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Abstract—Uplift modeling is a branch of Machine Learning
which aims to predict not the class itself, but the difference
between the class variable behavior in two groups: treatment
and control. Objects in the treatment group have been subject
to some action, while objects in the control group have not. By
including the control group it is possible to build a model which
predicts the causal effect of the action for a given individual.
In this paper we present a variant of Support Vector Machines
designed specifically for uplift modeling. The SVM optimization
task has been reformulated to explicitly model the difference
in class behavior between two datasets. The model predicts
whether a given object will have a positive, neutral or negative
response to a given action, and by tuning a parameter of the
model the analyst is able to influence the relative proportion of
neutral predictions and thus the sensitivity of the model. We
adapt the dual coordinate descent method to efficiently solve
our optimization task. Finally the proposed method is compared
experimentally with other uplift modeling approaches.

Keywords-Uplift modeling, Support Vector Machine, incremen-
tal response modeling, control group

I. INTRODUCTION

Traditional classification methods predict the conditional
class probability distribution in a given dataset. Based on those
predictions an action is often taken on the classified individu-
als. This approach is, however, usually incorrect, especially in
the case of marketing campaigns or controlled medical trials.
Standard classification methods are only able to model what
happens after the action has been taken not what happens
because of the action. The reason is that such models do not
take into account what would have happened had the action
not been taken.

This is easiest to see in the context of direct marketing
campaigns. Some of the customers who bought after the action
would have bought anyway, the action incurred unnecessary
cost. Worse, some customers who were going to buy got
annoyed by the action, refrained from purchase and may even
churn. The existence of such negative groups is a well known
phenomenon in marketing literature [1] and detecting them is
often crucial for the success of a campaign.

Uplift modeling, in contrast, allows for the use of a control
dataset and aims at explicitly modeling the difference in
outcome probabilities between the two groups, thus being able
to identify cases for which the outcome of the action will be
truly positive, neutral or negative.

In this paper we present Uplift Support Vector Machines
(USVMs) which are an application of the SVM methodology
to the problem of uplift modeling. The SVM optimization
problem has been reformulated such that the machine accepts
two training datasets: treatment and control, and models the
differences in class behavior between those sets. Other uplift
modeling methods return the score of an instance; USVMs are
the first such method we are aware of, which aims to explicitly
predict whether an outcome of an action for a given case will
be positive, negative or neutral. What is especially important
is that the model identifies the negative group allowing for
minimizing the adverse impact of the action. Moreover, by
proper choice of parameters, the analyst is able to decide
on the relative proportion of neutral predictions, thus tuning
model’s sensitivity to positive and negative cases.

The main problem of uplift modeling is that for each data
point we know only one of the outcomes, either after the action
has been performed or when no action has been performed,
never both. This makes the task less intuitive than standard
classification, and formulating optimization tasks becomes
significantly more difficult.

A. Previous work

Surprisingly, uplift modeling has received relatively little
attention in the literature. The most obvious approach uses two
separate probabilistic models, one built on the treatment and
the other on the control dataset, and subtracts their predicted
probabilities. The advantage of the two-model approach is that
it can be applied with any classification model. Moreover, if
uplift is strongly correlated with the class attribute itself, or
if the amount of training data is sufficient for the models
to predict the class probabilities accurately, the two-model
approach will perform very well also in the uplift case. The
disadvantage is, that when uplift follows a different pattern
than the class distributions, the models will focus on predicting
the class, instead of focusing on the weaker ‘uplift signal’.
See [2] for an illustrative example.

A few papers addressed decision tree construction for uplift
modeling. See e.g. [1], [3], [4], [2]. In [5] uplift decision
trees have been presented which are more in line with modern
machine learning algorithms. The approach has been extended
to the case of multiple treatments in [6].



Some regression techniques for uplift modeling are avail-
able. Most researchers, however, follow the two model ap-
proach either explicitly or implicitly [7], [8], [9], [10], [11].
In [12] a method has been presented which makes it possible
to convert a classical logistic regression model (or in fact
any other probabilistic classifier) into an uplift model. The
approach is based on a class variable transformation. Recently,
in [13], the approach has been extended to work in the
context of online advertising, where it is necessary to not only
maximize uplift (the difference between success rate in the
treatment and control datasets) but also to increase advertiser’s
gains through maximizing response. This type of problems are
beyond the scope of this paper.

Recent, thorough literature overviews on uplift modeling
can be found in [5] and [2].

Support Vector Machines with parallel hyperplanes, similar
to our approach, have been analyzed in the context of ordinal
classification [14]; here the situation is different as two training
datasets are involved.

II. UPLIFT SUPPORT VECTOR MACHINES

We now introduce the notation and formally define Uplift
Support Vector Machines (USVMs). The class +1 will be
considered the positive, or desired outcome. The scalar product
of vectors x1, x2 will be denoted with 〈x1,x2〉.

SVMs are designed primarily for classification, not proba-
bility modeling, so in order to adapt SVMs to the analyzed
setting we first recast the uplift modeling problem as a three-
class classification problem. This differs from the typical
formulation which aims at predicting the difference in class
probabilities between treatment and control groups.

Unlike standard classification, in uplift modeling we have
two training samples: the treatment group, DT = {(xi, yi) :
i = 1, . . . , nT } and the control group DC = {(xi, yi) : i =
1, . . . , nC}, where xi ∈ Rm are the values of the predictor
variables, and yi ∈ {−1, 1} is the class of the i-th data record,
m is the number of attributes in the data, and nT and nC are
the numbers of records in the treatment and control groups
respectively. Objects in the treatment group have been subject
to some action or treatment, while objects in the control group
have not.

In the rest of the paper we will continue to follow the
convention that all quantities related to the treatment group
will be denoted with superscript T and those related to the
control group with superscript C .

An uplift model is defined as a function

M(x) : Rm → {−1, 0, 1}, (1)

which assigns to each point in the input space one of the
values +1, 0 and −1, interpreted, respectively, as positive,
neutral and negative impact of the action. In other words, the
positive prediction +1 means that we expect the objects class
to be +1 if it is subject to treatment and −1 if it is not, the
negative prediction means that we expect the class to be −1
after treatment and +1 if no action was performed, and neutral

if the object’s class is identical (either +1 or −1) regardless
of whether the action was taken or not.

The proposed Uplift Support Vector Machine (USVM),
which performs uplift prediction, uses two parallel hyperplanes

H1 : 〈w,x〉 − b1 = 0, H2 : 〈w,x〉 − b2 = 0,

where b1, b2 ∈ R are the intercepts. The model predictions are
specified by the following equation

M(x) =


+1 if 〈w,x〉 > b1 and 〈w,x〉 > b2,

0 if 〈w,x〉 ≤ b1 and 〈w,x〉 > b2,

−1 if 〈w,x〉 ≤ b1 and 〈w,x〉 ≤ b2.
(2)

Intuitively, the point is classified as positive if it lies on
the positive side of both hyperplanes, neutral if it lies on
the positive side of hyperplane H2 only, and classified as
negative if it lies on the negative side of both hyperplanes.
In other words, H1 separates positive and neutral points, and
H2 neutral and negative points. Notice that the model is valid
iff b1 ≥ b2; in Lemma 1 we will give sufficient conditions for
this inequality to hold.

Let us now formulate the optimization task which allows for
finding the model’s parameters w, b1, b2. We will use DT

+ =
{(xi, yi) ∈ DT : yi = +1} to denote data points belonging to
the positive class in the treatment group and DT

− = {(xi, yi) ∈
DT : yi = −1} to denote points in that group belonging to
the negative class. Analogous notation is used for points in
the control group. Denote n = |DT |+ |DC |.

The parameters of an USVM can be found by solving the
following optimization problem, which we call the USVM
optimization problem.

min
w,b1,b2∈Rm+2

1

2
〈w,w〉+ C1

∑
DT

+∪DC
−

ξi,1 + C2

∑
DT

−∪DC
+

ξi,1

+ C2

∑
DT

+∪DC
−

ξi,2 + C1

∑
DT

−∪DC
+

ξi,2,

(3)

subject to the following constraints

〈w,xi〉 − b1 ≥ +1− ξi,1, forall (xi, yi) ∈ DT
+ ∪DC

−, (4)

〈w,xi〉 − b1 ≤ −1 + ξi,1, forall (xi, yi) ∈ DT
− ∪DC

+, (5)

〈w,xi〉 − b2 ≥ +1− ξi,2, forall (xi, yi) ∈ DT
+ ∪DC

−, (6)

〈w,xi〉 − b2 ≤ −1 + ξi,2, forall (xi, yi) ∈ DT
− ∪DC

+, (7)
ξi,j ≥ 0, forall i = 1, . . . , n, j ∈ {1, 2},

(8)

where C1, C2 are penalty parameters and ξi,j slack variables
allowing for misclassified training cases. Note that ξi,1 and
ξi,2 are slack variables related to the hyperplane H1 and H2

respectively. We will now give an intuitive justification for this
formulation of the optimization problem.

Below, when we talk about distance of a point from a plane
and point lying on a positive or negative side of the plane we
implicitly assume that the width of the margin is also taken
into account.



The situation is graphically depicted in Figure 1. Example
points belonging to DT

+ are marked with T+, points belonging
to DT

−, respectively with T−. Analogous notation is used for
example points in the control group which are marked with
C+ and C−.

In an ideal situation, points for which a positive (+1)
prediction is made include only cases in DT

+ and DC
−, that is

points which do not contradict the positive effect of the action.
Note that for the remaining points, which are in DT

− or in DC
+,

the effect of an action can at best be neutral. Therefore points
in DT

+ and DC
− (marked T+ and C− respectively in the figure)

are not penalized when on the positive side of hyperplane
H1. Analogously points in DT

− and DC
+ (marked T− and C+)

which are on the negative side of H2 are not penalized.
Points in DT

+ and DC
− which lie on the negative side of

H1 are penalized with penalty C1ξi,1 where ξi is the distance
of the point from the plane and C1 is a penalty coefficient.
Those penalties prevent the model from being overly cautious
and classifying all points as neutral (see Lemmas 2 and 3 in
the next section). Analogous penalty is introduced for points in
DT
− and DC

+ in the fifth term of (3). In Figure 1, those points
are sandwiched between H1 and H2, and their penalties are
marked with red arrows.

Consider now points in DT
+ and DC

− which lie on the
negative side of both hyperplanes, i.e. in the region where
the model predicts a negative impact (−1). Clearly, model’s
predictions are wrong in this case, since if the outcome
was positive in the treatment group the impact of the action
can only be positive or neutral. Those data points are thus
additionally penalized for being on the wrong side of the
hyperplane H2 with penalty C2ξi,2. Analogous penalty is of
course applied to points in DT

− and DC
+ which lie on the

positive side of both hyperplanes. Additional penalties are
marked with dashed blue arrows in the figure.

To summarize, the penalty coefficient C1 is used to punish
points being on the wrong side of a single hyperplane (red
arrows in Figure 1) and the coefficient C2 controls additional
penalty incurred by a point being on the wrong side of also
the second hyperplane (dashed blue arrows in Figure 1). In
the next section we give a more detailed analysis of how the
penalties influence the model’s behavior.

III. PROPERTIES OF THE UPLIFT SUPPORT VECTOR
MACHINES (USVMS)

In this section we are going to analyze some mathematical
properties of Uplift Support Vector Machines (USVMs), es-
pecially in the context of influence of the parameters C1 and
C2 on model’s behavior. One of the more important results
is how the ratio of penalty parameters C2

C1
directly influences

the number of records which are classified as neutral, or,
in other words, how it influences the distance between the
two separating hyperplanes. This also sheds light on the
interpretation of the model.

Lemma 1: Let w∗, b∗1, b
∗
2 be a solution to the Uplift SVM

optimization problem given by Equations 3-8. If C2 ≥ C1

then b∗1 ≥ b∗2.

H1

H2
T−

ξi,2

C+

ξi,2

T+

ξi,1

C−

ξi,1

T+

ξi,1ξi,2

T−

ξi,2ξi,1T+

C−

C+

T−

Fig. 1. The Uplift SVM optimization problem. Example points belonging to
the positive class in the treatment and control groups are marked respectively
with T+ and C+. Analogous notation is used for points in the negative
class. The figure shows penalties incurred by points with respect to the two
hyperplanes of the USVM. Positive sides of hyperplanes are indicated by small
arrows at the right ends of lines in the image. Red arrows denote the penalties
incurred by points which lie on the wrong side of a single hyperplane, blue
dashed arrows denote additional penalties for being misclassified also by the
second hyperplane.

The proof of this and the remaining lemmas can be found
in the Appendix. The lemma guarantees that the problem
possesses a well defined solution in the sense of Equation 2.
Moreover it naturally constrains the penalty C2 to be greater
than or equal to C1. From now on, instead of working with
the coefficient C2, it will be more convenient to talk about the
penalty coefficient C1 and the quotient C2

C1
≥ 1 determining

how many times is C2 is greater than C1.
Lemma 2: For sufficiently large value of C2

C1
none of the

observations is penalized with a term involving the C2 factor
in the solution to the USVM optimization problem.
Equivalently the lemma states that for a large enough value
of C2

C1
, none of the points will be on the wrong side of

both hyperplanes. This is possible only when the hyperplanes
are maximally separated, resulting in most (often all) points
classified as neutral.

Lemma 3: If C1 = C2 = C and the solution is unique then
both hyperplanes coincide: b1 = b2.

We are now ready to give an interpretation of the C1 and
C2

C1
parameters of the Uplift SVM. The parameter C1 plays the

role analogous to the penalty coefficient C in classical SVMs
controlling the relative cost of misclassified points with respect
to the margin maximization term 1

2 〈w,w〉. The quotient C2

C1

allows the analyst to decide what proportion of points should
be classified as positive or negative. In other words, it allows
for controlling the size of the neutral prediction.

Note that this is not equivalent to selecting thresholds in data
scored using a single model. For each value of C2

C1
a different

model is built which is optimized for a specific proportion of
positive and negative predictions. We believe that this property



of USVMs is very useful for practical applications, as it allows
for tuning the model specifically to the desired size of the
campaign.

IV. THE UPLIFT SUPPORT VECTOR MACHINE
OPTIMIZATION TASK

Let us now present the dual of the Uplift Support Vector
Machine optimization task and discuss methods of solving it.

We will first introduce a class variable transformation

zi =

{
yi, if (xi, yi) ∈ DT ,

−yi, if (xi, yi) ∈ DC .

In other words, zi is obtained by keeping the class variable
in the treatment group and reversing it in the control. Note
that this is the same transformation which has been introduced
in [12] in the context of uplift modeling and logistic regression.

This variable transformation allows us to simplify the opti-
mization problem given in Equations 3-8 by merging (4) with
(5) and (6) with (7). The simplified optimization problem is

min
w,b1,b2∈Rm+2

1

2
〈w,w〉+ C1

∑
DT

+∪DC
−

ξi,1 + C2

∑
DT

−∪DC
+

ξi,1

+ C2

∑
DT

+∪DC
−

ξi,2 + C1

∑
DT

−∪DC
+

ξi,2,

subject to constraints

zi(〈w,xi〉 − b1)− 1 + ξi,1 ≥ 0 forall i = 1, . . . , n,

zi(〈w,xi〉 − b2)− 1 + ξi,2 ≥ 0 forall i = 1, . . . , n,

ξi,j ≥ 0, forall i = 1, . . . , n, j ∈ {1, 2}.

We will now obtain the dual form of the optimization
problem. We begin by writing the following Lagrange function

L(w, b1,b2, αi, βi, ξi,1, ξi,2, ri, pi)

=
1

2
〈w,w〉+ C1

∑
DT

+∪DC
−

ξi,1 + C2

∑
DT

−∪DC
+

ξi,1

+ C2

∑
DT

+∪DC
−

ξi,2 + C1

∑
DT

−∪DC
+

ξi,2

−
n∑

i=1

αi

(
zi(〈w,xi〉 − b1)− 1 + ξi,1

)
−

n∑
i=1

βi
(
zi(〈w,xi〉 − b2)− 1 + ξi,2

)
−

n∑
i=1

riξi,1 −
n∑

i=1

piξi,2,

where αi, βi ∈ R are Lagrange multipliers and ri, pi ≥ 0.
Now we need to calculate partial derivatives and equate

them to 0 in order to satisfy Karush-Kuhn-Tucker conditions.
We begin by deriving w.r.t. w

∂L

∂w
= w −

n∑
i=1

αizixi −
n∑

i=1

βizixi = 0,

from which we obtain

w =

n∑
i=1

(αi + βi)zixi. (9)

We obtain the remaining derivatives in a similar fashion

∂L

∂b1
=

n∑
i=1

αizi = 0,
∂L

∂b2
=

n∑
i=1

βizi = 0, (10)

∂L

∂ξi,1
= C11[zi=+1] + C21[zi=−1] − αi − ri = 0, (11)

∂L

∂ξi,2
= C11[zi=−1] + C21[zi=+1] − βi − pi = 0. (12)

Plugging Equations 11, 12 back into the Lagrange function
we obtain, after simplifications,

L =
1

2
〈w,w〉 −

n∑
i=1

αi

(
zi(〈w,xi〉 − b1)− 1

)
−

n∑
i=1

βi
(
zi(〈w,xi〉 − b2)− 1

)
.

Substituting w from Equation 9 and using Equation 10 we get

L =
1

2

n∑
i,j=1

(αi + βi)(αj + βj)zizj〈xi,xj〉

−
n∑

i,j=1

(αi + βi)(αj + βj)zizj〈xj ,xi〉

+ b1

n∑
i=1

αizi +

n∑
i=1

αi + b2

n∑
i=1

βizi +

n∑
i=1

βi

=

n∑
i=1

(αi + βi)−
1

2

n∑
i,j=1

(αi + βi)(αj + βj)zizj〈xi,xj〉,

(13)

which we maximize over αi, βi.
Finally, from the assumption that ri, pi ≥ 0 and (11), (12)

combined with the KKT condition on nonnegativity of αi, βi
and from (10) we obtain the following constraints for the dual
optimization problem

0 ≤ αi ≤ C11[zi=+1] + C21[zi=−1], (14)
0 ≤ βi ≤ C11[zi=−1] + C21[zi=+1], (15)
n∑

i=1

αizi =

n∑
i=1

βizi = 0. (16)

A. The optimization algorithm

The optimization problem presented above can be solved
using off the shelf constrained optimization software or using
methods designed specifically for Support Vector Machines.
We have adapted to our problem the dual coordinate de-
scent method [15] used in the LIBLINEAR package which
is currently the most popular method of solving SVM-type
optimization problems. Details are omitted due to lack of space
and the fact that the algorithm is very similar to the one in [15].
Our final approach uses the CVXOPT convex solver [16] for



problems of up to 500 records, and for larger problems the
dual coordinate descent method.

V. EXPERIMENTAL EVALUATION

In this section we present an experimental evaluation of
the proposed Uplift Support Vector Machines. We begin with
an illustrative example showing the approach applied to two
datasets. Later, we present an experimental comparison with
other uplift modeling methods on several benchmark datasets.

While testing uplift modeling algorithms one encounters
the problem of the lack of publicly available datasets. Even
though control groups are ubiquitous in medicine and become
common in marketing, there are very few publicly available
datasets which include a control group as well as a reasonable
number of predictive attributes. In this paper we will use the
few publicly available datasets we are aware of, as well as
some artificially generated examples based on datasets from
the UCI repository. We describe the two approaches in turn.

The first publicly available dataset, provided on Kevin
Hillstrom’s MineThatData blog, contains results of an e-mail
campaign for an Internet based retailer [17]. The dataset
contains information about 64 000 customers. The customers
have been randomly split into three groups: the first received
an e-mail campaign advertising men’s merchandise, the sec-
ond, a campaign advertising women’s merchandise, and the
third was kept as control. Data is available on whether a
person visited the website and/or made a purchase (conver-
sion). We only focus on visits since very few conversions
actually occurred. In this paper we use the dataset in two
ways: combining both e-mailed groups into a single treatment
group (Hillstrom-visit) and using only the women’s
merchandise group (Hillstrom-visit-w).

Additionally, we found two suitable publicly available
clinical trial datasets which accompany a book on survival
analysis [18]. Unfortunately, very few predictive attributes are
present which limits their usefulness.

The first dataset is the Bone Marrow Transplant (BMT) data
which covers patients who received two types of bone marrow
transplant: taken from the pelvic bone (which we used as the
control group since this is the procedure commonly used at
the time the data was created) or from the peripheral blood (a
novel approach, used as the treatment group in this paper). The
peripheral blood transplant is generally the preferred treatment,
so minimizing its side effects is highly desirable. There are
only three randomization time variables available: the type
and extent of the disease, as well as patients age. There
are two target variables representing the occurrence of the
chronic (cgvh) and acute (agvh) graft versus host disease.
We ignore the survival analysis nature of the data and simply
treat nonoccurrence as the successful outcome.

Note that even though the BMT dataset does not, strictly
speaking, include a control group, uplift modeling can still
applied. The role of the control group is played by one of the
treatments, and the method allows for selection of patients to
whom an alternative treatment should be applied.

The second clinical trial dataset (tamoxifen) we analyze
comes from the study of treatment of breast cancer with
tamoxifen. The control group received tamoxifen alone and
the treatment group tamoxifen combined with radio therapy.
We attempt to model the variable stat describing whether the
patient was alive at the time of the last follow-up. The dataset
contains six variables. Here we again ignore the survival
character of the data.

As can be seen, there are very few real uplift datasets
available, moreover, they all have a limited number of at-
tributes (up to 10) and/or data. In [5] an approach has been
proposed to split standard UCI datasets into treatment and
control groups suitable for uplift modeling. The conversion is
performed by first picking one of the data attributes which
either has a causal meaning or splits the data evenly into two
groups. As a postprocessing step, attributes strongly correlated
with the split are removed (ideally, the division into treatment
and control groups should be independent from all predictive
attributes, but this is possible only in a controlled experiment).
Multiclass problems are converted to binary problems with the
majority class considered to be +1 and remaining classes −1.
The procedure is described in detail in [5], where a table is
given with the exact conditions used to split the data.

A. An illustrative example

We will first illustrate how the method behaves on two
example datasets: the tamoxifen trial data (tamoxifen)
and the credit-a dataset from the UCI repository. More
specifically, we are going to show how the choice of the
parameter C2

C1
affects model behavior. Since this section has

mainly illustrative purpose, all curves are drawn based on the
full dataset; more rigorous experiments involving test sets are
given in Section V-B.

Figure 2 shows the number of cases classified as positive,
neutral and negative depending on the quotient C2

C1
for the two

datasets. The numbers shown were obtained on the full dataset
and are averages of respective numbers of cases in treatment
and control groups. The parameter C1 was set to 0.1, but for
other values we obtained very similar results.

It can clearly be seen that for low values of the quotient, the
neutral class is practically empty, but as the quotient increases,
more and more cases are classified as neutral. Finally, almost
no cases are classified as positive or negative. The figure
validates our interpretation presented earlier in Lemmas 1-3.
The analyst can use the parameter C2

C1
to control the proportion

of negative and positive predictions and tune the model to
those values.

It is worth noting that the model is quite sensitive to the
value of C2

C1
, and the interval between the extreme cases of no

and almost all predictions being neutral can be quite narrow.
Currently this issue is solved by checking model behavior for
various values of the parameter for a single value of C1 = 0.1
and, after finding good boundary points, selecting values only
from that interval (see also the discussion on parameter tuning
below). Finding a more convenient solution is left as future
research.
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Fig. 2. Number of cases classified as positive, neutral and negative as a
function of the quotient C2

C1
of USVM penalty coefficients for the credit-a

and tamoxifen datasets.
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Fig. 3. The difference between success probabilities in treatment and control
groups within cases predicted respectively as neutral, positive and negative as
a function of C2

C1
.

Figure 3 shows the uplift, i.e. the difference between success
probabilities (the +1 class) in the treatment and control groups
for those two datasets as a function of the quotient C2

C1
.

It can be seen that, indeed, within the records predicted as
positive, the probability of success (the +1 class) is larger in
the treatment group than in the control group. The reverse is
true for negative predictions. For cases predicted to be neutral,
the difference in class probability between the groups indeed
oscillates around zero. Note that towards the ends of the charts
the estimates were based on very little data (see Figure 2)
resulting in sudden jumps or dips in the values of uplift, such
as the one visible in the neutral group for the tamoxifen
dataset. The figure demonstrates that our method does indeed
make correct uplift predictions (in the sense of Equation 1).

B. Comparison on benchmark datasets

Let us now discuss evaluation of uplift models using so
called uplift curves. One of the tools for assessing performance
of standard classification models are lift curves (also known
as cumulative gains curves or cumulative accuracy profiles).
In a lift curve, the x axis corresponds to the number of cases
targeted and the y axis to the number of successes captured
by the model. In our case both numbers will be expressed as
percentage of the total population.

The uplift curve is computed by subtracting the lift curve
obtained on the control test set from the lift curve obtained
on the treatment test set. Both curves are generated using the
same uplift model. Recall the number of successes on the y
axis is expressed as a percentage of the total population which
guarantees that the curves can be meaningfully subtracted. The
interpretation of the uplift curve is as follows: on the x axis
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Fig. 4. Uplift curves for the breast-cancer dataset for Uplift SVM, the
double SVM approach, SVM uplift model based on class variable transforma-
tion (Class-transf-SVM), and Euclidean distance based uplift decision
trees (UpliftTree-Euclid). The x-axis represents the percentage of the
population to which the action has been applied and the y-axis the net gain
from performing the action. It can be seen that targeting about 50% of
the population gives significant gains over targeting nobody or the whole
population. The proposed Uplift SVM model achieves the best performance
over the whole range of the plot.

we select the percentage of the population on which an action
is performed and on the y axis we read the difference between
the success rates in the treatment and control groups. A point
at x = 100% gives the gain in success probability we would
obtain if the action was performed on the whole population. A
diagonal line corresponds random selection. The Area Under
the Uplift Curve (AUUC) can be used as a single number
summarizing model performance. In this paper we subtract
the area under the diagonal line from this value in order to
obtain more meaningful numbers. More details on evaluating
uplift models and on uplift curves can be found in [5], [2].

Figure 4 shows uplift curves for the breast-cancer
dataset for four different uplift models used in the comparison
(see below). It can be seen that applying the action only to
some proportion of the population leads to significant gains in
net success rate. The curves in the figure have been generated
by averaging over 128 random train test splits; the same
method has been used for other experiments in this section
and is described in detail below.

We will now compare the performance of Uplift Sup-
port Vector Machines (Uplift-SVM) and three other up-
lift modeling methods on several benchmark datasets. Two
of the approaches are also based on Support Vector Ma-
chines: the method based on building two separate SVM
models (Double-SVM) on treatment and control groups
and subtracting their predicted probabilities as well as a
single Support Vector Machine adapted to uplift modeling
using the class variable transformation proposed in [12]
(Class-transf-SVM). Since both those methods require
probabilities to be predicted, the SVMs have been calibrated
by training logistic regression models on their outputs. The
fourth method used in comparison are uplift decision trees
based on the Euclidean distance splitting criterion introduced



in [5], referred to as UpliftTree-Euclid.
The parameters of all SVM based models have been chosen

using 5-fold cross-validation. The parameter C for classical
SVMs was chosen from the set {10−2, 10−1, . . . , 105}.

For Uplift Support Vector Machines the parameter choice
was more difficult due to high sensitivity to the value of
parameter C2

C1
. We used a pre-tuning step to select the value

range for this parameter for a fixed value of C1 = 0.1; the
range was later used also for other values of C1. The endpoints
were the two extreme values of C2

C1
for which almost all and

almost no predictions become neutral. Those values were then
used endpoints of the interval on which grid search over both
parameters was performed. The parameter C1 was selected
from the set {10−2, 10−1, . . . , 103}. For each grid point 5-fold
cross-validation was used to measure model performance.

Table I compares Areas under the Uplift Curve for Uplift
SVMs against the remaining three uplift modeling approaches
on all benchmark datasets. The areas are given in terms of
percentages of the total population (used also on the y-axis).
Testing was performed by repeating 128 times a random
train/test split with 80% of data used for training (and cross-
validation based parameter tuning). The remaining 20% were
used for testing. Cases when a given method is better than the
proposed Uplift SVM are marked in bold. The last row of the
table lists the number of times Uplift-SVM was better than
each respective method.

Uplift SVM consistently outperforms the method based on
two separate SVM models (better performance on 13 out of
18 datasets) as well as the uplift decision trees (on 12 of 18
datasets). It’s performance is on par with the method using
SVMs with class variable transformation proposed in [12]
which it outperforms on roughly half of the datasets. That
is, there seems to be roughly equal chance than either of the
methods will perform better on a new dataset. We believe that
those results clearly demonstrate that USVMs are a useful
addition to the uplift modeling toolbox.

Overall, our method performs comparably to or better
than current state-of-the-art uplift modeling methods. We also
believe, that other advantages of the proposed Uplift SVMs are
equally important. For example, it allows for natural prediction
of cases with positive, negative and neutral outcomes (as
shown in Section V-A) which is very useful in practice.
Especially the negative group is important from the point
of view of practical applications. Being able to detect this
group and refraining from targeting it was crucial for many
successful marketing campaigns. Additionally, through the
choice of the parameter C2

C1
the analyst is able to decide how

conservative should the model be when selecting those groups.

VI. CONCLUSIONS AND FUTURE RESEARCH

We have presented Uplift Support Vector Machines, an
adaptation of the SVM methodology to the uplift modeling
problem. The proposed method has been analyzed theoreti-
cally, whence it has been demonstrated that by an appropriate
choice of model parameters, one is able to tune how conser-
vative the model is in declaring a positive or negative impact

of an action. The dual coordinate descent optimization method
has been adapted to solve the corresponding optimization task.
Future research will include adapting further SVM optimiza-
tion methods to the problem as well as a theoretical analysis
of the generalization properties.
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[12] M. Jaśkowski and S. Jaroszewicz, “Uplift modeling for clinical trial
data,” in ICML 2012 Workshop on Machine Learning for Clinical Data
Analysis, Edinburgh, Scotland, Jun. 2012.

[13] D. Pechyony, R. Jones, and X. Li, “A joint optimization of incrementality
and revenue to satisfy both advertiser and publisher,” in WWW 2013
Companion, 2013.

[14] A. Shashua and A. Levin, “Ranking with large margin principle:
Two approaches,” Advances in neural information processing systems,
vol. 15, pp. 937–944, 2002.

[15] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. Keerthi, and S. Sundararajan,
“A dual coordinate descent method for large-scale linear SVM,” in
Proc. of the 25-th International Conference on Machine Learning
(ICML), Helsinki, Finland, 2008.

[16] M. S. Andersen, J. Dahl, Z. Liu, and L. Vandenberghe, “Interior-
point methods for large-scale cone programming,” in Optimization for
Machine Learning. MIT Press, 2012, pp. 55–83.

[17] K. Hillstrom, “The MineThatData e-mail analytics and data min-
ing challenge,” MineThatData blog, http://blog.minethatdata.com/2008/
03/minethatdata-e-mail-analytics-and-data.html, 2008, retrieved on
02.04.2012.

[18] M. Pintilie, Competing risks : a practical perspective. John Wiley &
Sons Inc., 2006.



TABLE I
AREAS UNDER THE UPLIFT CURVE FOR FOUR UPLIFT MODELS ON REAL AND ARTIFICIAL DATASETS.

dataset Uplift-SVM Double-SVM Class-transf-SVM UpliftTree-Euclid

hepatitis 1.68 0.04 2.2 -0.64
breast cancer 4.48 3.13 3.87 0.86
australian 0.14 0.65 1.28 -0.57
diabetes -0.28 0.78 0.89 1.14
dermatology 7.82 5.51 8.02 7.02
credit-a 6.46 1.14 5.71 -1.51
heart-c 2.57 0.15 2.51 1.78
labor -0.43 -0.84 -5.52 -1.84
liver disorders 0.9 3.84 2.4 2.28
splice 2.17 2.16 2.19 3.73
hypothyroid 2.84 2.51 0.06 2.88
diagnosis 14.83 -0.87 13.93 13.61
primary-tumor 4.17 0.92 4.52 -1.07
BMT-agvh -2.99 -2.03 -1.84 -0.94
BMT-cgvh 4.57 5.61 3.56 2.32
tamoxifen 1.41 1.80 1.75 0.32
Hillstrom-visit 0.32 0.21 0.39 0.40
Hillstrom-visit-w 0.69 0.66 0.73 0.66

Uplift SVM win/total 13/18 7/18 12/18

APPENDIX

Let us begin with an observation which will be used in the
proofs. Consider the Uplift SVM optimization problem given
by Equations 3-8. Notice that when w, b1, b2 are fixed, the
optimal values of slack variables ξi,j are uniquely determined.
Optimal values for slack variables present in Equation 4 are
ξ∗i,1 = max{0,−〈w,xi〉 + b1 + 1}, and for those present
in Equation 5, ξ∗i,1 = max{0, 〈w,xi〉 − b1 + 1}. Analogous
formulas can be given for ξ∗i,2 and Equations 7-8.

Proof of Lemma 1: Let S∗ = 〈w∗, b∗1, b∗2〉 be an optimal
solution with b∗1 < b∗2. Consider also a set of parameters S′ =
〈w∗, b∗2, b∗1〉 with the values of b∗1, b

∗
2 interchanged and look at

the target function (3) for both sets of parameters.
Take a point (xi, yi) ∈ DT

+ for which, under the set of
parameters S′, ξ′i,1 > 0 and ξ′i,2 = 0, that is the point is
penalized only for crossing the hyperplane H1. Under the
parameters S∗ the point will be penalized not with C1ξ

∗
i,1 for

crossing H1 but, instead, with C2ξ
′
i,2 for crossing H2. Since,

by switching from S∗ to S′ the hyperplanes simply exchange
intercepts, we have ξ∗i,1 = ξ′i,2 and, from the assumption,
C2ξ

∗
i,1 > C1ξ

′
i,2. Thus the amount every point (xi, yi) ∈ DT

+

contributes to the target function (3) is lower in S′ than in S∗.
By a similar argument one can see that for a point (xi, yi) ∈

DT
+ for which, under S′, ξ′i,1, ξ

′
i,2 > 0 (i.e. it is penalized

for crossing both hyperplanes) a switch to parameter set S∗

increases the target function by (b∗2 − b∗1)(C2 − C1).
Analogous arguments hold for points in DT

−, DC
+ and DC

−
contradicting the optimality of S∗.

Proof of Lemma 2: Let us first consider only the
hyperplane H1. Assume that there exists at least one point
in DT

− ∪DC
+ which is punished with a term involving the C2

penalty coefficient, and therefore lies on the wrong side of H1.

Out of all such points choose the one (x̃i, ỹi) which is furthest
from H1 and denote by ξ̃i,1, ξ̃i,2 its slack variables w.r.t. H1

and H2 respectively. The penalty incurred by (x̃i, ỹi) equals

C2ξ̃i,1 + C1ξ̃i,2.

Let us now shift the hyperplane H1 by exactly ξ̃i,1; as a result,
the point is only penalized by C1ξ̃i,2. The same is true for all
other points from DT

− ∪DC
+. On the other hand, after shifting

H1, penalties w.r.t. H1 of points in DT
+ ∪ DC

− could have
increased, but the increase is bounded by C1ξ̃i,1 per point.

Denote n1 = |DT
− ∪DC

+|, n2 = |DT
+ ∪DC

−|. The change in
penalties caused by shifting H1 is bounded from above by

C1ξ̃i,2 − (C2ξ̃i,1 + C1ξ̃i,2) + n2C1ξ̃i,1 = ξ̃i,1(n2C1 − C2),

which is negative for sufficiently large value of C2, such that
shifting H1 is guaranteed to decrease the target function.

Proof of Lemma 3: Let us fix any w and optimize with
respect to b1, b2. Under the assumption of the lemma, the target
function (3) can be rewritten as

1

2
〈w,w〉+ C

∑
DT∪DC

ξi,1 + C
∑

DT∪DC

ξi,2.

Note, that the first term is constant, the second is a function
of b1 and the third of b2. Moreover the second and third term
are fully symmetric so the target function can be rewritten as
const. + f(b1) + f(b2), where f is some function of b1 or
b2. Notice that optimization over b1 is done independently of
optimization over b2 and since the optimized functions f are
identical, the resulting optima for b1 and b2 must be identical
if the solution is unique.


