A General Measure of Rule Interestingness

Szymon Jaroszewicz, Dan A. Simovici

January 15, 2002

Abstract

The paper presents a new general measure of rule interestingness.
Many known measures such as x?, gini gain or entropy gain can be ob-
tained from this measure by setting some numerical parameters represent-
ing the amount of trust we have in the estimates of certain probabilities
from the data. Moreover we show that there is a continuum of measures
having x2, Gini gain and entropy gain as boundary cases. Properties and
experimental evaluation of the new measure are also presented.

Keywords: interestingness measure, distribution, Cziser divergence
Kullback-Leibler divergence, rule.

1 Introduction

Determining the interestingness of rules is an important data mining prob-
lem. Many data mining algorithms produce enormous amounts of rules,
making it impossible for the user to analyze all of them by hand. It is thus
essential to establish some measure by which rules interestingness can be
expressed numerically and used, for example, to sort the discovered rules.

Many such measures have been proposed, and used in literature (see [1]
for a survey). In this paper we concentrate on measures that assess how
much knowledge we gain on the joint distribution of a set of attributes Q
from the knowing the joint distribution of some set of attributes P.

Examples of such measures are entropy gain, mutual information, Gini
gain, x> [7, 9, 3, 1, 11, 10]. The rules considered here are thus different
from association rules studied in data mining, since we consider full joint
distributions of both antecedent and consequent, while association rules
consider only the probability of all attributes having some specified value.
This approach has the advantage of natural applicability to mulitvalued
attributes.

In this paper we demonstrate that all the above mentioned measures
are special cases of a more general parametric measure of interestingness,
and by choosing two numerical parameters a continuum of measures can
be obtained containing several well-known interesting measures as special
cases.

Next, we give some essential definitions.



Definition 1 A probability distribution is a matriz of the form

A (xl xm),
p1 o Pm
'wherepiEOforlSiSmandzglpizl,
1

A is an uniform distribution if p1 = -+ = pm =
uniform distribution will be denoted by Uy, .

Let 7 = (T, H,p) be a database table, where T is the name of the
table, H is its heading, and p is its content. If A € H is an attribute
of 7, the domain of A in 7 is denoted by dom(A). The projection of a
tuple t € p on a set of attributes L C H is denoted by t[L]. For more on
relational notation and terminology see [13].

An m-valued

Definition 2 The distribution of a set of attributes L = {A1,... ,An} is

the matrizc
b - &)
AL, = , 1
L, (p1 e (1)

where r = [[7_, [dom(4;)|, & € dom(A;) x --- x dom(Ay), and p; =

7“6”'75]:[” for1<i<r.

The subscript 7 will be omitted when the table 7 is clear from context.
Suppose that the distribution of the attribute set L in the table 7 =

(T,H,p)is
AL = (51 gr>
pl .- pr :

The Havrda-Charvdt a-entropy of the attribute set L (see [6]) is defined
as:

1 .
Ho(L) = T—a <ij - 1) .
Jj=1
The limit case, when a tends towards 1 yields the Shannon entropy:
H(L) = - pjlogp,
j=1

Another important case is obtained when o = 2. In this case, we obtain
the Gini index of L (see [1]) given by:

gini(L) =1-) p;.
j=1

If L, K are two sets of attributes of a table 7 that have the distributions

AL:<l1 lm)’andAK:(kl kn)
p1 DPm q1 an



then the conditional Shannon entropy of L conditioned upon K is given
by

H(LIK) = Z Zp” log 2

i=1 j=1
where p;; = {tep tEI=t: |a|nd HEI=hM for 1 <i<mandl <j < n
Similarly, the Gini conditional index of these distributions is:

gini(L|K) =1— Zzp”

’Lljlq']

These definitions allow us to introduce the Shannon gain (called entropy
gain in literature [7]) and the Gini gain defined as:

gaing,i (L, K) = gini(L) — gini(L|K),
gaing,non (L, K) = H(L) —H(L|IK)
= H(L)+H(K)—-H(LUK), (2)

respectively.
Notice that the Shannon gain is identical to the mutual information
between attribute sets P and @ [7]. For the Gini gain we can write:

gain (L, K) = ZZ”” Z 2 3)
i=1j=1 i

The product of the distributions Ap, Ag, where

Ap: (.’L‘1 SCm)’ and AQ: (yl yn),
Y41 Pm q1 qn
is the distribution
Ap x Ag = ((-’L'l:yl) (mmayn)> )
pr1q1 tee PmQn

The attribute sets P, Q are independent if Apg = Ap X Ag, where PQ
is an abbreviation for P U Q.

Definition 3 A rule is a pair of attribute sets (P, Q). If P,Q C H, where
7= (T,H,p) is a table, then we refer to (P, Q) as a rule of .

If (P, Q) is a rule, then we refer to P as the antecedent and to Q as
the consequent of the rule. A rule (P,Q) will be denoted, following the
prevalent convention in the literature, by P — Q.

This broader definition of rules originates in [3], where rules were re-
placed by dependencies in order to capture statistical dependence in both
the presence and absence of items in itemsets. The significance of this
dependence was measured by the x? test, and our approach is a further
extension of that point of view.

The notion of distribution divergence is central to the rest of the paper.



Definition 4 Let D be the class of distributions. A distribution diver-
gence 18 a function D : D x D — R such that:
1. D(A,A") > 0 and D(A,A") = 0 if and only if A = A’ for every
A, A eD.
2. When A’ is fized, D(A,A’) is a conver function of A; in other
words, if A =a1A1 + - + arAg, where a1 + ...+ ar = 1, then

k
D(A,A") > ) " aiD(A;, A).
i=1

An important class of distribution divergences was obtained by Cziszar
in [4] as:

D¢(Aa A’) = qud) (Iﬁ) ;

qi

Ao (k1 kn>’ and A’ — (ll ln>,
P1 ot Pn @ o e

are two distributions and ¢ : R — R is a twice differentiable convex
function such that ¢(1) = 0. We will also make an additional assumption
that O - ¢(g) = 0 to handle the case when for some i both p; and ¢; are
zero. If for some i, p; > 0, and g; = 0 the value of Dy (A, A’) is undefined.

The Cziszar divergence satisfies properties (1) and (2) given above
(see [6]).

The following result shows the invariance of Cziszar divergence with
respect to distribution product:

where

Theorem 1 For any distributions T, A, A’ and any Cziszar divergence
measure Dy we have Dy(T' X A, T x A") = Dy(A, A").

Proof. Let

a= (B W) w=(B k) mara (B ),

The definition of Cziszar divergence implies

Dy(Cx A, T x Ay = s (p“"j>,
N ) = 3 Same (2

i=1 j=1

= Y riy ad (%) ;
i=1 1 i

= D¢(A’Al)a

which is the desired equality. (Q.E.D.)
Depending on the choice of the function ¢ we obtain the divergences
shown in the table below:



o(z) D(A,A') Divergence

zlogz | pilog 2 Kullback-Leibler

2
22—z | % 1| Do

i=1 g; X

Both the Kullback-Leibler divergence (also known as crossentropy),
which we will denote by Dxr, and the x-divergence denoted by D,-
are special cases of the Havrda-Charvéat divergence Dy, generated by
o(x) = z:__lz [6]; specifically, D, is obtained by taking o = 2, while Dxr,
is obtained as a limit case, when « tends towards 1.

It is easy to verify that

n PR— . 2
D88 =3 B a)
i=1 *

Note that |p|D,2 equals the x> dependency measure, well known from
statistics [1].

2 Interestingness of Rules

The main goal of this paper is to present a unified approach to the notion
of interestingness of rules.

Let r = P — @ be a rule in a table 7 = (T, H, p).

To construct an interestingness measure we will use a Bayesian ap-
proach, in that we will consider an assumed apriori distribution © of the
consequent set of attributes ). This could be an aprior: distribution of
Q, the distribution Ag observed from the data, or some combination of
these distributions. To define an interestingness measure of r we will be
guided by two main considerations:

e The more the observed joint distribution of PQ diverges from the
product distribution of P and the assumed distribution © of @ the
more interesting the rule is. Note that Apg = Ap x © corresponds
to the situation when P and @ are independent and the observed
distribution of @ follows the assumed one.

e The rule is not interesting if P, Q) are independent. Therefore, we
need to consider a correcting term in the definition of an interesting-
ness measure that will decrease its value when Ag is different from
the assumed distribution.

The choice of the distribution © of the consequent Q of rules of the
form P — @ can be made starting either from the content of the table,
that is, adopting Ag for O, or from some exterior information. For exam-
ple, if Q is the sex attribute for a table that contains data concerning some
experiment subjects, we can adopt as the assumed distribution either

7F’ 5M7
Auee = (0.45 0.55) ’



assuming that 45% of the individuals involved are female, or the distribu-

tion
’Fi ’M’
Agen-pop = (0.51 0.49)’

consistent with the general distribution of the sexes in the general popula-
tion. Moreover, we can contemplate a convex combination of distribution
of the form

04 =alAg + (1 —a)By,

where Aq is the distribution of @ that is extracted from a table 7 and
O is a distribution that is based on some prior knowledge. The number
a reflects the degree of confidence in the data contained by the table 7;
the closer this number is to 1, the higher the confidence, and the more
preponderant Ag is in the assumed distribution.

Definition 5 Letr: P — Q be a rule, D be some measure of divergence
between distributions, and let © be a distribution.
The measure of interestingness generated by D and © is defined by

TD,@(T‘) = D(APQ,AP X (‘)) — D(AQ, (‘)).

In the above definition O represents the assumed distribution of @ while
Ag is the distribution of @ observed from the data. The term D(Agq, ©)
measures the degree to which Ag diverges from the prior distribution O,
and D(Apg,Ap X ©) measures how far Apg diverges from the joint dis-
tribution of P and @ in case they were independent, and @ was distributed
according to O.

The justification for the correcting term D(Agq,®) is given in the
following theorem:

Theorem 2 If P and Q) are independent, and D is a Cziszar measure of
divergence then Tp eo(P — Q) =0.

Proof. In this case Apg = Ap x Ag, and by Theorem 1 we have
Tpe(P = Q) = D(Ap x Ag,Ap x ©) — D(Ag,0) = D(Ag,0) —
D(Ag,0)=0. (QE.D.)

Note that if D is a Cziszar divergence D = Dy, then the invariance of
these divergences implies:

TD¢,@(P—) Q) = D¢(APQ,AP X @) —D¢(AP X AQ,AP X @)

3 Properties of the General Measure of
Interestingness

Initially, we discuss several basic properties of the proposed measure.

Theorem 3 If D is a Cziszar divergence, then

Tp,ag(P = Q)=Tp,ap(Q— P)



Proof. We have TD,AQ(P — Q) = D(APQ,AP X AQ), TD,AP(Q —
P) = D(Agp,Ag X Ap), and the proof follows from the permutational
symmetry of Cziszar’s divergence [6]. (Q.E.D.)

The above property means that when the assumed distribution of the
consequent is kept equal to the distribution observed from data, then
the measure is symmetric with respect to the direction of the rule, i.e.
exchanging the antecedent and consequent does not change the value of
the interestingness.

Theorem 4 Let D be a Cziszar divergence. If R is a set of attributes
independent of P, and jointly of PQ, then, for any ©

YTpe(RP—Q)="Tpe(P— Q).
If R is a set of attributes independent of Q, and jointly of PQ, then
Tp,ape (P — RQ)=Tp,ao(P — Q).
Proof.

YTpe(RP— Q) = D(Arpg,Arp x0)—D(Ag,0)

D(Ar x Apg,Ar X Ap x ©) — D(Ag, ©)
D(Apg,Ap x 0) — D(A@,0) =Tp,e(P — Q)
(by Theorem 1)

For the second part, it follows from theorem 3 and from the first part of
this theorem that

TD,ARQ (P — RQ)

TD,AP (RQ — P) = TD,AP (Q — P)
TD,AQ(P—)Q)-

(Q.ED.)

The previous result gives a desirable property of Tp e since adding
independent attributes should not affect rule’s interestingness.

Note that if © = Ag, that is, when © equals the observed distribu-
tion of the consequent, then T becomes symmetric and is not affected by
adding independent attributes to either the antecedent or the consequent.

Next, we consider several important special cases of the interestingness
measure.

If the divergence D and the assumed distribution used in the definition
of the interestingness measure are chosen appropriately, then the interest-
ingness Tp o(P — @) is proportional to a gain of the set of attributes
of the consequent @@ of the rule relative to the antecedent P. Both the
Gini gain, gain;,;(Q, P), and the entropy gain, gaing,,,,0. (@, P), can be
obtained by appropriate choice of D. Moreover a measure proportional
to the x? statistic can be obtained in that way.

Suppose that the attribute sets P, Q have the distributions

Apz(xl mm),andAQ:(yl y").
P D @ g

Let p;; = {t € p|t[P] = z; and t[Q] = y;} and let p;; = ‘T;’l'l for1<i<m
and 1 <j<n.




Theorem 5 Let P — Q be a rule in the table 7 = (T, H, p). If D = Dxy,
then

TD,@(P - Q) = gainshannon(Q)P))
regardless of the choice of ©.

Proof. The definition of the Kullback-Leibler divergence allows us to
write:

Tog.o(P = Q) = Dxu(Ape,Ap X 0)— Dxi (Ag,©)

m n ij n a4

= D D pilog =3 qilog
i=1 j=1 ple] j=1 9'7

= > pijlogpy — > pijlogps
i=1 j=1 i=1j=1
—ZZpU log0; — qu log g; +qu log 6;

i=1 j=1 Jj=1 Jj=1

= H(P) + H(Q) - H(PQ) = gainshannon(Q7P)7
(by Equality (2))
which completes the proof. (Q.E.D.)
The above theorem means that for the case Dkr, the family of measures

generated by O reduces to a single measure: the Shannon gain (mutual
information). This is not the case for other divergences.

Theorem 6 Let P — Q be a rule in the table 7 = (T, H,p). If D = D, »
and © = Uy, where n = |dom(Q)|, then

TD,(—)(P — Q) =n- gaingini(Q:P)‘
Proof. We have
TXZ,MH (P — Q)

D, (Apg,Ap xUy,) — D,- (Ag,Uy)

= 22w 2T

i=lj=1 n  j=1n

m n 2 n
pij
- (S oy)
i=1 j=1 bi j=1
n- gaingini(Q) P))
(by Equality (3))
which is the desired equality. (Q.E.D.)

Theorem 7 We have Tp ,,aq (P — Q) is proportional to x*(P,Q),
the chi-squared statistics [1] for attribute sets P, Q.

Il

Proof.
To 0P — Q) = D,2(Aprq,Ap xAg)—D,2(Aq,Aq)
= DX2 (Apg,Ap X Ag)
_ X(PQ
lpl



(Q-E.D.)
Note that above we treat attribute sets P = {A1,... ,A,} and Q =

{B4i,...,Bs} as single attributes with the domains given by (1). This
is appropriate, since we are interested in how one set of attributes P
influences another set of attributes Q). Another way, used in [3], is to
compute x2(A1,... ,A,, B1,...,Bs), however this is not what we want.

The case when D = D,» is of practical interest since it includes two
widely used measures (x?, and gainy;,;) as special cases, and allows for
obtaining a continuum of measures “in between” the two.

Theorem 8 proven below shows that the generalized measure interest-
ingness Tp o(P — @) is minimal when P and @ are independent and
thus, it justifies our definition of this measure through variational consid-
erations. We begin with a technical result.

Lemma 1 Let P = (p;;) € R™*" be an n X n-matriz with non-negative
entries such that 337, 3%, pi; = 1. Forn=(1,...,1) € R" let pf =
PpT € R™ and g =nP € R™.

If P can be written as P = uTv, for some u,v € R™, then P = pTq.

Proof. Since P = uTv, we have p = nPT = mTu = (vpT)u, and
g = nuTv = (quT)v. If a,b are the non-negative numbers a = vn” and
b = nuT, then we have p = au and ¢ = bv. Note that the condition

iz1 2j=1Pij = 1 can be written as nPyT =1, or as quTunp? = 1.
Using the associativity of the matrix product we have ab = nuZvn” =1,
so we can write P = uTv = abuTv = (au)T (bv) = pTq, which is the
desired equality. (Q.E.D.)

Theorem 8 Let Yp e be the measure of interestingness generated by the
assumed distribution © and the Kullback-Leibler divergence, or the x*-
divergence and let P — @Q be a rule. For any fized attribute distribution
Ap,Aq and a fized distribution ©, the value of Yp o(P — Q) is minimal
(and equal to 0) if only if Apg = Ap X Ag, i.e., when P and @Q are
independent.

Proof. It is clear that if P and @ are independent, then we have in
both cases Tp,e(P — Q) =0.

When D = Dky, the result follows from the properties of Shannon
gain/mutual information [7].

We need to prove the result for D = D,2. It has been noted in
Chapter 1 that D, » is a special case of Cziszar divergence for ¢(z) = z°—z.
From the conditions on ¢ it follows that for all Cziszar’s divergences the
respective functions ¢ have the property that the inverses of their first
derivatives are monotonic functions and therefore can be inverted. Indeed,
in the case of D,2 we have ¢(z) = 2° — z, and (¢') ' (z) = z/2 +1/2.



We will use Lagrange multipliers method to find the minimum of
D,2(Apq, Ap x ©) subject to the following set of constraints:

> pii=1 (4)

i=1 j=1
Zpij =pi (5)
j=1
D pii=g (6)
i=1

The Lagrangian is

and

OL ( Dij )
+ A+ N+ 7
apij d) pla‘] l"’] ( )

By equating (7) to zero we get:

li Pij
== = —(A+ X +p5).
o (22) = -0t rt )
In the case of the D, > measure of divergence we have (¢') '(z) = £ + 3.
Therefore, p;; can be written as

“A—Xi—p; 1 1
pij = pib; [%4‘5] 51019 (T=A=Xi —pj)-

Substituting into (5) we get 327, pi; = 1 21 pifi(L=A=Xi — ;) = pi,
and

D= X=X —py) =2

j=1

After splitting the sum we get 1 — X —Xi — >°7_, 0;p; =2, and

)\iz—)\—izejp,j —lzca.

j=1

Similarly, substituting into (6) we get >.1", pi; = 3 >ore, pifj (1—A—X; —
i) = gj, and

S opi(l— A= X —py) =22
— 0;

10



After splitting the sum we get 1 — A —p; — > 7" pidi = 22—’]:, and

m
71— N\ —2% — 0%
pi=1-2X sz)\, 29]‘ =cg 29]"

i=1

Thus,
1 0:(1 — \ qu _1 9 qu
Pij = 5P i(1—A—ca—csg+ 9_j)_§pl j(ey + Q_j)’

for some constant c¢,, which means that the matrix P has the form P =
uTv for some u,v € R”. By Lemma 1, we have P = p”q. (Q.E.D.)

We proved that gaing,,on and gaing,; are equivalent to Y py u, and
T D o,Un s respectively. It is thus natural to define a notion of gain for any
divergence D as

gainp(P - Q) =Tou, (P — Q).

Let Ag|p; denote the probability distribution of @ conditioned on P = p;.
For any Cziszar measure Dy we have:

gainp (P = Q) = Dy(Apg,Ap XUn) — Dy(Aq,Un)
= 3on Y 26 () - Dy(aa,th)
= = \Pity

- [Dd)(AQ,Un) - ZPiDdJ(Alei,Un)
i=1

i=

As special cases gain,; = gain, 2, and gaing,,nnon = £3iNkr,-

A parameterized version of Y that takes into account the degree of
confidence in the distribution of the consequent as it results from the
data is introduced next.

Let us define the probability distribution ©,,a € [0, 1] by

00 = alg + (1 — a)lo.

The value of a expresses the amount of confidence we have in Ag estimated
from the data. The value a = 1 means total confidence, we assume the
probability estimated from data as the true probability distribution of
@. On the other hand, a = 0 means that we have no confidence in the
estimate and use some prior distribution of @) instead. In our case, the
prior is the uniform distribution U,,. Note that ©1 = Ag, and O¢ = U,.

So, O, is the a posteriori distribution for Q.

We can now define

TD,a = TD,@a_ .

Note that when D = D, 2, we have (up to a constant factor) both x*(P —
Q) and giniy,, (P — Q) as special cases of TDx2 .a- Moreover by taking
different values of parameter a we can obtain a continuum of measures in
between the two.

11



As noted before, both D, > and Dk divergence measures are special
cases of Havrda-Charvat divergence Dy, for @ — 1, and o = 2 respec-
tively. We can thus introduce Yo, = Ty, ,0,, which allows us to obtain
a family of interestingness measures, including (up to a constant factor)
all three measures given in Section 3 as special cases, by simply changing
two real valued parameters o and a.

Also note that for a = 0, we obtain a family of gains (as defined in
chapter 3) for all the Havrda-Charvét divergences.

4 Experimental results

We evaluated the new measure on a simple synthetic dataset and on data
from the UCI machine learning repository [2]. We concentrated on the
case D = D, 2, as potentially most useful in practice, and found interest-
ingness of rules for different values of parameter a (see chapter 3)

4.1 Synthetic data

To ensure measures throughout the family handle obvious cases correctly,
and to make it easy to observe properties of the measure for different val-
ues of parameter a we first evaluated the rules on a synthetic dataset with
3 attributes A, B,C and with known probabilistic dependencies between
them.

Values of attributes A and B have been generated from known prob-
ability distributions:

0 1 2 0 1
A*‘_(0.1 0.5 o.4>’AB_(0.2 0.8)'

Attribute C' depends on attribute A. Denote Ac|i the distribution of C
conditioned upon A = i. We used

0 1 0 1 0 1
Acl0 = (0.2 0.8)’AC|1_ (0.5 0.5>’AC|2_ (0.7 0.3)’

One million data points have been generated according to this distri-
bution, for a few values of a we sorted all possible rules based on their
T D 5. interestingness values. Results are given in Table 4.1.

Discussion

1. Attribute B is totally independent of both A and C, so any rule
containing only B as the antecedent or consequent should have in-
terestingness 0. The experiments confirm this, for all values of pa-
rameter a such rules have interestingness close to zero, significantly
lower than the interestingness of any other rules.

2. For a = 0 (the first quarter of the table) T becomes the Gini gain,
a measure that is strongly asymmetric (and could thus suggest the
direction of the dependence) and strongly affected by adding extra
independent attributes to the consequent (which is undesirable).

12



3. For a = 1 (the last quarter of the table) T becomes (up to a con-
stant factor) the x? measure of dependence. This measure is totally
symmetric and not affected by presence of independent attributes
in either antecedent or consequent. Indeed, it can be seen that all
rules involving A and C have the same interestingness regardless of
the presence of B in the antecedent or consequent.

4. As a varies from 0 to 1 the intermediate measures can be seen to be-
come more and more symmetric. Measures for a being close to but
less than 1 could be of practical interest since they seem to ‘combine
the best of the two worlds’, that is, are still asymmetric and pretty
insensitive to presence of independent attributes in the consequent.
E.g. for a = 0.9 all rules having A in the antecedent and C in the
consequent have interestingness close to 0.09, while rules having C
in the antecedent and A in the consequent have all interestingness
close to 0.082 regardless of the presence or absence of B in the con-
sequents. So for a = 0.9 the intermediate measure correctly ranked
the rules indicating the true direction of the relationship.

4.2 The mushroom database

We then repeated the above experiment on data from the UCI machine
learning repository [2]. Here we present results for the agaricus-lepiota
database containing data on North American Mushrooms. To make the
ruleset size manageable we restrict ourselves to rules involving the class
attribute indicating whether the mushroom is edible or poisonous.

In the experiment we enumerated all rules involving up to 3 attributes
and ranked them by interestingness for different values of parameter a.
Top ten rules for each value of a are shown in Table 4.1. For a = 1 the
symmetric rules were removed.

We noticed that for any value of a most of the rules involve the odor
attribute. Indeed the inspection of data revealed that knowing the mush-
room’s odor allows for identifying its class with 98.5% accuracy, far better
than for any other attribute.

We note also that similar rules are ranked close to the top for all values
of a, which proves that measures thoughout the family identify dependen-
cies correctly. From data omitted in the tables it can be observed that, as
in the case of synthetic data, when a approaches 1 the measures become
more and more symmetric and unaffected by independent attributes in
the consequent.

4.3 Conclusions

It has been shown experimentally that measures throughout the Y family
are useful for discovering interesting dependencies among data attributes.
By modifying a numerical attribute we can obtain a whole spectrum of
measure of varying degree of symmetry and dependence on the presence
of extra attributes in the rule consequent. Especially interesting seem to
be measures with a parameter close to, but less than 1, which combine the

13



rule TDXQ 0 rule TDX2 0.5

A—BC | 0.122061 A—BC | 0.0989161
C—AB | 0.0896776 AB—C 0.0898611
AB—C 0.0896287 A-C 0.089861
A-C 0.0896287 C—AB | 0.0769886
BC—A 0.065851 BC—A 0.0683164
C—A 0.0658484 C—A 0.0683142

B—AC | 3.16585e-06 B—AC | 2.50502e-06
B—A 2.7369e-06 B—A 2.35091e-06
AC—B 1.37659e-06 | AC—B 1.51849e-06
A—B 1.32828e-06 A—B 1.46355e-06
B—C 1.70346e-07 B-=C 1.72781e-07
C—B 1.10069e-07 C—B 1.22814e-07

rule TDx2 0.9 rule TDX2 1
A—BC | 0.0908769 BC—A 0.0905673

AB—C 0.0903859 A—BC | 0.0905673
A—C 0.0903859 C—AB | 0.0905654
C—AB | 0.0834734 AB—C 0.0905654

BC—A 0.082009 A—-C 0.0905653
C—A 0.082007 C—A 0.0905653

B—AC | 2.19739-06 || AC—B 2.15872e-06
B—A 2.12646e-06 B—AC | 2.15872e-06
AC—B 1.95101e-06 A—B 2.08117e-06
A—B 1.87986e-06 B—A 2.08017e-06
B—C 1.73782e-07 C—B 1.74126e-07
C—B 1.57306e-07 B-C 1.74126e-07

Table 1: Rules on synthetic data ordered by Y Doa for different values of a.
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rule Tp .0
class—odor ring-type 9.84024
class—odor spore-print-color 9.16709
class—odor veil-color 8.22064

class—odor gill-attachment 8.2026
class—gill-color spore-print-color | 7.82161
class—ring-type spore-print-color | 7.62564
class—odor stalk-root 7.60198
class—gill-color ring-type 7.28972
class—odor stalk-color-above-ring | 7.19584
class—odor stalk-color-below-ring | 7.14197
rule TDx2 ,0.9
odor—class stalk-root 3.61877

class stalk-root—odor 3.2782
odor—class cap-color 2.59777
odor—class ring-type 2.54896
odor—class spore-print-color 2.54864
stalk-color-above-ring—class stalk-color-below-ring | 2.47669
class cap-color—odor 2.46105
odor—class gill-color 2.45027
stalk-color-below-ring—-class stalk-color-above-ring | 2.38593
class spore-print-color—odor 2.35384

rule T D21
class stalk-root—odor 4.11701
class stalk-color-below-ring—stalk-color-above-ring 3.38287
stalk-color-below-ring—class stalk-color-above-ring | 3.37968
class ring-type—odor 2.98764
class cap-color—odor 2.85308
odor—class gill-color 2.82423
odor—class spore-print-color 2.56331
odor—class stalk-color-below-ring | 2.44004
class stalk-color-above-ring—odor 2.42725
class gill-color—spore-print-color 2.42224

Table 2: Rules on mushroom dataset ordered by T Doa for different values of
a.
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relative robustness against extra independent attributes, while retaining
the asymmetry suggesting the direction of the dependence.

5 Open Problems and Future Directions

Above we assumed complete confidence in the estimate of the distribution
of P from the data. We may want to relax this restriction and assume
that P has some assumed distribution ¥ (not necessarily equal to Ap),
and @ the prior distribution ®. We can then generalize Y as follows

Thew(P— Q) =D(Apq, ¥ x ) — D(Aq,0) — D(Ap, ).

When ¥ = Ap, Y’ reduces to Y defined above. Some of the properties
of T are preserved by this new definition. For example, if D = Dky,, and
P, Q be independent, then Yo ¢ p(P = Q) = 0. Also, if P — Q is a
rule in the table 7 = (T, H,p) and D = Dxkr then Th o ¢(P — Q) =
gaing, ... (@, P) regardless of the choice of © and ¥.

Further theoretical and experimental evaluation of the new measure
is necessary. It might be of practical interest to modify the generalized
definition of gain so that, being asymmetric, it is not affected by adding
independent attributes to the consequent.

It would also be of practical significance to generalize the measure to
express the interestingness of a rule with respect to a system of beliefs
(that could be represented for example by a set of rules). Then, the rule
would be considered interesting if its probability distribution would be
significantly different from the one expected based on the set of beliefs.
See [12] for a discussion of a similar problem.
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