 or at various stages of program development
16 /38 17 /38
Basics e Ex. approximate FEx Basics e Ex. approximate Ex.
Approximate specifications Approximate specification, example, insertion sort
Ex. (we cannot know in advance, if A € Mp):
specification for completeness insert/3 — inserting a number into a sorted list
—_—
Should we accept A = insert(2,(3,1],(2,3,1])? It's irrelevant!
U.Sl"al_ required irrelé:vant HB Approximate specification: (5,4, Sinsert)r A € Sinsert \ Sisers
situation:
~ g . n & 7, or
Fcation f .
specification for correctness S = msert(n,ellaig) I; not a sorted list » U S?nse’rt
Approximate specification:  (Scompts Seorr) of integers
Correctness™: Seompt € Mp C Seopr

When we build a program,
not known in advance if a given A € Seompi \ Seorr 1S N Mp
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Basics 3asics X. approximate Ex. Correctness T Correctness Ex. Completeness Ex. Comments

Approximate specification, example, insertion sort Proving program correctness

Ex. (we cannot know in advance, if A € Mp): Th.[Clark'79]; (the simplest theorem of LP ** )
insert/3 — inserting a number into a sorted list Let .S — a specification, P — a program.
Should we accept A = insert(2,[3,1],[2,3,1])? It's irrelevant! It S= P then P correct wrt. S.
Approximate specification: (SY ... Sisert)s A € Sinsert \ S%eors Proof: SEP = MpCSDO

Note: S |= P means

o [ insert(n,11,15) | Ii,15 are sorted lists of integers, for each ground instance H < By,..., B, of a clause of P
insert — e HB elms(lg) _ {n} U elms(ll) if By,...,B, € Sthen He S
where elms(l) — the multiset of elements of [ The Th. — a declarative way to prove a declarative property.
, if n €7 and The Th. should be well-known, but is unacknowledged.
S msert(n, l1;_i2[))) I, is a sorted list of integers, Instead, more complicated methods based on operational semantics, on
c ] ~ - B . . ) ,
then insert(n,ly,ly) € Szonse’r‘t pre- and postconditions for LD-resolution [Bossi+Cocco’89,Apt'97....].
18 /38 20/ 38
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Correctness T Correctness Ex. Completeness Ex. Comments

Correctness

Correctness Ex. Completeness Ex. Comments

Reasoning (declaratively) about correctness™ Example correctness proof

of programs [For each H + By,..., B, € ground(P), if By,..., B, € 5 then H € 5.

Program + specification:

SPLIT: s([1 115 [D)- (1)
» Proving correctness s([X|Xs], [X|Ys]|, Zs) < s(Xs,Zs,Ys). (2)
> Proving completeness S ={s(l,l,l) | ,1,1y are lists, 0 < [ly] — |lo] <1},

Proof: where |I| — the length of a list [.

Consider a ground instance s([h|t], [h|ta], t1) < s(t, t1,t2) of (2).
Assume s(t,t1,t2) € S. Thus [h|t], [h|te], t1 are lists. Let m = [t1]|—|t2].
As m € {0,1}, we have |[h|t2]| — |t1] =1—m € {0,1}.

So the head s([h|t], [h|t2],t1) is in S. The proof for (1) is trivial.

Thus program SPLIT correct w.r.t. specification .S.
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Correctness T Correctness Ex. Completeness Ex. Comments Correctness T Correctness Ex. Completeness Ex. Comments

Example correctness proof 2 Example correctness proof 3 (cont'd)
If S P then P correct w.rt. S. m(E, [, |L1], [L|L2]) ¢ m(E, L1, L2). (3)
We need to show: . SM = {middle(bi, [bl, ceey bgl;l]) € HB | 7> 0}
for each H«By,..., B, € ground(P) if By,...,B, € Sthen H € S U {m(t,1,t') € HB |t is not a list }
, if Ll or m is a list then U{m(b;,lar,-..,az-1],[b1,...,bp]) EHB|n>i>0}
Sapp = {app(k:,l,m) € HE k,l,m are lists and k"l =m I B
APP: app([],L,L). app([H|K], L,[H|M]) < app( K, L, M ). Take a ground instance ;n(e, le1, ea|lh], [es|l2]) < m(e,lq, ZJ of (3).
Assume B € Sy. Then
Nontrivial part of a correctness proof for APP w.r.t. S : 1. 15 is not a list, thus H € Sy, or
H B 2.€:bi,11:[al,...,agi_l],lgz[bl,...,b],’I’LZi>0. Hence

Take a ground app([h|k], 1, [h|m]) < app(k,l,m), assume B € S ; H =m(b;,[e1,e,a1,...,a2-1],[e3,b1,...,by]). Renumber it:

assume [ or [h|m] is a list, show that [h|k]"l = [hlm]; so H € Sapp. H=m(bj,a, ... aa’Q(iH),l], 04,y b))

o . ~ h +1)> (i +1) > 0.
(lormisalist = k,l,marelists = k"l =m) Thus H € Sy. O where (n+1) > (i +1)
Similar to informal reasoning about a program Similar to informal reasoning about a program
by a competent declarative programmer. by a competent declarative programmer.
22/ 38 24/ 38
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Example correctness proof 3 Reasoning about program completeness
MIDDLE:  middle(Mid, L) <+ m(Mid, L, L). (1)
m(E, [ ], [E]]). (2)

m(E, |, _|L1],[_|L2]) « m(E, L1,L2).  (3)

Y

Surprising:  the subject has been neglected!

SM = {mzddle(bl, [bl, - -;b2i—1]> € HB | 1> O}
U{m(t,[,t') € HB | t' is not a list}

b;, _1],1b1,...,b > Except for
Dimlbslar, -zl b, b} € HB [m 2> 0) [Deransart+Matuszynski'93], [Sterling+Shapiro’94] (informally),

[D_+Mitkowska'05], [D_"16,"18]; | am not aware of any other work.

If S = P then P correct w.rt. S. , . ,
[Hogger'84], [Kowalski'85] — the notion of completeness,
We need to show: but not reasoning about it.
for each H+By,..., B, € ground(P) if By,...,B, € S then H € S.

Non-obvious part of a correctness proof for MIDDLE w.r.t. Sy

Take a ground instance H <+ B of (3). Show that
if B € Sy then H € Sy
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Correctness T Correctness Ex. Completeness Ex. Comments

Semi-completeness

completeness = semi-completeness + termination

Df.: P is complete for a query @ w.r.t.S if for any ground Q6
SE QI = Q0is an answer for P.

(P produces all the required answers for @).)

Df.: P is semi-complete w.r.t.S if P is complete w.r.t..S for any
query for which there exists a finite SLD-tree.
(P produces all the required answers, if the computation terminates.)

Lemma: If P is semi-complete w.r.t..S, and
P terminates (under some selection rule) for each query A € §
then P is complete w.r.t. S.
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Correctness Correctness Ex. Completeness Ex. Comments

Sufficient condition for completeness

completeness = semi-completeness + termination

Df. H € HB is covered by P w.r.t. S if there is a clause
(H+Ay, ..., A,) € ground(P) in which Ay,..., A, € S.

(A covered atom can be produced by a clause of P
from atoms required by S to be produced.)

Th. (sufficient condition):
If each atom from S is covered w.r.t..S by P

then P is semi-complete w.r.t..S.

Proving program termination — not discussed here.
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Correctness T Correctness Ex. Completeness Ex. Comments

Example

SV = {app(k,l,m) € HB | k,l,m are lists, k"l =m },

app

app: app([],L,L).
app([H|K], L, [H|M]) = app( K, L, M ).

Let H € S

app’

1. H=app([],1,1). H € ground(ApP)

2. H=app(k,l,m), k#[], k"l =m. So H is the head of

app([BIK'], 1, [hlm']) < app(k',1,m’) and app(k',1,m’) € SO,

We show that H is covered by APP w.rt. SJ .

Thus APp semi-complete w.r.t. SO .

We know that P terminates for any query from S.

0
Hence AP complete w.rt. S, .
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Correctness T Correctness Ex. Completeness Ex. Comments

Reasoning about completeness, comments

Not fullg declarative, as termination is an operational property.
(Proving semi-completeness purely declarative)

But termination has to be established anyway.

So the not fully declarative approach seems reasonable.

A declarative sufficient condition exists [Deransart+Matuszynski'93].
But it leads to completeness proofs similar to
proving semi-completeness + termination.

Semi-completeness alone: Computation terminates =
all required (by the specification) answers have been produced.
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Correctness T Correctness Ex. Completeness Ex. Comments

Proving correctness™, comments

In my opinion
the sufficient conditions for correctness & (semi-) completeness

are declarative — abstract from operational semantics
(except for termination, which is needed anyway)

are simple (cf. Hoare rules for imperative programming)
correspond to a natural way of thinking by a declarative programmer

can be used in every-day programming
at various levels of (in)formality

provide a guide how to reason about programs
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Constructing Example Comments Transformations

Constructing correct™ programs

How to construct a program
for an approximate specification S = (Scompl7 Scor,«)

Provide clauses so that

O each atom A € Scompi s covered (w.rt. Scompi) by some clause

® each clause satisfies the sufficient condition for correctness

(w.rt. Seorr)
(this produces a program correct and semi-complete w.rt. S;

not enough, p(X)<p(X) possible)

©® the clauses satisfy some sufficient condition for termination

informally: p(3) < ..., p( f)
/l\

bigger terms smaller terms

Result: a program correct and complete [D_"18]
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Constructing Example Comments Transformations

A more interesting example — file ex.insert*.pdf
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Constructing Example Comments Transformations

Constructing correct™ programs, example

Splitting a list into its odd- and even- numbered elements.

S ={s(l,oe(l),ee(l)) € HB |l is a list }

where oe(l) — the list of odd elements of list

(oe(lery ... en]) = [e1,e3,...])
ee(l) — the list of even elements of list [

(e.g. s([1,2,3,4,5],[1,3,5],[2,

An unusual case of exact specification!

Construct a program correct™ w.r.t. (5, 5).

33/38
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Constructing Example Comments Transformations

Constructing correct™ programs, example

Summary of the approach: 1. each atom A € S,y is covered
2. each clause correct w.r.t. S
3. termination...

S ={s(l,0e(l),ee(l)) | [ is a list}. Two kinds of elements of S:
s([1,11,[])- Covered by clause Cy = s([],[],]])- S E Ch.

2. A =s([hlt], [h|ee(t)], oe(t))

We need a B € S for clause body.
Preferably subterms of arguments of A should be used (for termination).

What about [h[t] ~ ¢ ? B = s(t,o0e(t), ee(t)) ?
This suggests A+ B € ground(P)
34/ 38

Constructing Example Comments Transformations

Constructing correct™ programs, example

Summary of the approach: 1. each atom A € S.omp; is covered
2. each clause correct w.r.t. S.or
3. termination. ..

S ={s(l,0e(l),ee(l)) | I is a list}. Two kinds of elements of S:
S50, 1)- Covered by clause €y = s([1,[],[}). = Cu.

2. A= s([hlt], [hlee(t)], oe(t))

We need a B € S for clause body.

Preferably subterms of arguments of A should be used (for termination).

What about [A[t] ~ ¢ ? B = s(t,0e(t),ee(t)) ?

This suggests Co = s([H|T|,[H|ET],OT) «+ s(T,OT, ET).
(Each) A covered by Cy. S |= Ch.

P terminates for any query s([eq, ..., e,],t,t') (maybe nonground).
P ={Cy,Cy} correct & complete w.r.t. S.
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Constructing Example Comments Transformations

Constructing correct™ programs, comments

Summary of the approach: 1. each atom A € Sy is covered
2. each clause correct w.r.t. Seopr
3. termination...

This proposal is rather obvious

| see it as
good practices of competent programmers made explicit

1= Approximate specifications crucial

Beginning with exact specification Scomp = Scorr is often
unnecessary & counterproductive

We should not/cannot decide in advance
what insert/3 (of insertion sort) should do with unsorted lists
what append/3 should do with non-lists
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Constructing Example Comments Transformations

On semantics-preserving program transformations

Program development: Py,..., P, Vi Scompi € Mp; C Seopr

The programs may be not equivalent
— distinct relations for the same predicate in F;, P;

{q(f) € Mp; } # {qlt )EMPj}

The paradigm of
semantics-preserving program transformations

too restrictive
Ex.: Construction of SAT-solver [D_"18, Howe+King'12]
Py, Py, P;, P; distinct semantics of the main predicates in Py, P.

Prolog program

[D_"18] illustrates the methods presented here + ...
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Constructing Example Comments Transformations

More precisely
Program development: Py,..., P, Vi Scompii € Mp; C Seorr
The specification is constant for some main predicates, so

Vi Seomptg € {a(t) € Mp;} C Seorrg

371738

Declarative diagnosls (algorithmic debugging)

All the declarativeness gone, when it comes to debugging

Next file of slides
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