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Abstract. We address the problem of regularization of linear regression
models in uplift modeling and heterogeneous treatment effect estimation.
We consider interaction models which are commonly used by statisticians
in medicine and social sciences to estimate the causal effect of a treat-
ment, and introduce a new type of such a model. We demonstrate the
equivalence of all interaction models when no regularization is present,
and that this is no longer the case when the model is regularized. In-
teraction terms introduce implicit correlations between treatment and
control coefficients into the regularizer, a fact which has not been previ-
ously noted. The correlations depend on the type of interaction model,
and by interpreting the regularizer as a prior distribution we were able to
pinpoint cases when a given regularized interaction model is most appro-
priate. An interesting property of the proposed new interaction type is
that it allows for smooth interpolation between two types of uplift regres-
sion models: the double model and the transformed target model. Our
results are valid for both ridge (L2) and Lasso (L1) regularization. Ex-
periments on synthetic data fully confirm our analyses. We also compare
the usefulness of various regularization schemes on real data.

Keywords: uplift modeling · heterogeneous treatment effect · regular-
ization · linear models · Lasso.

1 Introduction

Uplift modeling is a method of selecting targets for an action, such as a marketing
campaign or a medical treatment. To clarify the problem, consider the following
example. We administer a factory which produces a certain kind of product i.e.
skis. In order to increase our income we send discounts to potential customers.
Consider three kinds of customers. The first kind decides to buy skis, because
they received a discount (without the discount they wouldn’t have bought).
The second kind decides to not buy skis and sending the discount had no effect.
Customers of the third kind bought the skis but would have bought even without
the discount. For us it is profitable to send the discount only to the customers
of the first kind, but not to the second (no profits) and especially not to the
third (lost income due to sale at a lower price). A typical approach to solving
the problem of choosing appropriate targets for an action is to predict results
after conducting a pilot campaign on a sample of the customers. If the predicted
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income is above a given threshold, the observation is classified as suitable for
the action. However this approach in not correct because it doesn’t take into
consideration the counterfactual response in case the action would not have
been taken. The three groups of customers cannot be distinguished.

In uplift modeling our goal is to predict, for the i-th observation, the dif-
ference of responses yTi when action was taken on it, and yCi when the action
was not taken. Unfortunately we cannot directly compare those two outcomes,
because we observe only one of them. This is known as the Fundamental Problem
of Causal Inference [10].

Uplift modeling offers a solution of this problem. In this method we divide our
population into two groups: treatment on which the action is taken, and control,
which is not subjected to the action. Thanks to this we may decompose the effect
observed in the treatment group into two parts. The first is the background
(control) outcome and the second is the influence of the action which is only
observed in the treatment group. Using this decomposition we may construct a
model which will estimate the true effect of an action on an individual.

1.1 Related work

Uplift modeling is a part of a broader problem of causal discovery, concentrating
not on predicting future responses, but on effects of interventions, which may be
dependent on the values of other variables [23]. Causal discovery has two major
branches. The first uses purely observational data [23, 30]. In the second, the
action being analyzed has to be actively applied to a subgroup of individuals.
Those methods have many applications in social science and medicine [12].

Methods presented in this paper are relevant to the second approach. Most re-
search in this area focuses on cases when the treatment group is not selected ran-
domly, i.e. the treatment assignment mechanism is biased [12, 7]. Those methods
typically come under the name of Heterogeneous Treatment Effect estimation [1,
9]. Unfortunately those approaches (e.g. propensity score matching or weight-
ing) are based on untestable assumptions like ‘no unmeasured confounders’. The
main focus of those methods is to correct the assignment bias not on the esti-
mation problem itself. Uplift modeling, in contrast, concentrates on finding the
best possible estimator under random assignment assumptions, which guarantee
that the causal effect of the action is identified correctly.

Most of publications on uplift modeling concentrate on the classification
problem. First works were based on decision trees [29, 25]. They modified split-
ting criteria in order to maximize difference in responses between two groups.
Similar methods have been invented under the name of estimating heterogeneous
treatment effect [1, 9]. Several publications use modified response variable [13,
14, 18] with linear models with such as logistic regression or Support Vector
Machines [17, 32, 31]. Estimators for regression problem where analyzed in [27],
where basic double regression approach is confronted with some new ideas. An-
other way of improving on double regression is using shrinkage estimators such
as those proposed in [28].
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Regression models with interaction terms have been used for causal prediction
for decades, see [12, Chap. 7.6] or [7, Chap. 15]. The majority of works use
treatment interaction models described in the next section.

There are currently few works devoted specifically to the problem of regu-
larization in uplift modeling or heterogeneous treatment effect estimation. The
main textbook on causal effect modeling [12] only discusses the Lasso method for
variable selection on one page, and another [7] mentions the term ‘regularization’
only twice.

There are a few papers which introduce regularized uplift models but do not
thoroughly analyze the problem. Imai et al. [11] proposed an SVM model for
treatment effect estimation which used the Lasso penalty. This is in fact a vari-
ant of a regularized treatment interaction model, frequently used in literature.
In [5] a Lasso style model for uplift regression has been introduced, inspired by
multitask learning. The proposed model is similar to the models analyzed in this
work but includes interaction terms for both treatment and control making it
overparametrized which may lead to estimation problems. A similar approach
called Shared Data Representation was presented in [3].

The problem of regularization has been addressed by several authors working
on nonrandomized treatment assignment. In [22] fused lasso was applied to reg-
ularize propensity scores. Hahn et al. [6] discussed pitfalls of regularizing causal
models under non-random treatment assignment. Chernozhukov [2] addressed
the problem of variable selection for instrumental variables and confounding
controls. The goals of those works are different from ours, since we focus on
predictive accuracy in the case of randomized treatment assignment.

1.2 Notation

In the text, lowercase Latin and Greek letters denote vectors, uppercase letters:
matrices. Let ′ denote matrix transpose, Ip a p× p identity matrix, 0 the matrix
of zeros of appropriate size, and ⊗ the Kronecker product of matrices. All vectors
will be assumed to be column vectors, except the feature vectors, denoted with
letter x, assumed to be row vectors.

We assume to have a training set of n samples, with i-th sample being a
triple (xi, yi, ti), where xi ∈ Rp is a p-dimensional feature vector, yi ∈ R the
response, and ti ∈ {0, 1} the treatment indicator, where ti = 1 means that the
i-th case is in the experimental group (was subjected to the action) and ti = 0
indicates a control case.

Quantities related to the treatment group will be denoted with superscript
T and to the control group with superscript C. The superscript U will indicate
quantities related to the estimated uplift, i.e. the effect of the action. For exam-
ple, nT (nC) denotes the number of cases in the treatment (control) group. We
will make the usual assumptions taken when working with linear models, namely,
that the treatment and control responses are linear functions of the predictors [8]

yi =

{
xiβ

C + εi if ti = 0

xiβ
T + εi = xiβ

C + xiβ
U + εi if ti = 1,

(1)
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where βT and βC are the true coefficient vectors for treatment and control cases,
and εi are independent random error terms with equal variances and E εi = 0.

Notice that for treatment cases the response is the sum of control response
xiβ

C and the effect of the action xiβ
U . Clearly, βU = βT − βC is the parameter

of interest we want to estimate. We also introduce a vector βS = βT + βC such
that 1

2xiβ
S is the average of treatment and control responses for a case xi.

Finally, let us introduce a matrix XT ∈ RnT×p whose rows are feature vectors
of treatment cases, and a vector yT ∈ RnT

of corresponding responses. For the
control group, XC and yC are defined analogously. The pairs (XT , yT ), (XC , yC)
can be interpreted as two separate treatment and control training sets.

2 Linear models of causal influence

In this section we describe basic types of linear models used to estimate causal
effects and demonstrate their equivalence. Here we assume that the models do
not use regularization, which will be discussed in the next section.

2.1 The double model

The most common approach to uplift regression is the so called double model [27],
denoted as D. The model is also known as the T -learner [16]. To estimate βU ,
the model simply subtracts the coefficient vectors estimated separately on the
treatment and control samples: β̂U = β̂T − β̂C , where both sub-estimators are
obtained by minimizing some loss function ℓ, such as square loss:

β̂T = argmin
β

nT∑
i=1

ℓ(yTi , x
T
i β), β̂C = argmin

β

nC∑
i=1

ℓ(yCi , x
C
i β). (2)

Let us rewrite the double model as a single regression model. Define an n × 2p
matrix X̃ and coefficient vector β̃ ∈ R2p as

X̃ =

[
XT 0
0 XC

]
, β̃ =

[
βT

βC

]
, (3)

and let x̃i denote the i-th row of X. It is easy to see that estimating β̃ by
minimizing

n∑
i=1

ℓ(yi, x̃iβ̃) (4)

is equivalent to Equation 2.

2.2 Interaction models

In medicine and social sciences casual effects are often estimated using so called
interaction models. A single regression model is build on combined treatment
and control data. The model includes a special interaction term which allows
for estimating the causal effect’s coefficients βU . We now discuss several such
models.
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Treatment interaction model (TI). The most common approach [11] is to use an
interaction between treatment indicator and all predictor variables, resulting in
a model based on the following assumption

yi = tixiβ
U + xiβ

C + εi. (5)

The coefficient βC describes the responses in the control group. Since xiβ
C is

also present in the treatment group, xiβ
U has to represent the effect of the

treatment. We call this model the treatment interaction model because the in-
teraction involves the treatment indicator. Later in the text the model will be
denoted with abbreviation TI.

It is easy to see that the model can be represented with a single regression
model whose design matrix and coefficient vector are[

XT XT

0 XC

]
,

[
βU

βC

]
, (6)

respectively. While this is the most common interaction model, other approaches
are also possible.

Symmetric interaction model (SI). Let us now introduce another interaction
model which is one of the contributions of this paper

yi =
(
ti − 1

2

)
xiβ

U + 1
2xiβ

S + εi. (7)

The model uses so called effect or deviation coding of the categorical treatment
variable, see [8, Section 10.8] or [4, Section 2.3.2]. The interpretation is that
1
2xiβ

S is the average of treated and control outcomes for case xi, and ± 1
2xiβ

U is
the difference from the mean for control/treatment response. The design matrix
and coefficient vector for the corresponding single regression model are

1
2

[
XT XT

−XC XC

]
,

[
βU

βS

]
. (8)

Some advantages of this model, such as lack of correlations in the prior and
a relationship with a model based on target variable transformation will be
discussed in the following sections.

The model is called the symmetric interaction model since the indicators for
treatment and control groups are treated in a symmetric fashion.

Control interaction model (CI). For completeness we also introduce a model
with interaction between the control group indicator and x’s, although we have
never seen this model used in literature:

yi = βTxi − (1− ti)β
Uxi + εi. (9)

Here we estimate the treatment response for all cases, and correct for the strength
of causal influence in the control group.

All proposed models are summarized in Table 1. The first row displays the
models’ names and abbreviations. The following rows provide the models’ formu-
las, design matrices and coefficient vectors. The remaining rows will be explained
in the next section.
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Model Double (D) Treatment
Interaction (TI)

Symmetric
Interaction (SI)

Control
Interaction (CI)

Form
tiβ

Txi

+ (1− ti)β
Cxi

tiβ
Uxi + βCxi

(
ti − 1

2

)
xiβ

U

+ 1
2
xiβ

S

− (1− ti)β
Ux

+ βTx

Design
matrix

[
XT 0
0 XC

]
,

[
βT

βC

] [
XT XT

0 XC

]
,

[
βU

βC

]
1
2

[
XT XT

−XC XC

]
,

[
βU

βS

] [
0 XT

−XC XC

]
,

[
βU

βT

]
Matrix
Ã

[
1 0
0 1

] [
1 1
0 1

] √
2

[
1
2

1
2

− 1
2

1
2

] [
0 1
−1 1

]
Regu-
larizer λ1∥βT ∥+ λ2∥βC∥ λ1∥βU∥+ λ2∥βC∥ λ1∥βU∥+ λ2∥βS∥ λ1∥βU∥+ λ2∥βT ∥

Table 1: Summary of linear interaction models analyzed in the paper

2.3 Unified representation of interaction models

In this section we aim to unify all interaction models and demonstrate their
equivalence. The theorem below shows that when no regularization is present
all interaction models are in fact statistically equivalent with the double model
and, as a consequence, with each other.

Theorem 1. There is a one-to-one mapping between treatment interaction mod-
els and double models such that the corresponding models have identical values
of the training set losses and provide the same estimates of βU . An analogous
result holds for symmetric and control interaction models.

Proof. Recall that the double model (Equation 2) can be recast as a single
model (Equation 2) trained on the matrix X̃ given in Equation 3, leading to an
optimization problem given in Equation 4. For any nonsingular 2p × 2p matrix
A we have

n∑
i=1

ℓ(yi, x̃iβ̃) =

n∑
i=1

ℓ
(
yi, (x̃iA)(A−1β̃)

)
. (10)

So, for a given double model, multiplying the feature vectors and the coefficient
vector respectively by A and A−1 does not change the predicted value and thus
yields a model with the same empirical risk. This is a direct consequence of the
so called affine equivariance of classic least squares linear models [26, p. 116].

Take A to be [
1 1
0 1

]
⊗ Ip =

[
Ip Ip
0p Ip

]
,

and apply Equation 10 to each row of the design matrix. We have

X̃A =

[
XT 0
0 XC

] [
Ip Ip
0p Ip

]
=

[
XT XT

0 XC

]
,

and after left-multiplying β̃ by A−1

A−1β̃ =

([
1 −1
0 1

]
⊗ Ip

)[
βT

βC

]
=

[
βT − βC

βC

]
=

[
βU

βC

]
,
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which is the design matrix and coefficient vector defining the treatment interac-
tion model (Equation 6). Thus, the matrix A defines a linear mapping between
the double and treatment interaction models such that the corresponding mod-
els have the same empirical risk. The fact that the correspondence is one-to-one
follows from nonsingularity of matrix A. As a result, both types of models lead
to the same empirical risk minimizer and the same estimate of βU .

To obtain an analogous mapping for symmetric interaction model use the

matrix A =

[
1
2

1
2

− 1
2

1
2

]
⊗ Ip, and for the control interaction model, the matrix

A =

[
0 1
−1 1

]
⊗ Ip.

To show the equivalence between two types of interaction models, consider
mapping models of the first type to the double model and than to the interaction
model of the second type. Equivalence follows from the fact that the composition
of one-to-one mappings is one-to-one. ⊓⊔

A consequence of the theorem is that, when no regularization is used, all
interaction models and the double model are essentially equivalent from the
statistical perspective: they provide identical estimates and the same predictions
on future data. A generic estimation procedure for interaction models can thus
be implemented conceptually as follows

1. Form the matrix X̃
2. Compute the matrix X̃A
3. Obtain an estimate β̂ based on X̃A and y

4. Compute β̂U = [Ip| − Ip]A
−1β̂

In the last step above, we first transform β̂ into (β̂T , β̂C) and then multiply it
by [Ip| − Ip] to obtain β̂U = β̂T − β̂C .

Notice that all transformation matrices used in the proof have the form

A = Ã⊗ Ip

for some 2 × 2 matrix Ã. The third row of Table 1 lists the matrices Ã for all
considered interaction models. The matrix for the symmetric interaction model
has an additional

√
2 factor. This factor cancels out in Equation 10 and in step 4

of the above procedure, so it will not affect the final estimate. The reason for its
introduction is explained in the next section.

3 Regularized interaction models

In the previous section we showed that all unregularized interaction models are
equivalent. We will now show that when regularization is present, this will no
longer be the case. Our analysis will be valid for all regularizers based on Lq

norms raised to the power q, but later we will focus on L1 and L2 norms.
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The most obvious way to regularize the double model is to separately regu-
larize the estimators for βT and βC thus minimizing the following cost function

n∑
i=1

ℓ(y, x̃iβ̃) + λ1∥βT ∥qq + λ2∥βC∥qq =

n∑
i=1

ℓ(y, x̃iβ̃) +

∥∥∥∥[ q
√
λ1 0
0 q

√
λ2

]
β̃

∥∥∥∥q
q

. (11)

For the interaction models, all approaches in literature apply regularization di-
rectly to coefficient vectors present in the model. The fourth row of Table 1 lists
the form of the regularizer for each type of model considered in the paper.

For example, in the treatment interaction model we separately regularize βU

and βC . This scheme looks appealing since we directly regularize the quantity of
interest, which is βU . However, this type of regularization introduces unexpected
interactions between the two regularized vectors. For example, letting λ2 → ∞
does not just influence the estimate of βC . The estimate of βU is also affected:
regularization will force βC → 0 and, as a result, βU will tend towards βT .

We will now analyze those issues further and provide guidelines on the sce-
narios where different types of regularized interaction models are most useful.

As we have seen above in Equation 10, every interaction model can be ex-
pressed as a linear transformation of the double model with an appropriately
chosen nonsingular matrix A. Using this fact and Equation 11, every regularized
interaction model can be expressed as

n∑
i=1

ℓ
(
y, (x̃iA)(A−1β̃)

)
+

∥∥∥ΛqA
−1β̃

∥∥∥q
q
, (12)

where Λq =

[
q
√
λ1 0
0 q

√
λ2

]
. Here the regularization is applied to the transformed

coefficient vector A−1β̃. Since A−1 does not cancel within the regularization
term, the model is no longer invariant under linear transformations, and therefore
different interaction models will lead to different regularization terms.

The equation demonstrates one of the main claims of the paper: regularized
interaction models are equivalent to the double model regularized with a penalty
based on a linear transformation of a unit sphere determined by the type of
interaction model used.

Indeed, let us now analyze the generic regularizer by looking at the shape of
the contours of its regularization regions. The contours are the sets of points{

β̃ :
∥∥∥ΛqA

−1β̃
∥∥∥
q
= r

}
, (13)

where r > 0 is a positive constant defining the contour. Substituting β = ΛqA
−1β̃

the contour equation becomes{
AΛ−1

q β : ∥β∥q = r
}
. (14)

Therefore the contour is a linear transform of an Lq norm sphere of radius r.
The shape of the contour will depend on the transformation matrix AΛ−1

q .
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Before providing a detailed analysis of the regularizers, let us first address the
question of scaling of the regularization parameters λ1, λ2. It would be desirable
if the same values of those parameters led to regularization regions of identical
size regardless of the type of interaction model used. Here, we chose to measure
the size of regularization contours by the volume they enclose. Let Vq(r, p) be the
volume of an Lq norm p-dimensional sphere of radius r. Since the regularization
regions are linear transformations of such spheres their volume is∣∣det (AΛ−1

q

)∣∣Vq(r, p) = |det(A)|det
(
Λ−1
q

)
Vq(r, p). (15)

The equation follows since the Jacobian matrix of a linear transformation is
constant. Notice that the type of interaction only affects the matrix A which
has the form Ã⊗ Ip, and whose determinant is detp(Ã) det(Ip)

2 = detp(Ã) [24].
Notice that |det(Ã)| = 1 for all matrices Ã given in Table 1, so the volume of
the regularization regions will not depend on the type of interaction model used,
only on the values of λ1, λ2. To ensure this property, an additional

√
2 factor

was added to the symmetric interaction model’s design matrix.

3.1 Interpretation of regularized interaction models

In order to give an intuition and visualize those contours we restrict ourselves
to the one variable case p = 1. The two coefficient vectors now become scalars
which can be visualized on a two dimensional plot. Figure 1 shows regularization
regions for r = 1 (unit sphere being transformed) and selected values of λ1 and
λ2 parameters for the four types of models given in Table 1. The corresponding
figure for the L2 norm is given in the supplementary materials 3: it gives the same
overall picture with polygons replaced by ellipses. Supplementary materials also
include an illustrative figure with superimposed regions for different methods.

The main axes of the plots correspond to coefficients βT and βC . Additionally
we introduce two more diagonal axes corresponding to βU and βS respectively,
such that it is possible to see how the parameter of interest βU is regularized.
It can be seen (supplementary material) the for the L2 norm, the regularization
regions are ellipsoids whose main axes do not necessarily align with the main
axes of the plot. For the L1 norm the shapes are analogues of ellipsoids in that
norm.

Equivalently, we can view the regularizers from a Bayesian perspective as
prior distributions. For the L2 norm the prior will be Gaussian but with a non-
spherical covariance matrix; that is we assume a-priori, that parameter vectors
are correlated. In other words we assume some combinations of values of param-
eters vectors to be more likely than others. For the L1 norm the prior is a form
of multivariate Laplace distribution which, to the best of our knowledge, has
not been analyzed in literature.4 Nevertheless, correlation patterns are clearly
visible. Let us now discuss the priors of the four types of regularized models.
3 https://github.com/RudasKAP/ECML_PKDD_2023_supplementary
4 The most popular definition of the multivariate Laplace distribution is based on the

square root of a quadratic form, see e.g. [15].
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Fig. 1: Regularization regions in L1 norm, for different types of estimators and
different parameters λ1, λ2 for p = 1

First, it can be seen that the regularized double model does not assume
a-priori correlation between βT and βC . More interestingly the symmetric inter-
action model does not assume correlation between βU and βS . We believe this
property to be important in practice, since the parameter of interest βU is not
affected by the other regularization term. In other words the average response
βS can be regularized with arbitrary strength without affecting βU . Out of all
four models, this is the only one possessing this property.

On the other hand the TI and CI models assume a-priori correlations between
the true uplift βU and other coefficients. For example, in the TI model βU is
assumed to be positively correlated with βT and βS .

3.2 Applicability scenarios for regularized interaction models

Let us now examine scenarios in which various types of regularized interaction
models are likely to yield the most accurate predictive models. We confirm those
arguments experimentally in the next section.

We assume that the regularization (or equivalently prior distribution) gives
the best results if it corresponds to the true values of the estimated parameters.
Table 2 lists several such scenarios and indicates which models are appropriate
for them. The third column gives the condition describing the region to which
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Estimator
Scenario Condition D SI TI CI

1. βS ≈ 0; βT , βC large βT ≈ −βC

2. βT ≈ 0; βU , βC large βU ≈ −βC

3. βC ≈ 0; βU , βT large βU ≈ βT

4. βU ≈ 0; βT , βC large βT ≈ βC

Table 2: Scenarios in which different interaction models match the true coeffi-
cients

the parameters belong. For example, in Scenario 1, the average of treatment and
control responses for a given feature vector x is close to zero, while treatment
and control responses are relatively large. This implies βT ≈ −βC and the true
parameters lie in the upper left and lower right corners in the plots in Figure 1.
Looking at the figure it can be seen that only the symmetric interaction model
(SI) is able to provide a prior matching those areas (the first chart in the second
row in the figure). Other models can only achieve this by significantly decreasing
the overall regularization strength.

Similar arguments can be used to pinpoint models most suitable in other
scenarios in Table 2. From the practical point of view the most important are
Scenarios 3 and 4, which correspond, respectively, to low control response and
small effect of the action. The treatment interaction model is able to cover both
those cases which may explain its popularity in literature.

Notice also that when both βT , βC ≈ 0 all models should provide effective
regularization.

3.3 Relationship between symmetric interaction model and
transformed target variable regression

In [27] a different estimator for treatment effect coefficients has been proposed,
which works by concatenating the treatment and control training sets and build-
ing a single regression model on a transformed target variable

ȳi =

{
2yi if ti = 1,

−2yi if ti = 0.

Theorem 2. When nT = nC , the square loss is used, and λ2 → ∞ with λ1 held
fixed, the symmetric interaction model (SI) tends to the variable transformation
model regularized with 4λ1∥βU∥qq.

The proof can be found in the supplementary material.

4 Experimental evaluation

In this section let ntest denote the number of test cases, xtesti the feature vector
of i-th test case and τi the true uplift for the i-th test case, i.e. the difference
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between potential outcome has case i been subjected to the action and the
potential outcome has case i been a control. This value is available only for
synthetic data since in real data only one of the outcomes is observed [10].

4.1 Evaluation of uplift regression models

We first need to discuss the issue of evaluation of uplift regression models. A nat-
ural choice is the Mean Squared Error MSE(β̂U ) = 1

ntest

∑ntest

i=1

(
τi−xtesti β̂

U
)2.

Unfortunately, τi is unknown for real data so there is a need for an alternative
measure. We therefore propose a measure for evaluating uplift regression models
which we call by quantile MSE or QMSE for short. This measure is similar to
expected uplift calibration error (EUCE) proposed in [21], except that squared
loss is used instead of absolute value. The measure is calculated as follows.

Let XT
test and XC

test be the treatment and control test sets. Compute the
corresponding vectors of model predictions XT

testβ̂
U , XC

testβ̂
U . The vectors are

sorted and split into J quantiles (10 in our case). Let QT
j and QC

j denote the
indices of, respectively, treatment and control test records in the j-th treatment
or, respectively, control quantile. Compute the MSE within j-th quantile as

MSEj(β̂
U ) =

1

nT
j

∑
i∈QT

j

(
xtesti β̂

U −
(

1

nT
j

∑
i∈QT

j

yi −
1

nC
j

∑
i∈QC

j

yi

))2

,

where nT
j and nC

j are the number of treatment and control records in the j-th
quantile. The final QMSE measure is QMSE(β̂U ) = 1

J

∑J
i=1 MSEj(β̂

U ).

4.2 Synthetic data

In this section we evaluate regularized uplift regression estimators on synthetic
data. We begin by describing the experimental procedure.

For a given number of columns (p = 160) we generated random predictor
matrices X with increasing number of rows. For L1 regularization we used n ∈
{60, 80, 100, 120} and for L2 regularization n ∈ {180, 200, 250, 500}. The reason
was that L1 regularization is supposed to work better when p > n and L2

regularization when n > p. Each row xi of X is generated from the multivariate
normal distribution with zero mean and unit covariance matrix. Each sample
is assigned to the treatment or control group at random but with fixed group
proportions nT

n = nC

n = 1
2 . The outcome variables are then generated based

on Equation 1 with εi ∼ N (0, 1). ntest = 10 000 was used with identical data
generation mechanism.

Regularized models require the choice of regularization parameter values. In
our case we use 3-fold crossvalidation and select all regularization parameters
from the set {10−3, 10−2, 10−1, 1, 10} for both λ1 and λ2.

Since τi is known for simulated data, we use the classic MSE criterion to assess
model performance. Parameter selection is still performed based on QMSE for
consistency with experiments on real data.
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Fig. 2: MSE of estimators with L1 penalty under different simulation scenarios

In our simulations we use vectors βC and βU corresponding to the four scenar-
ios presented in Table 2. The actual coefficient vectors are given in supplementary
materials. We include five estimators in the comparison: the nonregularized dou-
ble model (UNREG), the regularized double model (D), and three regularized
interaction models: treatment interaction (TI), symmetric interaction (SI) and
control interaction (CI). Note that all unregularized models are equivalent so
only one of them is included.

Results for L1 regularization are presented in Figure 2. We observe that
for the first scenario the best results are achieved by the symmetric interaction
method. This is consistent with Table 2 and discussion in Section 3 which suggest
the SI method is most suitable when values of βS are small. Interestingly the
double regularized model also performed well.

The second and third plots correspond to the situation when βT ≈ 0 and
βC ≈ 0 respectively. In both cases double regularized method performs well.
When βT ≈ 0 the control interaction model also attains good results, but treat-
ment interaction model behaves badly. For βC ≈ 0 we have the opposite situa-
tion. Again, those results are in line with theoretical predictions.
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type of estimator
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Q
M

SE
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UNREG D TI SI CI
type of estimator

0.00

0.01

Q
M
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m
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Fig. 3: Results for the IHDP dataset
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The fourth plot presents the case when the action’s impact (βU ) is small.
All regularized methods, except the double regularized model achieve good and
comparable results. This observation is again consistent with the fact that reg-
ularization regions with small values of uplift occur naturally in those methods.

Similar conclusions could be drawn from the results for L2 regularization,
which are shown in the supplementary material due to lack of space. Overall we
conclude that experiments on synthetic data fully confirm theoretical analysis
from Section 3 for both L1 and L2 regularized models.

4.3 Experiments on real data

Description of datasets. The first dataset we use is the IHDP dataset [20]. The
dataset describes the results of a program whose target groups were low birth-
weight infants. A randomly selected subset of them received additional support
such as home visits and access to a child development center. We want to identify
infants whose IQ (the target variable) increased because of the intervention pro-
gram. There are 377 treatment and 608 control cases. We also ran experiments
on the well known Lalonde dataset [19], see supplementary materials.

Results. During experiments each dataset was split into training (70%) and
test parts (30%), stratified by treatment. Models are built and tuned on the
training part (λ1 and λ2 are chosen form the same set {10−5, 10−4, 10−3, 10−2,
10−1, 1, 10}) and their QMSE’s are computed on the test part. To make the
results easier to understand for each model we compute the difference δQMSE
from the best model, i.e. for a model m

δQMSEm = |QMSEm −min
i

QMSEi |,

where QMSEm is the QMSE of model m. The train/test split is repeated 100
times and box plots of δQMSEm are shown for each model. This way we can
visualize in a single plot how well, each model performed relative to others.

Results for the IHDP dataset are presented in Figure 3. All regularizers per-
form very well and beat unregularized models by a wide margin. We notice that
symmetric interaction method achieves the best results out of all of L2 regular-
izers. For L1 regularization the smallest values of δQMSEm were obtained by
the regularized double model. While all methods perform well in general, it is
worth trying different interaction models since there is a possibility that some
of them may better match true coefficient vectors.

5 Conclusions

We have analyzed the problem of regularizing uplift regression models. We have
shown that the type of interaction term used has a strong influence on the
corresponding prior in unexpected ways. As a result, we were able to describe
scenarios where each regularized model is most useful. Experiments on simulated
data fully confirm our analyses, and experiments on real data demonstrate the
usefulness of regularizing interaction models.
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