Example. Systematic program construction

Włodzimierz Drabent

LOPSTR 2021

Version 0.4 of September 7, 2021

insert/3 of insertion sort (inserting a number into a sorted list) Specification: (S^0,S)

$$S^0 = \left\{ i(n, l_1, l_2) \in \mathcal{HB} \; \middle| \; \begin{array}{l} l_1, l_2 \text{ are sorted lists of integers,} \\ elms(l_2) = \{n\} \cup elms(l_1) \end{array} \right\}$$

where $\mathit{elms}(l)$ — the multiset of elements of l

$$S = \left\{ i(n, l_1, l_2) \in \mathcal{HB} \mid \begin{array}{l} n \notin \mathbb{Z}, \text{ or } \\ l_1 \text{ not a sorted list } \\ \text{of integers} \end{array} \right\} \cup S^0$$

insert/3 of insertion sort (inserting a number into a sorted list) Specification: (S^0,S)

$$S^0 = \left\{ \begin{array}{l} i(n,l_1,l_2) \in \mathcal{HB} \; \left| \begin{array}{l} l_1,l_2 \text{ are sorted lists of integers,} \\ elms(l_2) = \{n\} \cup elms(l_1) \end{array} \right. \right\} \\ \cup \left\{ i < j | \ldots \right\} \cup \ldots \right.$$

where elms(l) – the multiset of elements of l

$$S = \left\{ i(n, l_1, l_2) \in \mathcal{HB} \mid egin{array}{l} n
otin \mathbb{Z}, \text{ or } \\ l_1 \text{ not a sorted list } \\ \text{of integers} \end{array}
ight\} \cup S^0$$
 $\cup \left\{ i < j \mid \ldots \right\} \cup \ldots$

Summary of the approach: 1. each atom $A \in S^0$ is covered w.r.t. S^0

- 2. each clause correct w.r.t. S
- 3. termination...

- 1. $i(n,[],[n]) \in S^0$.
- 2. $A = i(n, [h|t], [n, h|t]), n \le h.$
- 3. A = i(n, [h|t], [h|t']), n > h.

Summary of the approach: 1. each atom $A \in S^0$ is covered w.r.t. S^0

- 2. each clause correct w.r.t. S
- 3. termination...

- 1. $i(n,[],[n]) \in S^0$. Covered by clause $C_1 = i(N,[],[N])$. $S \models C_1$.
- 2. $A = i(n, [h|t], [n, h|t]), n \le h.$
- 3. A = i(n, [h|t], [h|t']), n > h.

Summary of the approach: 1. each atom $A \in S^0$ is covered w.r.t. S^0

- 2. each clause correct w.r.t. S
- 3. termination...

- 1. $i(n,[],[n]) \in S^0$. Covered by clause $C_1 = i(N,[],[N])$. $S \models C_1$.
- 2. A=i(n,[h|t],[n,h|t]), $n\leq h$. Covered by C=i(N,[H|T],[N,H|T]), $S\not\models C$.
- 3. A = i(n, [h|t], [h|t']), n > h.

Summary of the approach: 1. each atom $A \in S^0$ is covered w.r.t. S^0

- 2. each clause correct w.r.t. S
- 3. termination...

- 1. $i(n,[],[n]) \in S^0$. Covered by clause $C_1 = i(N,[],[N])$. $S \models C_1$.
- 2. A=i(n,[h|t],[n,h|t]), $n\leq h$. Covered by C=i(N,[H|T],[N,H|T]),
- $S \not\models C. \stackrel{\raisebox{...}{\rlap{.}}}{\frown} \quad \text{Correct it: } C_2 = C \leftarrow N \leq H. \quad S \models C_2. \ \ A \ \text{Covered by } C_2.$
- 3. A = i(n, [h|t], [h|t']), n > h.

- Summary of the approach: 1. each atom $A \in S^0$ is covered w.r.t. S^0
 - 2. each clause correct w.r.t. S
 - 3. termination...

Specification (S^0, S) . Three kinds of elements of S^0 :

- 1. $i(n,[],[n]) \in S^0$. Covered by clause $C_1 = i(N,[],[N])$. $S \models C_1$.
- 2. A=i(n,[h|t],[n,h|t]), $n\leq h$. Covered by C=i(N,[H|T],[N,H|T]),

$$S \not\models C$$
. $\stackrel{\cdot \cdot}{\frown}$ Correct it: $C_2 = C \leftarrow N \leq H$. $S \models C_2$. A Covered by C_2 .

3. A = i(n, [h|t], [h|t']), n > h. Note that $i(n, t, t') \in S^0$.

A covered by $C' = i(N, [H|T], [H|T']) \leftarrow i(N, T, T')$. $S \not\models C$.

Summary of the approach: 1. each atom $A \in S^0$ is covered w.r.t. S^0

- 2. each clause correct w.r.t. S
- 3. termination...

Specification (S^0, S) . Three kinds of elements of S^0 :

- 1. $i(n,[],[n]) \in S^0$. Covered by clause $C_1 = i(N,[],[N])$. $S \models C_1$.
- $2. \ A=i(n,[h|t],[n,h|t]) \text{, } n\leq h. \quad \text{Covered by } C=i(N,[H|T],[N,H|T]) \text{,}$

$$S \not\models C$$
. $\stackrel{\cdot \cdot \cdot}{\frown}$ Correct it: $C_2 = C \leftarrow N \leq H$. $S \models C_2$. A Covered by C_2 .

3. A=i(n,[h|t],[h|t']), n>h. Note that $i(n,t,t')\in S^0$.

A covered by $C'=i(N,[H|T],[H|T'])\leftarrow i(N,T,T')$. $S\not\models C$. $\stackrel{\bullet}{\frown}$ Correct it: $C_3=C',N>H$. $S\models C_3$. A covered by C_3 .

$$P = \{C_1, C_2, C_3\}$$
 correct & complete w.r.t. (S^0, S) .