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Prolog makes declarative programming possible
(at least to a substantial extend)

A Prolog programmer can focus on “logic”
(“control” of secondary importance)

··_ But: Declarativeness broken
when it comes to debugging

The Prolog debugger - purely operational,
forces us to abandon declarative thinking

Declarative methods exist, but are neglected.
We show why
We show how to overcome the problems.
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Debugging – diagnosis (locating errors) +

+ error correction

Declarative diagnosis (DD) / algorithmic debugging
[Shapiro83]

program, symptom
↓

DD algorithm

queries
GGGGGGGGGGGGA

about the
intended model
DGGGGGGGGGGGG

answers

user
(oracle)

↓
located error
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Symptom – a wrong result of the program
Error – the/a reason for the symptom
Intended model M – the specification

(the least Herbrand model of the intended program)
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Incorrectness
symptom – wrong atomic answer A (M 6|= A)
error – incorrect clause C (M 6|= C), instance of a program clause
DD query – “is A correct?” (does M |= A? i.e. is A a non-symptom?)

Incompleteness
symptom – atomic query A which terminates with missing answers

(∃θM |= Aθ, but Aθ is not an instance of any
computed answer for A)

:
error – A for which some required answer Aθ cannot be produced

by any clause of the program out of M
(no program clause instance Aθ ← ~B whereM |= ~B)
Note: This is what (Pereira style) diagnosers find,

although one may like to consider Aθ as an error
DD query – “is A with answers Aθ1, . . . , Aθn a non-symptom?”
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DD algorithms
1. Extract from the computation a DD search tree
(of oracle queries, the root is the initial symptom).
2. Search it for a target
(a symptom with all children not being symptoms).
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Incorrectness diagnosis
DD search tree = proof tree (each node with its

children – an instance of a program clause)
A target with its children - incorrectness error.

Incompleteness diagnosis (Pereira style)
DD search tree:

node – a procedure call + its computed answers
from the computation

children of a node A –
the top level procedure calls used to evaluateA

with their answers

Incompleteness error – the procedure call in the target
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Intended model problem – main obstacle to DD

+ The intended model often not known! +

Ex. insert/3 of insertion sort
DD query: Is B correct?

B = insert(2, [3, 1], [2, 3, 1]) – ??
B1 = insert(2, [1, 3], [1, 2, 3]) – YES
B2 = insert(2, [1, 3], [1, 3, 2]) – NO

The user does not (and should not) know how insert/3
should behave on unsorted lists
(Various versions possible, lead to different debugged programs)

The intended model problem makes DD
inapplicable in many practical cases.
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Intended model problem – solution
Realize that our (formal/informal)

specifications are approximate

specification for completeness
S0︷ ︸︸ ︷

required

1

irrelevant erroneous


HB

︸ ︷︷ ︸
MP︸ ︷︷ ︸

S
specification for correctness
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Approximate specification – S0, S,
a pair of Herbrand interpretations

P correct
P complete w.r.t. S0, S if MP ⊆ S

S0 ⊆MP
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Ex. Approximate specification S0
insert , Sinsert for insert/3

For completeness S0
insert = insert(n, l1, l2) ∈ HB

∣∣∣∣∣∣ l1, l2 are sorted lists of integers,
elms(l2) = {n} ∪ elms(l1)

 ,
where elms(l) – the multiset of elements of l

For correctness Sinsert = insert(n, l1, l2) ∈ HB

∣∣∣∣∣∣∣∣∣
if n is an integer and
l1 is a sorted list of integers,
then insert(n, l1, l2) ∈ S0

insert

 .
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This solves the intended model problem:

Perform α diagnosis using the specification for α
as the intended model

where α ∈ {incorrectness, incompleteness}

Standard DD algorithms sufficient.
No additional sophistication needed
(like inadmissible atoms [Pereira’86] ,

3-valued DD with 2 kinds of bugs [Naish’00] , . . . )
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Inconveniences of DD algorithms

The order of DD queries imposed by the algorithm
The user cannot

postpone difficult queries
correct her buggy answers
make assumptions (what if this were correct?)
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Solution: non-algorithmic DD

Searching of DD search trees
– simple and can be done by the user

What is really needed:
a debugger working in terms of declarative semantics
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program, symptom
↓

DD
tool −→

DD
search
tree

←
←
←

user

Experience with prototypes
(for incorrectness, for incompleteness) :

More convenient than DD algorithms
than Prolog debugger
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Prolog debugger – a powerful tool
Surprisingly, not useful for obtaining
the nodes of a DD search tree [Dra19]
(especially for incorrectness diagnosis)
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Extracting DD search trees
out of a Prolog execution
Rather obvious, except for
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Coroutining + incompleteness diagnosis
We need
all computed answers for a given procedure call A
They actually may not be produced

due to unfrozen/frozen calls between A and its success

Let pseudo-answer – answer in presence of coroutining
(i) A call unfrozen –

a pseudo-answer an instance of a computed answer
(Note:E
an instance
of E)(ii) A call delayed –

a pseudo-answer more general than a computed answer
(or the latter does not exist)

(i) + (ii) – a combination of the above
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Solutions (partial)
1. Re-executing A alone

May not terminate; apply a time limit

2. If no (i) occurred,
A with its pseudo-answers is a symptom
⇒ A with computed

unknown
answers is a symptom.

3. If no (ii) occurred,
A with its pseudo-answers is not a symptom
⇒A with computed

unknown
answers is not a symptom.

4. Construct a computed answer
out of the clauses used to obtain a pseudo-answer

v. 0.7 19



OK if no (ii) occurred.
In case (ii) frozen calls are to be executed

(may not terminate, apply a time limit)
Otherwise we obtain Aθ more general than a (possible)
computed answer; solution 2 applies

5. Something else ?
Could we find a DD method, which uses DD queries (A,Aθ1, . . . , Aθn)
where A is an instance of an actual procedure call A0

(and Aθ1, . . . , Aθn are the computed answers for A, and
the queries can somehow be obtained from the actual computation) ?
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Comments
* DD applicable to “real” Prolog programs

(i.e. to their “declarative aspects”)
E.g. my prototype tools (≈ 400+200 lines without comments)
used to debug themselves

* Experiments needed to evaluate diagnosis approaches.
Problem: How to make them realistic?

What makes useful bug examples?
The author solicits interesting buggy programs. +
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* DD for ASP – separate issue,
as the role of answers is substantially different
Known how to do:

DD for NAFF (negation as finite failure)
approximate specifications for NAFF

* Various pragmatic issues not discussed here.
Effective user interfaces (. . . presenting big trees, big terms)
choice of implementation approaches, dealing with built-ins,
debugging guide, . . .

* Query complexity of DD algorithms – impractical
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Summary, main points
DD of logic programs
Intended model problem – possibly the main reason
for non-acceptance of DD
A tool to inspect DD search trees
more suitable than a DD algorithm
Difficult case

– incompleteness diagnosis + coroutining
A partial solution given
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We often teach a programming language instead of
teaching programming.
Even if we teach programming, we often do not
teach debugging.
[Mireille Ducassé]
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