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AN INFERENCE RULE BASED ON SUGENO MEASURIE
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ABSTRACT

In this paper an inference rule based on the aotion of conditional Sugeno measure is proposed. Based on this
rule. o counterpart of Bayes® theorem is derived under the a I that a probability measure can be treated as
the limit of a collection of Sugeno measures. This pew rule allows one 1o find posterior probabilitics from a given
vellection of comditional probabilities will ferring to prior probabilities. Properties of this rule are discussed
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86 Analysis of Fuzzy Information
I. INTRODUCTION

This paper concerns rules that allow one to derive so-called posterior beliel functions
from conditional belief functions. To be more precise, assume that X is a set of observations,
Y is a set of causes underlying these observations, and both sets are finite. Suppose that
we have a collection {Bel(fy), j = 1,..., m}, m = card(Y), of “‘measures’” on 2%
expressing our degrees of beliel that a proposition ACX is true under the cause y,. (We
omit discussion concerning the notion of belief functions, referring the reader to Shafer's
original works.'? The basic notions used in Shafer's theory are explained in Section I1.)
Suppose, finally, we state that an observation belongs to a subset A and we ask: which
cause issued this observation? The general solution to this problem was given by Smets.*
This method — discussed in Subsection A of Scction 1V — is based on the assumption that
each Bel(‘ly) is derived from independent empirical data. Contrary to Smets’ approach, we
make the assumption that all the conditionals are derived from a single belicf function, Belyy
defined on 2%*Y, More precisely, we assume that the conditionals as well as Belyy are
Sugeno measures.® As we are able to fit any monotone (with respect to set inclusion) set
function to the conditions of Sugeno measure, we hope that this assumption is not too
restrictive.® The method — presented in Subscction B of Section IV — provides a very
interesting conclusion in the case when conditional Sugeno measures are replaced by prob-
ability measures. We obtain a counterpart to Bayes theorem whereby the posterior probability
is computed without referring to prior probability. This is the theme of Subscction C of
Section 1V. Another feature of our method is that we do not use Dempster's rule of com-
bination criticized by some authors.” We usc instead the specific properties of Sugeno measure
that are displayed in Section IlI; specifically, we treat a probability measure like the limit
of a sequence of Sugeno measures.

II. BELIEF FUNCTIONS

The aim of this section is to explain some notions that will be used in the sequel. Readers
interested in more details are referred to Shafer's works,"* as well as his survey in this

volume.

Suppose X is a set of results and Y is a set of causes. Suppose next that a cause, y, is
transformed into a result, x, by a function, f, t = I, . . ., s, chosen randomly from given
set F of functions that map Y onto X. Let p, denote the probability that [, is chosen. Supposc
finally that we have observed the result, x,. Which cause produced this result? In general
it is not possible to get a precise answer to this question. However, we can try o assess the
reliability of statements of the form: **The cause lies in a subsct B of Y"". To this end define
the subsets B* and B« of the set F as follows:

B* = {[ € F| [ '(x;) N B # 0} (n
Bs = {f, € F| ] '(xo) C B, £, '(x,) # 0} @

This way we are able to determine numerical degrees characterizing the reliability of our
suppositions, namely,

PI(B) = Pr(B*)/Pr(Y*) (3)

Bel(B) = Pr(B#)/Pr(Y*) 4)
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where Pr denotes the probability measure defined by the densities p,. In general both st
functions are nonadditive. It is readily seen that PI(0) = Bel(®) = 0 and PI(Y) = Bel(Y)
= 1. Morcover, for each BCY there holds Bel(B) < PI(B) and Bel(B) = | — PI(B*).
(Here B, denotes the complement of B in Y.)

The set function Bel is said to be a belief function. It measures the extent to which one
finds a proposition B credible, while Pl — the so-called plausibility function — measures
the extent to which this B is plausible.

To make the theory applicable, Shafer introduced a number of quantities: the basic prob-
ability function, m: 2¥ — [0,1], and the commonality function, Q: 2¥ — [0,1], being the
most important.’ The number m(B), called the m-value for brevity, measures the portion of
our total finite belief that is committed exactly to the proposition B. In terms of our example,

m(B) = Pr{f, € F| '(xy) = B} (5

The number Q(B) measures the total portion of belief that can move freely to every point
of B. Note that m(@) = 0, while Q(0) = I. There hold the following relations:

Bel(B) = Y m(C) (6)
cyY
cca

QB) = Y m(C) Q)
CCcy
noo

PIB) = X (= 1)9*'Q(C) (8)
(]
Cen

where |B| denotes the cardinality of B.
If m(B) = 0 for cach B such that |B| = 2, then the belief function is said to be the

Bayesian belicl function (probability). In this case, Bel(B) = PI(B) for cach BCY. In terms
of our example, this occurs if all s are injective.

Let B be a fixed subset of Y and s be a number between 0 and 1. The belief function
characterized by the m-values,

s fC=B
mC =41-5s IfFC=Y (&)
0 otherwise

is said to be a simple support function (SSF for brevity) focused on B. If s = 0, then we
call such a belief function the vacuous belief function. It is used to represent complete
ignorance, i.c., lack of evidence. On the other hand, if s = | we will say that the SSF is
fully focused on the subset B (we are sure that the truth lics in B).

The most important tool in Shafer's theory is Dempster's rule of combination. Let Bel,
and Bel, be two belicf functions representing unrclated bodies of evidence. The orthogonal
sum of these Bel’s is defined by mcans of the corresponding m-values as follows

X {m@Omy(D)|CCY.DCY,CND = B}

X {m(E)m(F) [ECY,FCY,ENF # 0} O

m(B) =
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If Bel, is a SSF fully focused on a subsct B, then we call Bel given by Equation 10 the
conditional belief function and we have

Bel,(A U BY) — Bel,(B°)
I — Bel,(B%)

Bel(A | B) = an

" In the case of the Baycsian belief function, Bel,, Equation 11 reduces to Bayes® theorem.

[1I. SUGENO MEASURE

In this section we present the main results concerning a set function called Sugeno measure.
Definition:® A sct function G: 2X — [0,1] is said to be a Sugeno measure if it satisfies
the conditions

G@) = 0,G(X) = 1 (12)
G(A U B) = G(A) + G(B) + AG(A)G(B), A,BC X, ANDB =9 (13)

where the parameter A > = | is chosen such that the condition G(X) = 1 holds.
Sugeno measure is determined uniquely by the values g, = G({xp.i = 1.2,...nn
= |X|. Namely,

.

1
o =3[0 a+ - 1] (14)
EA
where A is computed from the equation:

M +ag)=1+A (15)

i=1
Thie set function H(A) = | — G(A®) is also a Sugeno measure with the parameter:
M = =Xl + Ag) (16)

There holds the following relation between a Sugeno measure G and an additive sct function
P: 2X — [0,1] (see Reference 6):

G(A) = [(1 + "™ = I}A (an

In(1 + AG(A))

In(1 + A) %

P(A)

Note that a Sugeno measure determines exactly one measure, P. We will call this P the
probability measure generated by Sugeno measure. If A tends to zero then G tends to P,

It has been shown that if A > O (respectively, A < 0), then a Sugeno measure may be
treated as a belief (respectively, plausibility) function.* More precisely, if X > 0, then G is
a belief function with the m-values,

m(A) = N~ J;]‘ B (19)
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and the commonality numbers,
QA) = NN I g (20)
weA
where the parameter A* is determined by Equation 16 and
g = gl + Ml + Ag) @n

Hence a Sugeno measure may be represented in the form

G(A) = 2, m(B) (22)
HCA
il A > 0 and in the form
G(A) = 2 (=1)™*' Q(B) 23)
nCcAa
[l ]

in the casc of A < 0. To distinguish between these two cases, we will write G* (respectively,
G-) if A > 0 (respectively, A < 0).
Taking into account carlier results obtained by the author, we can prove the following:*

Theorem 1: A Sugeno measure G is a separable support function that may be uniquely
decomposed into exactly n = |X| SSF's, S, cuch of which is focused on the subsct

A= {x).i= 120 (24)

IfG* is a Sugeno measure and {g,, i = 1.2, . . . .n} is the set of its **densities™, then the
m-value m(A,) of ith SSF §, is defined by

m(A) = /(1 + Ag) (25)

Conversely, if {S,, i = 1,2, . .. ,n} is a sequence of SSF's focused on subsets A, defined
in Equation 24 with the m-valucs m(A,), then the orthogonal sum of S,'s is a Sugeno measure
characterized by

I = m(A) "

e ,I-I. m(A) (26)
i
QUxh = (1 = mAM(I = a) @n
A=(-a¥ (28)
a= [l mA) (29)
I=1

By a separable support function, we mean a belicf function that is a simple support function
or that is the orthogonal sum of two or more simple support functions.'
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Theorem 2: Let G be a Sugeno measure treated as the orthogonal sum of n = |X| SSF's
with the m-values given by Equation 25 and focused on the subscls A, defined in Equation
24. Then the probability measure generated by G is defincd by

In m(A,

z In m(A,)

where p, = P({x}D).

Theorem 3: Let in the sequence {S,,i = 1,2, . . . ,n} of the SSF's constituting a Sugeno
measure at least one of them, say S,, be replaced by the vacuous belief function, i.c., m(X)
= 1. Then the orthogonal sum of these SSF's produces a pscudo-Sugeno measure, i.c., the
measure G~ with the parameter A\ = — 1. In this case, g, = Q({x,)) = 1.

To see what set function we obtain if all the m-values tend to unity, we need the following:

Lemma 1: Let P: 2X — [0,1] be a probability measure determined by its densitics p;, i
= 1,2, ... .n. Definc a scquence {G,} of Sugeno mecasures by their **densitics’":

P (31)

Then P = lim.

h—
The proof of this lemma is quite similar to the proof of Theorem 9.2 in Shafer's monograph.!
To fully characterize a Sugeno measure, we need know the value of the parameter A. Hence

the next .

Lemma 2: The solution A, to the equation G,(X) = 1 is, for sufficiently large k,

k+1
k =
o (32)
-
where
b= pp = (l -3 p.’)fz 33)
y=1 i=1

>

Consider now a measure G, determined by its **densities’ (Equation 31). Applying Theorem
1, we can decompose it into n SSF's S} with the m-values

mi(A) = u(l . %) (34)

Of course limm® (A,) = 1. Converscly, let the m-values of a collection {S}. i = 1.2, . . . .n}
-

of SSF's be given by Equation 34, Then according to Equations 26 to 29, we find that
limgf = p,.
=
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This conclusion supports the theory exhibited by Shafer in Chapter 9 of his monograph.
By this theory, **a Bayesian belicf function corresponds to the specification of infinite
contradictory weights of evidence, Such weights of evidence cannot be combined dircctly,
but the limiting process allows to balance cach other and to produce degrees of belief™".!
To end this section, let us note that applying Equation 11 or examining Equation 17 yiclds:

Theorem 4: Let G be a Sugeno measure with the parameter . Then the conditional
Sugeno measure is defined by

G(A | B) = G(A N BYG(B) = [(I + A )™ — 1)\, (35)
where

A, = AG(B) = (I + )" - | (36)
and P is the probability measure generated by G.
IV. INFERENCES BASED ON BELIEF FUNCTIONS

Let X be a set of results and Y be a set of causes. Due to our convention, both the sets
arc finite with cardinalitics n and m, respectively. Suppose that our knowledge about the
problem is summarized by a collection of m belicf functions Bely("|y;) defined on 2. The
objective is 1o find the posterior belief function Bel,(|A), ACX, defined on 2.

A. General Case

Within the framework of Bayesian theory, the problem is solvable under the assumption
that we have some prior opinion about causes expressed in terms of a probability measure
P, on 2¥, Knowing P, and the conditionals Py(-ly,), j = 1.2, . . . ,m, we are able to build
up the probability measure P defined on 2¥*Y that fulfills the two conditions:

(B1)'For every B C Y, P(X X B) = P(B).
(B2) For every y,EY conditioning P on X X {y,} results in the probability function Px(1y,).

Conditioning this P on subsets A X Y, we obtain the a posteriori probability measure
P,(*|A) defined on 2V,

We will be faced with a much more gencral situation if we have conditional belief functions
Bely(]y,) and we do not have prior knowledge about causes. The solution to this problem
was proposed by Smets.* In his method, we build a belicf function Belyy defined on 2¥*Y
that fulfills the two postulates (see also Reference 10);

(S1) Forevery BC Y, B # Y, Belyy, = 0.
(52) For every y,EY conditioning Belyy on X X {y,} results in the belicf function Bel,(y,).

Conditioning this Belyy on subscts of the form A X Y, we obtain the posterior belief
function Bel,(JA). (Here the postulate, S1, corresponds to the assumption of the lack of
knowledge about causes which is modeled by the vacuous prior function Bel, defined on
2Y)

Applying this procedure we obtain (sce Reference 4):

PI,(B|A) = [l - 1l Bel,‘(A‘ly,)]e‘(l = ag)
yen .

[nu- -n—"—‘“—”"- |] a7
= | Lyen ag
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where

ag = [l (1 = Ply(Aly) (38)
=
It is interesting to observe that if ag # 0, then this Pl, is nothing but a Sugeno measure
characterized by

g = Ple(Aly, VA 39)
Ag =ag = | (40)

In light of the discussion presented in Scction 111, we find that the resulting plausibility
function is the orthogonal sum of SSF's focused on the subscts of the form B, = A X {y;k,
with the corresponding m-values (compare Equation 27)

myB) = 1 = Plx(Aly) = Bel(Atly) 1)

If for some j the value Pl (Aly,) = 1, then the a posteriori Pl, becomes a pscudo-Sugeno
measure. The quantity ag in Equation 38 may be interpreted as the grade of belief that the
observation is sent by a source y, ¢ Y.* The attractiveness of Smets' rule is weakened by
the fact that it gives sensible results only when the cardinality of Y is fairly small.'®

B. The Case of Sugeno Measure
Suppose now that our conditional belief functions are all Sugeno measures, To find the

posterior belicl function, one can proceed in one of two wiys:

(a) Utilize Smets' approach.
(b)  Assume that the conditionals are derived from a Sugeno measure Gy defined on 2%*Y,

In the first case, the resulting posterior is Sugeno measure Gy (|A) characterized as
follows '

g5 (yJA) = G- (AlyVA (42)
Ag = ilI' (1 = G-(Aly)) — 1 (43)

Recall that g5 (y,|A) stands, by our convention, for G ({y)}|A). Here the subscript S means
that the set function is derived from Smets’ rule and the superscript ** =" means that we
work with plausibilities, i.c.. Sugeno measures with negative parameter A. The posterior
Sugeno measure generates the probability measure Py on 2¥ with the densities

In(l = G~ (A

palyJA) = o= (Aly) (44)

3 In(1 = G (Aly))
1

In the second case, we use Theorem 4 that takes here the form:
G(Ab'}) = Gy(A X YNX X lY,l)fGn(x X ly,})

= l(l + A)ﬂ‘!?ﬂlkty}) = ”ﬂ“ + ‘,\)"U"lhl' = l]

LR Al (45)

1]
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Using this formula we can derive:

Theorem 5:'* Let (G(ly,). j = 1.2. ... .m} be a collection of the conditional Sugeno
measures derived from an unknown Sugeno measure Gy Then the posterior Sugeno measure
GwJA). A C X, is characterized as follows:

guly|A) = NG(Aly)/Ay (46)
Aw = 11 (1 + AG(Aly)) = 1 (47)
=1

Here A, denotes the parameter characterizing the jth conditional Sugeno measure and the
subscript W is used to distinguish between Smets” and our approach. Let us noie the following
in connection with Theorems 4 and 5:

Fact 1: The collection {G(ly). j = 1.2, . . . ,m} determines uniquely the Sugeno measure
Gyy from which these conditionals may be derived. The measure Gyy possesses the
“*densities’":

8(x,. ¥) = Ag(x]y /A (48)

where A, the parameter characterizing this measure, is defined as

A=l +A-=1 (49)

Fact 2: The probability measure generated by the posterior measure Gy (f|A) has the
densities (compare with the Equation 44)

PwlyJA) = P(Aly,)r,tz‘,. P(Aly)r, (50)
where
In(l +A\)
B ——
Rl 0+ N (51)

and A is defined in Equation 49. The ratios r,, j = 1,2, . . . ,m play a role similar to the
prior probability mass function in Bayes' theorem. If all A/'s are sufficiently small, then

n— A2 A (52)
Gul|A) = Pu(fA) (s3)

Fact 3: The rule proposed in Theorem § is **symmetric’ in the sense that starting from
conditionals G(ly,), computing posterior measures Gy(+|A) and next computing, due to the
rule, the measures G*(]y,), we retwrn to the given conditionals G('ly,). This is not possible
if we apply Smets’ rule.
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Fact 4: Comparing the values of Ag and Ay, we stale that Ay/A; = | which shows that
Gy(*|A) is more **vacuous' than G (4A) for cach A C X. Hence, the sensitivity of Gy,
does not depend so heavily on the cardinality of the set Y.

C. The Case of Bayesian Conditionals

Comparing both rules, the most interesting results will be obtained il we assume that our
knowledge is described by Bayesian conditional belief functions, i.e.. probabilitics. Applying
Smet's rule we get a posterior plausibility that is no longer Bayesian. It is characterized as
follows:

Ply({y,lA) = P(Aly (1 = ay) (54)
ag = [1 (1 = P(Aly)), A C X (55)
J=1

The immediate application of our rule — as given in Theorem 5 — is not presented here.
However, we can utilize the suggestion in Lemma | by assuming that the conditional
probability P(ly,) is the limit of the sequence of Sugeno measures G,("ly,) defined as in
Equation 31. Taking into account the considerations of the last subsection and Lemma 2,
we obtain:

Theorem 6: Let {PCly). j = 1.2, ....m} be a collection of conditional probability
measures. Then the posterior measure derived via Theorem 5 is the probability measure
P(:|A) defincd on 2 with the densities:

plylA) = lim pY, (yJA) = lim gl (y,|A)
- b=

a p(Alyl)h
= /), —— 56
Z Al b. ee

where pY,, g, and b, are defined, respectively, by Equations 50, 46, and 33. (Here b, is
the coefficient b computed for the jth conditional.)

From this thcorem, it follows that the given collection of conditionals determines (uniquely!)
some prior P, on 2¥, namely,

! p, = /2 by, (57)

The resulting posterior is influenced by all the values of p(x]y,). i.c., in its determination
all available knowledge is taken into account. This is in contrast to Smets' approach, where
Pl({y}A) = cP(Aly,) and c does not depend on j. Assume now that we have some prior P,
on 2. Due to our theory, we should find the sequence Gy, of Sugeno measures defined on
2¥%T gt

lim Gi,(X X {y,) = puly) /(58)
[——

lim G\(ly) = P(ly) (59
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However, from Lemma 2 we know that lim A, = 0 and that G}, tends to some probability

measure Py, on 2¥*Y, Itis clear that in order to satisly the above two conditions, the measure
Pyy must possess densities satisfying:

Pxy(Xi ¥) = pulyp(xly,) (60)
Hence, the resulting posterior agrees with the onc obtained from Bayes® thcorem,

V. FINAL REMARKS

Let us further explain the result obtained in Subscction C of the last section. To do this,
we introduce the following:

Lemma 3: Let P be a probability measure. Define:

V= 2 (p, = /) (61)

Then,

. Jodl N (62)

with b defined as in Equation 33,

The lemma gives us a powerful interpretation of the quantity b — it simply mcasures how
dispersed the probability mass function is. Returning to our problem, it may be stated as
follows: we do not know prior probabilities, and our knowledge is only represented by a
set of conditionals. To refer to any prior probability, 11, let us observe that to determine
the conditional probability P(|y,), we take only a part of the total probability mass function
Pxys namely, {pxy(x.y). i = 1,2, ... .nand j is fixed}. Since,

Pxv(X, ¥) = pxly) (63)

we can define the dispersion measure of this part of Py, as byrf. Now let us find the collection
of numbers m, j = 1,2, ... ,m such that

>, bl = min (64)
=1
>m=1 (65)
i=1

Applying the Lagrange multiplicr method, we find that the solution to this problem is given
by Equation 57.
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LIST OF SYMBOLS

I

Sigma; used as summation

Sign of the product

Containment

Epsilon; used as **‘membership in®
Set theoretical intersection

Set theoretic union

Less than or cqual to

Less than

Greater than or equal to

Not equal to

Asterisk; used as subscript or superscript
Prime

Approaches

Infinity

Empty sct

Lambda

Pi; small and big

Absolute value

Vertical dash

Cartesian product; like in: X x Y
Point; like in: Bely(y)
Parentheses

Square brackets

Cubic brackels

Greater than

Crossed epsilon; used as **not belongs o™
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