
Feasibility of
Declarative Diagnosis (DD)

a.k.a. Algorithmic Debugging
Włodek Drabent

Insitute of Computer Science, Polish Academy of Sciences

v. 0.7 1



Prolog makes declarative programming possible
(at least to a substantial extend)

A Prolog programmer can focus on “logic”
(“control” of secondary importance)

··_ But: Declarativeness broken
when it comes to debugging

The Prolog debugger - purely operational,
forces us to abandon declarative thinking

Declarative methods exist, but are neglected.
We show why
We show how to overcome the problems.

v. 0.7 2



Debugging – diagnosis (locating errors) +

+ error correction

Declarative diagnosis (DD) / algorithmic debugging
[Shapiro83]

program, symptom
↓

DD algorithm

queries
GGGGGGGGGGGGA

about the
intended model
DGGGGGGGGGGGG

answers

user
(oracle)

↓
located error

v. 0.7 3



Symptom – a wrong result of the program
Error – the/a reason for the symptom
Intended model M – the specification

(the least Herbrand model of the intended program)

v. 0.7 4



Incorrectness
symptom – wrong atomic answer A (M 6|= A)
error – incorrect clause C (M 6|= C), instance of a program clause
DD query – “is A correct?” (does M |= A? i.e. is A a non-symptom?)

Incompleteness
symptom – atomic query A which terminates with missing answers

(∃θM |= Aθ, but Aθ is not an instance of any
computed answer for A)

:
error – A for which some required answer Aθ cannot be produced

by any clause of the program out of M
(no program clause instance Aθ ← ~B whereM |= ~B)
Note: This is what (Pereira style) diagnosers find,

although one may like to consider Aθ as an error
DD query – “is A with answers Aθ1, . . . , Aθn a non-symptom?”

v. 0.7 5



DD algorithms
1. Extract from the computation a DD search tree
(of oracle queries, the root is the initial symptom).
2. Search it for a target
(a symptom with all children not being symptoms).

v. 0.7 6



Incorrectness diagnosis
DD search tree = proof tree (each node with its

children – an instance of a program clause)
A target with its children - incorrectness error.

Incompleteness diagnosis (Pereira style)
DD search tree:

node – a procedure call + its computed answers
from the computation

children of a node A –
the top level procedure calls used to evaluateA

with their answers

Incompleteness error – the procedure call in the target
v. 0.7 7



Intended model problem – main obstacle to DD

+ The intended model often not known! +

Ex. insert/3 of insertion sort
DD query: Is B correct?

B = insert(2, [3, 1], [2, 3, 1]) – ??
B1 = insert(2, [1, 3], [1, 2, 3]) – YES
B2 = insert(2, [1, 3], [1, 3, 2]) – NO

The user does not (and should not) know how insert/3
should behave on unsorted lists
(Various versions possible, lead to different debugged programs)

The intended model problem makes DD
inapplicable in many practical cases.

v. 0.7 8



Intended model problem – solution
Realize that our (formal/informal)

specifications are approximate

specification for completeness
S0︷ ︸︸ ︷

required

1

irrelevant erroneous


HB

︸ ︷︷ ︸
MP︸ ︷︷ ︸

S
specification for correctness

v. 0.7 9



Approximate specification – S0, S,
a pair of Herbrand interpretations

P correct
P complete w.r.t. S0, S if MP ⊆ S

S0 ⊆MP

v. 0.7 10



Ex. Approximate specification S0
insert , Sinsert for insert/3

For completeness S0
insert = insert(n, l1, l2) ∈ HB

∣∣∣∣∣∣ l1, l2 are sorted lists of integers,
elms(l2) = {n} ∪ elms(l1)

 ,
where elms(l) – the multiset of elements of l

For correctness Sinsert = insert(n, l1, l2) ∈ HB

∣∣∣∣∣∣∣∣∣
if n is an integer and
l1 is a sorted list of integers,
then insert(n, l1, l2) ∈ S0

insert

 .

v. 0.7 11



This solves the intended model problem:

Perform α diagnosis using the specification for α
as the intended model

where α ∈ {incorrectness, incompleteness}

Standard DD algorithms sufficient.
No additional sophistication needed
(like inadmissible atoms [Pereira’86] ,

3-valued DD with 2 kinds of bugs [Naish’00] , . . . )

v. 0.7 12



Inconveniences of DD algorithms

The order of DD queries imposed by the algorithm
The user cannot

postpone difficult queries
correct her buggy answers
make assumptions (what if this were correct?)

v. 0.7 13



Solution: non-algorithmic DD

Searching of DD search trees
– simple and can be done by the user

What is really needed:
a debugger working in terms of declarative semantics

v. 0.7 14



program, symptom
↓

DD
tool −→

DD
search
tree

←
←
←

user

Experience with prototypes
(for incorrectness, for incompleteness) :

More convenient than DD algorithms
than Prolog debugger

v. 0.7 15



Prolog debugger – a powerful tool
Surprisingly, not useful for obtaining
the nodes of a DD search tree [Dra19]
(especially for incorrectness diagnosis)

v. 0.7 16



Extracting DD search trees
out of a Prolog execution
Rather obvious, except for

v. 0.7 17



Coroutining + incompleteness diagnosis
We need
all computed answers for a given procedure call A
They actually may not be produced

due to unfrozen/frozen calls between A and its success

Let pseudo-answer – answer in presence of coroutining
(i) A call unfrozen –

a pseudo-answer an instance of a computed answer
(Note:E
an instance
of E)(ii) A call delayed –

a pseudo-answer more general than a computed answer
(or the latter does not exist)

(i) + (ii) – a combination of the above

v. 0.7 18



Solutions (partial)
1. Re-executing A alone

May not terminate; apply a time limit

2. If no (i) occurred,
A with its pseudo-answers is a symptom
⇒ A with computed

unknown
answers is a symptom.

3. If no (ii) occurred,
A with its pseudo-answers is not a symptom
⇒A with computed

unknown
answers is not a symptom.

4. Construct a computed answer
out of the clauses used to obtain a pseudo-answer

v. 0.7 19



OK if no (ii) occurred.
In case (ii) frozen calls are to be executed

(may not terminate, apply a time limit)
Otherwise we obtain Aθ more general than a (possible)
computed answer; solution 2 applies

5. Something else ?
Could we find a DD method, which uses DD queries (A,Aθ1, . . . , Aθn)
where A is an instance of an actual procedure call A0

(and Aθ1, . . . , Aθn are the computed answers for A, and
the queries can somehow be obtained from the actual computation) ?

v. 0.7 20



Comments
* DD applicable to “real” Prolog programs

(i.e. to their “declarative aspects”)
E.g. my prototype tools (≈ 400+200 lines without comments)
used to debug themselves

* Experiments needed to evaluate diagnosis approaches.
Problem: How to make them realistic?

What makes useful bug examples?
The author solicits interesting buggy programs. +

v. 0.7 21



* DD for ASP – separate issue,
as the role of answers is substantially different
Known how to do:

DD for NAFF (negation as finite failure)
approximate specifications for NAFF

* Various pragmatic issues not discussed here.
Effective user interfaces (. . . presenting big trees, big terms)
choice of implementation approaches, dealing with built-ins,
debugging guide, . . .

* Query complexity of DD algorithms – impractical

v. 0.7 22



Summary, main points
DD of logic programs
Intended model problem – possibly the main reason
for non-acceptance of DD
A tool to inspect DD search trees
more suitable than a DD algorithm
Difficult case

– incompleteness diagnosis + coroutining
A partial solution given

v. 0.7 23



We often teach a programming language instead of
teaching programming.
Even if we teach programming, we often do not
teach debugging.
[Mireille Ducassé]

v. 0.7 24


