
GitHub Projects.

Quality Analysis of Open-Source Software

Oskar Jarczyk1, B�lażej Gruszka1, Szymon Jaroszewicz2,3, Leszek Bukowski1,
and Adam Wierzbicki1

1 Polish-Japanese Institute of Information Technology
Department of Social Informatics

Warsaw, Poland
{oskar.jarczyk,blazej.gruszka,bqpro,adamw}@pjwstk.edu.pl

2 National Institute of Telecommunications
Warsaw, Poland

s.jaroszewicz@itl.waw.pl
3 Institute of Computer Science

Polish Academy of Sciences
Warsaw, Poland

Abstract. Nowadays Open-Source Software is developed mostly by de-
centralized teams of developers cooperating on-line. GitHub portal is an
online social network that supports development of software by virtual
teams of programmers. Since there is no central mechanism that governs
the process of team formation, it is interesting to investigate if there are
any significant correlations between project quality and the character-
istics of the team members. However, for such analysis to be possible,
we need good metrics of a project quality. This paper develops two such
metrics, first one reflecting project’s popularity, and the second one - the
quality of support offered by team members to users. The first metric
is based on the number of ‘stars’ a project is given by other GitHub
members, the second is obtained using survival analysis techniques ap-
plied to issues reported on the project by its users. After developing the
metrics we have gathered characteristics of several GitHub projects and
analyzed their influence on the project quality using statistical regression
techniques.

Keywords: OSS, online collaboration, performance metrics, survival
analysis.

1 Introduction

Very often Open-Source Software (OSS ) is developed by decentralized teams of
programmers, who cooperate globally using web-based source code repositories.
There are several features typically associated with such Collaborative Innova-
tion Networks (COINs): (a) voluntary work; (b) low organizational costs; (c)
meritocracy. In recent years COINs have proved their ability to produce high
quality software. Leading example of such network is the GitHub website, an

L.M. Aiello and D. McFarland (Eds.): SocInfo 2014, LNCS 8851, pp. 80–94, 2014.
c© Springer International Publishing Switzerland 2014



GitHub Projects. Quality Analysis of Open-Source Software 81

online social network that supports development of software by virtual teams of
programmers. Every GitHub user can create his/her own repository and work on
it with other registered users. They may also join projects created by somebody
else and make their own contributions there. GitHub has no recommendation
system for developers, which would support their decisions on how to contribute
effectively from a scratch. Every GitHub user makes his/her own decision on how
to manage their personal time and professional skills - that is the reason why the
process of team formation on GitHub is decentralized and might be considered
as self-organizing. In other words, there is no central mechanism governing the
formation of OSS teams.

It sheds light on the puzzling fact that even though open source software (OSS)
constitutes public good, it is being developed for free by highly qualified, young,
motivated individuals, and evolves at a rapid pace. We show that when OSS
development is understood as the private provision of public good, these features
emerge quite naturally. We adapt a dynamic private provision of public goods
model to reflect key aspects of the OSS phenomenon, such as play value or homo
ludens payoff, user-programmers’ and gift culture benefits. Such intrinsic motives
feature extensively in the wider OSS literature and contribute new insights to
the economic analysis

1.1 Problem Definition

Foregoing facts awaken our interest in investigating if there are any significant
correlations between project quality and characteristics of the team members.
We consider project quality as consisting of two aspects: one is the number of
stars that any project might receive from GitHub users, and the second one is
the response of project team to issues reported for a given repository. In case
of the first indicator, we believe that community reaction to the project is a
proper measure of its quality. Any GitHub user is able to gratitude a chosen
projects with a star – it shows his admiration and positive attitude towards
chosen repository.

It is very important for every kind of software to have a good support - that
is a team of people, who are able to respond, in case when the community of
users reports some bugs and feature requests. Considering any piece of software,
bugs constitutes an almost inevitable part of its lifetime – even alpha and beta
tests are not able to rule out all possible problems with the software. Moreover,
community of users is the best source of information about the performance
of solutions that have been implemented and about the lack of some features,
which might significantly improve usability of the created system. Open-Source
Software developed on GitHub by COINs is no exception here – it also needs
maintenance of issues reported by community of users.

Github platform has a distinct functionality for reporting issues on a project:
it allows GitHub users to report such things as bugs, feature requests or enhance-
ments to the team of developers. The categories of all possible issues might be
defined by the owner of the repository. For each repository from GitHub we have
a record of its issues survival - data about moment when a particular issue had



82 O. Jarczyk et al.

been opened, and eventually when it was closed. The analysis of survival of those
issues gives us insights about typical life duration of issues in different kinds of
GitHub projects.

We believe that issue survival is one of the indicators of GitHub team quality.
Our assumption is, that well organized and motivated teams tend to maintain
and swiftly close issues associated with their repositories, and measuring the
time of issue closure, together with other predictor variables describing GitHub
repositories, is a good metric of quality for the team maintaining a given repos-
itory.

We have also gathered several characteristics of GitHub projects and analyzed
their influence on project popularity and the quality of support offered to users.
Several interesting conclusions were made, for example, it is better to attract
focused active developers to the project than to attract popular members.

2 Related Work

Questions concerning the problem of quality in Open-Source Software (OSS) and
COIN s has been investigated by several researchers. A generic review of the em-
pirical research on Free/Libre and Open-Source Software (FLOSS ) development
and assessment of the state of the literature might be found in ACM article by
Crowston et.al. (2008) “Free/Libre Open-source Software Development: What
We Know and What We Do Not Know”.[2]. In publication “Software Product
Quality Models” by Ferenc et.al. (2014) authors provide a brief overview about
the history of software product quality measurement, focusing on software main-
tainability, and the existing approaches and high-level models for characterizing
software product quality. Based on objective aspects, the implementations of the
most popular software maintainability models are compared and evaluated. This
paper also presents the result of comparing the features and stability of the tools
and the different models on a large number of open-source Java projects.[5] How-
ever, we have not found many papers that directly investigate relations between
projects issues survival and its quality.

A solid understanding of online collaboration is provided by research on
wikiteams. Wikipedia is a laboratory for open, virtual teamwork.[17] It is also a
community similar to GitHub, because collaboration manifests through a swarm
creativity which is a part of COIN model. Scholars Hupa et.al. (2010) enhance
expert matchmaking and recommender systems with multidimensional social
networks (MDSN).[8] According to them, dimensions of: trust, acquaintance and
knowledge store information about the social context of an individual, as well
as team’s social capital, intra-group trust and skill difference. Social network is
based on the entire Wikipedia edit history, and therefore is a summary of all
recorded author interactions.[18] Using information from these dimensions they
define a criteria that predict team performance.[8] A dimension of distrust is
added to model because of its beneficial behaviour to teams quality.[19]

Rahmani, Khazanchi (2010) published “A Study on Defect Density of Open
Source Software”, where they present an empirical study of the relationship be-
tween defect density and download number, software size and developer number



GitHub Projects. Quality Analysis of Open-Source Software 83

as three popular repository metrics. Contrary to theoretical expectations, their
regression analysis discovered no significant relationship between defect density
and number of downloads in OSS projects. Yet, researcher find that the num-
ber of developers and software project size together present some promise in
explaining defect density of OSS projects. They plan to explore other potential
predictors for defect density in OSS projects, together with the use of non-linear
regression to explain the trends in defect density associated with OSS project.[16]

Michlmayr, Senyard (2006) in their paper “A Statistical Analysis of Defects in
Debian and Strategies for Improving Quality in Free Software Projects” analyse
7000 tickets from the Debian issue tracking system. This data accumulated dur-
ing over 2.5 years allowed them to make conclusions regarding a high-maturity
project through analysing their issues closure. Scholars found that the number of
issues is increasing together with the decrease in a defect removal rate. Scientist
found that frequent releases lead to shorter defect removal times and possibly
to more user feedback. Secondly, they argued that a close interaction with the
upstream authors of free software is beneficial, and upstream authors gain from
wide testing and more user feedback. Finally, working in groups increases the
reliability of volunteer maintainers and leads to shorter defect removal times.[13]

Related to our approach is work by Fischer et.al. (2003) “Analyzing and
relating bug report data for feature tracking””, where bug reports tracks were
used to investigate software evolution. Authors method has been validated us-
ing the large open source software project of Mozilla and its bug reporting
system Bugzilla. Their approach uncovers hidden relationships between features
via problem report analysis and presents them in easy to evaluate visual form.[6]

As one can observe, there is a lot of research concerning quality in Open-Source
Software, and their number happens to grow after the success of the SourceForge
andGitHub portal. Internet databanks, which aggregate data from different web-
based online source repositories, make for the analysis of Open-Source Software
easier and wider. Researchers Farah et.al. (2014) published work titled “Open-
Hub: A scalable architecture for the analysis of software quality attributes” where
they analyze 140, 000 Python repositories under quality attributes - performance,
testability, usability, maintainability. Scientists merged information on Python
repositories collected from GitHub with metrics generated by OpenHub (for-
merly Ohloh) - an internet aggregator for OSS repositories.[4]

Interesting analysis of activity fade-out in OSS projects are presented in “Is
it all lost? A study of inactive open source projects” by Khondhu et.al. (2013).
Researchers quote an informal rule, according to which “when developers lose
interest in their project, their last duty is to hand it off to a competent successor”.
However, mechanism of such hand-off is not widely known among OSS users.
Paper goal is to differentiate projects that had maintainability issues from those
that were inactive for other reasons.[11]

A discussion about central management vs. OSS is covered in book by O’Reilly
Media “Making Software: What Really Works, and Why We Believe It”.[15]
Mahony, Ferraro (2007) prove that successful communities structure their work
and that good communities and teams are self-governing.[14] There also have



84 O. Jarczyk et al.

been attempts to support programmers work, by recommendation engines. In
paper from Zimmermann et.al. (2014) “Mining version histories to guide soft-
ware changes” data mining has been applied to version histories, in order to
guide programmers along the related changes. Their system prototype called
ROSE was able to correctly predict 26% of further files to be changed—and 15%
of the precise functions or variables.[20]

In work of Kalliamvakou et.al. (2014) researchers indicate that, although
GitHub is a rich source of data, there are also potential perils that should be
taken into consideration. Among other things they show that the majority of the
projects on GitHub are personal and inactive. According to their research two
thirds of projects (71.6% of repositories) are personal – the number of commit-
ters per project is very skewed: 67% of projects have only one committer, 87%
have two or less, and 93% three or less. This findings shows that most of the
users do not use GitHub for collaboration on projects. However, in our studies
we have been focused on most popular repositories, which eliminates one-person
projects[10].

Finally, different case studies of chosen GitHub repositories reveal even more
interesting conclusions. In paper “Social coding in GitHub: transparency and col-
laboration in an open software repository” by Dabbish et.al. (2012) a series of
in-depth interviews with central and peripheral GitHub users was performed.
Authors claim that people make a surprisingly rich set of social inferences from
the networked activity information in GitHub, such as inferring someone else’s
technical goals and vision when they edit code, or guessing which of several simi-
lar projects has the best chance of thriving in the long term. It is suggested that
users combine these inferences into effective strategies for coordinating work,
advancing technical skills and managing their reputation.[3] Another series of
interviews with GitHub developers reader might be found in “Performance and
participation in open source software on GitHub” McDonald et.al. (2013). Au-
thors conducted qualitative, research with lead and core developers on three
successful projects on GitHub. They aim was to understand how OSS commu-
nities on GitHub measure success. Two main findings were reported: first, lead
and core members of the projects display a nuanced understanding of community
participation in their assessment of success; second, they attribute increased par-
ticipation on their projects to the features and usability provided by GitHub.[12]

3 Dataset

3.1 Predictor Variables

We now describe the dataset containing representative GitHub projects used
in this paper. We used Google BigQuery online tool to create a list of GitHub
repositories (or ‘repos’ for short), sorted descending by their highest peak in
trend (received attention from Internet users) during a month. We define trend
by the biggest increase in popularity during a month. Popularity of a repository
is measured by its number of stars (number of ‘stargazers’). We analysed mature
repositories existing for at least two years. There are together 164418 GitHub



GitHub Projects. Quality Analysis of Open-Source Software 85

repositories on the list. This list simply consists of repositories, but lacks infor-
mation on their team members (contributors and collaborators). From this big
set of repositories we selected 2000 of them with the highest increase in popu-
larity during a month. In this way we avoid taking into consideration projects
which are personal or inactive – inactive repositories were one of the main perils
of GitHub data described in Kalliamvakou et.al. (2014)[10].

Each record in our dataset has 12 columns, which are: ’repository owner’,
’repository url’, ’repository name’, ’biggest increase in popularity’, ’repository
description’, ’is a fork’, ’wiki enabled’, ’when pushed at’, ’master branch’, ’issues
enabled’, ’downloads enabled’, ’repository creation date’. Additionally, we also
have information on below values on any moment of time during the repository
existence: ’number of stars’, ’number of forks’, ’number of pushes’, ’how many
issues open/closed etc.

Next step is to receive information on developers in those entry
teams, which we call x-axis attributes for a repository. For this pur-
pose, we use GitHub API to parse missing information. For the mentioned
2000 repositories we downloaded through a script (available freely here:
https://github.com/wikiteams/supra-repos-x) below additional informa-
tion on a developer: ’developer username (login)’, ’developer name’, ’developer
followers count’, ’developer following count’, ’developer company’, ’number of re-
pos developer contributed to’, ’number of repos he owns’, ’date when developer
registered’, ’developer location’, ’is developer hireable’, ’is developer working
during business hours’, ’developer typical working period’, ’gists count’, ’pri-
vate repos count’. Also, more properties for a repository (y-axis) are down-
loaded: ’repository default branch’, ’opened issues count’, ’repository organiza-
tion’, ’repository language (main technology)’.

Good source of general developer activity on GitHub is a data source called
OSRC report card, from where we download aggregated data regarding the user
activity time. We calculate two additional attributes. Firstly, we want to check
whether the developer contributes mostly during working hours (between 9 and
17 o’clock) in his local time, or he is an active GitHub user but committing
beyond this period of time. Secondly, we calculate a working period (in hours)
for this developer. We define a working period as a sum of hours in the biggest
rectangle drawn on the daily activity histogram.

3.2 Repositories Issues

Any change in an Issue is recorded in a databank called GitHub Archive (in
short - ’GHA’). It is a third party project to record the public GitHub timeline
and make it easily accessible for further analysis. In GHA, every time when
some issue is opened, closed or reopened, ’IssuesEvent’ is stored to a database.
Firstly, we downloaded all data collected in year 2013 from the GitHub Archive.
Secondly, we selected IssuesEvents to create a history of issue creation on all
GitHub repositories during that year. IssuesEvent is triggered whenever an issue
is created, closed or reopened, and the GHA collects those events.

https://github.com/wikiteams/supra-repos-x


86 O. Jarczyk et al.

Data was merged into full information record on each single issue. It contained
opening and closing date of the issue and a calculated difference: the time span.
Once created, the issue in a GitHub repository cannot be deleted, it can be only
closed. Finally, we used the GitHub API to query for issue labels, which GHA
didn’t provide.

We managed to create a dataset of issues with following attributes: repository
owner (a person or organization who manages the code repository as a privileged
user), repository url (an 1-1 identifying repository key, a web address which
allows to view the repository in a browser), repository name, issue number,
issue status (opened or closed), ’opened at’ (when was the issue created), ’closed
at’ (when was the issue last time resolved), difference in minutes (also hours and
days, difference between fields ’opened at’ and ’closed at’).

3.3 Data Preprocessing

Since we are drawing conclusions on the whole projects, not individual devel-
opers, characteristics of project members had to be aggregated into single at-
tributes. Here we simply computed means of each attribute over all project
members. Such attributes are prefixed by ‘average.’ (alias ‘avg.’).

Many attributes exhibited highly skewed, power-law like distributions, which
are difficult to model with statistical methods. Logarithmic transformation x′ =
log10(x + 10) has been applied to the following attributes to decrease the skew:

’forks count’, ’network count’, ’average.developer followers’,
’average.developer following’, ’average.developer contributions’,
’average.developer total public repos’, ’average.developers works period’,
’average.public gists’, ’commits count’, ’branches count’, ’releases count’,
’contributors count’.

4 Measures of Project’s Quality

In order to discover factors influencing project quality we need to be able to
precisely measure project quality. Unfortunately, the task is not easy, as there
are many possible criteria, which are not always easy neither to measure nor to
evaluate. In this chapter, we are going to introduce and describe two GitHub
project quality metrics, based on project popularity and the quality of user
support offered by team members.

4.1 Attractiveness and Popularity – Stargazers

The first metric we analyze is the number of stars the project has, i.e. how
many times it has been endorsed by members of the GitHub community. For
each project, we gathered the number of stargazers - users who starred a given
project.

Since the stargazers count follows a power-law distribution (it means there
are lots of projects with few stars and a few projects with a very large number



GitHub Projects. Quality Analysis of Open-Source Software 87

of stars), it is not suitable for e.g. regression analysis. We applied logarithmic
transformation x′ = log10(x + 10) before using it as a metric of project quality.
The resulting quantity has a well behaved distribution as can be seen on its
histogram shown in Figure no. 1. The offset 10 is provided to avoid taking
logarithms of zero and to reduce skew for small values.

0

200

400

1 2 3 4 5
log10(10 + stargazers_count)

co
un

t

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

● ●
●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

1.50

1.75

2.00

2.25

2.50

0 2 4 6 8
log contributors_count

lo
g 

lo
g 

st
ar

ga
ze

rs
_c

ou
nt

Fig. 1. Left - histogram of the number of stargazers for different project. Right -
dependence of the number of stargazers on the number of contributors to a project.

The metric may than be used to analyze the factors influencing project quality.
As an example of the type of analysis for which it can be used we show the
dependence of the metric on the logarithm of the number of contributors to the
project, see the right part of Figure no. 1.

The red line shows the linear regression fit and the blue line a nonlinear LOESS
regression fit [1]. Clearly, the larger the number of contributors is, the larger the
number of stars. This by itself is not surprising; however, what is interesting is
that the number of stars grows exponentially with the number of contributors.
Indeed, the nonlinear fit is almost identical to the linear one (recall that we use
a double logarithm of the number of stars). It is not yet clear to us whether
it is the project’s popularity that attracts contributors or, vice-versa, the large
number of contributors results in good and, consequently, popular projects.

4.2 Quality of Support – Survival of Issues

We now describe the second metric of a project quality introduced in this paper.
It is based on the time it takes the project team members to close issues related
to the project. From now on, we will use the tools of survival analysis.



88 O. Jarczyk et al.

Survival analysis focuses typically on times to a given event – it might be loss
of some user, customer migration, or death in case of biological research. One
of the typical questions, which survival analysis attempts to answer, is: what
is the proportion of a population which survived a certain amount of time? Of
course in case of GitHub issues our question is - what proportion of issues was
not closed before some particular point in time.

A key aspect of survival analysis [9] is censoring - if an issue was opened just
a month ago, at the current time point we do not know, whether it will be closed
within a year or not. In order to handle censoring in a statistically proper way
we use the Kaplan-Meier estimates of survival time for issues of a given project.
The left part of Figure no. 2 shows the survival curve for issues of an example
project. It can be seen that a certain percentage of issues is closed very rapidly,
indicating active support of users by the project’s team. However, older issues
are often not closed at all. In total, about 50% of issues is not being addressed,
suggesting that there is a high chance, that user problems will not be resolved.
The ‘+’ marks on the curve indicate the age of issues opened recently, which
have not yet been closed and have not reached the maximum time displayed on
the x axis. The right part of the figure shows the combined survival curve for
issues of all analyzed GitHub projects. It can be seen that the response times
are usually fast, but many issues have not been addressed at all.

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time [days]

su
rv

iv
al

 p
ro

ba
bi

lit
y

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time [days]

su
rv

iv
al

 p
ro

ba
bi

lit
y

Fig. 2. Survival curves for issues of the GateOne project and for all projects combined

In order to facilitate the assessment of project quality, we devised summary
metric for survival curves. To this end, we computed survival probabilities for
issues after 1, 2, 3, 7, 30, 100, and 365 days. Performing the PCA (Principal
Components Analysis on those probabilities revealed that just two components
are enough to explain 96% of the variance of the seven probabilities. Further,
the first component describes (roughly) the average of the percentages of bugs
closed after different amounts of time, and the second one differentiates the
probabilities of issues being closed rapidly, in a matter of days.



GitHub Projects. Quality Analysis of Open-Source Software 89

Consequently, we decided to summarize the survival curve for each project
with just two numbers: the percentage of issues closed after 3 and 365 days. It
turned out that those two numbers explain about 94% of the total variability of
the seven issue survival probabilities—almost the same as the first two principal
components—while being much easier to understand.

To summarize, we have provided the concise metric of GitHub project quality
based on the time needed to respond to the issues. The metric is based on two
numbers measuring how quickly the user may expect a response and what are
the chances that his or her issue will be eventually resolved.

5 What Makes a Good GitHub Project?

In this section we are going to analyze how different characteristics of a project
and its developers influence the two aspects of its project quality.

5.1 What Affects the Project Popularity?

We have conducted a regression analysis to discover factors influencing project
popularity. Since the programming language specified for the project is a cat-
egorical attribute with many (55) values, we decided to exclude it from the
initial analysis and analyze it separately in the next chapter (no. 5.2). Only the
information whether the project’s language was specified is included.

Application of linear regression resulted in a model with a very high multiple
R2 coefficient of 0.779. In other words, almost 80% of the variability of projects
popularity (after the logarithmic transform) is explained by project features.
The most significant variable in the model was forks count - the number of
times the fork of this project was created. The number of forks reflects general
amount of activity in the project, so it is a logical conclusion, that active projects
are more popular. Few other attributes turned out to be highly correlated with
the number of forks and they also reflect general amount of project activity
and a project size. Those attributes are commit count, contributor count, re-
leases count, branches count and network count. Another pair of mutually cor-
related attributes, repo.updated at and repo.pushed at, also reflects the amount
of activity in the project.

Unfortunately, those correlations are of little practical use, since project ac-
tivity is likely an effect of its popularity (developers are more likely to fork a
project, if it is well known and attractive), not necessarily its cause, at least
not the primary one. Those attributes have thus been removed from the dataset
before further analysis.

A new regression model was built on the reduced dataset. Variables with sta-
tistically significance (p-value below 0.05) coefficients are shown in Table no. 1.
The first column gives us the attribute’s name, the second its coefficient in the
regression model, and the third one is the p-value indicating statistical signifi-
cance of the coefficient. Higher values of coefficients mean that a given quantity
has a positive influence on project’s popularity. Since the number of stars has



90 O. Jarczyk et al.

been logarithmized, the coefficients should be interpreted multiplicatively. For
example, the coefficient for repository creation time, −0.144 means that an in-
crease in creation time by one year corresponds to the number of stars increasing
10−0.144 = 0.72 times (in fact decreasing).

It can be seen, that the most significant attribute is project creation time.
The coefficient is negative, so projects created later have, in general, less stars.
This is obvious since, the stars accumulate over time giving older projects a
natural advantage. A similar attribute is the average time at which developer
accounts were created. Surprisingly this time the relation is opposite, having
newer developers in the project is positively correlated with its popularity. This
phenomenon can probably be explained by the fact that programmers may join
Github in order to contribute to attractive projects.

Another observation is, that forks of other projects are in general much less
popular. This is plausible since forks can be created very easily on Github and
are often used as a part of the development process, not necessarily constituting
separate projects. The language of the project being specified is correlated with
popularity (see a dedicated section below for a discussion).

Another significant attribute is whether the project is owned by an organiza-
tion. Projects owned by companies and other organizations are in general more
popular.

Another two significant attributes: the average number of followers of devel-
opers in the project and the average number of developers/projects followed by
them can be seen as an approximation of social relations of project members.
Actually, it turns out that project whose developers follow many others are in
general more popular. Surprisingly the effect for developers being followed by
many others (i.e. having popular developers in the project) is much weaker. This
discovery results in a practical advice for projects: finding developers engaged
in the community is good for the project popularity and can be measured by a
simple proxy quantity.

Another two related attributes are the average number of repositories owned
by project members and the total amount of their contributions (including other
projects). The coefficients here are negative offering another practical advice to
project managers: try getting people who will be able to concentrate on your
project without spreading attention on too many other projects.

5.2 Programming Language

We will now analyse how the project’s programming language is related to its
popularity. To discover this, we have built a regression model based on just one
attribute, repository language. As previously mentioned, there are 54 program-
ming languages used in the analyzed projects, plus an extra value for no language
specified.

It turns out that the programming language has little effect on the projects
popularity, with a few exceptions - significant influence was observed for only
4 cases. The most significant effect was that projects written in Common Lisp are



GitHub Projects. Quality Analysis of Open-Source Software 91

Table 1. Regression model

attribute coefficient p-value

repo.created at −0.144 p < 2.0 · 10−16

is fork −0.272 p = 2.2 · 10−6

language.specified 0.290 p = 8.8 · 10−7

organization.specified 0.163 p = 5.0 · 10−12

average.developer followers 0.057 p = 0.029
average.developer following 0.174 p = 0.002
average.developer contributions −0.094 p = 0.009
average.developer created at 0.120 p = 2.8 · 10−11

average.developer total public repos −0.163 p = 0.042
average.developers works period 0.108 p = 5.3 · 10−6

Observations 1755
R2 0.203

less popular. The coefficient was −0.702, significant with p-value of 2.3 · 10−3.
After taking into account the log-transformation of the number of stars, this
roughly translates to those projects having 5 times less stars than similar projects
written in other languages. The probable explanation is that Common Lisp is
an old technology, nowadays used only by a small fraction of developers for very
specialized purposes.

Another significant fact was that projects that did not specify the program-
ming language were also significantly less popular. An inspection revealed that
many of those projects include color themes, documentation etc. which may not
be very popular among users. Moreover, GitHub assigns project language auto-
matically, based on file contents, so projects with no particular files are assigned
to this category.

On the contrary, projects based on CSS styles were more likely to be popular,
probably due to the growing popularity of web-based technologies.

5.3 What Affects the Quality of a Support?

We now move on to the analysis of the quality of projects from a short and long
term support. Since the survival probabilities are not normally distributed, we
have used binomial regression (a variant of logistic regression) to model it. Each
data record has a number of trials n and a number of successes n1 assigned.
A generalized linear model is then built, which predicts the probability of suc-
cess p, assuming that n1 follows, in each record, the binomial distribution with
parameters n and p (for more details, see Hosmer, Lemeshow book [7]). In our
case n corresponds to the total number of project’s issues, p to the estimated
probability of bug survival. We set the n1 to

n1 = n · pt, t ∈ {3, 365}



92 O. Jarczyk et al.

where pt is the Kaplan-Meier estimate of the fraction of surviving issues defined
in the previous section. Hence, that n1 needs to have non-integer values - how-
ever, this is not a problem for the implementation of logistic regression available
in the R statistical package.

We begin by analyzing the influence of attributes related to project size and
general activity. For both - short term (3 days bug survival) and long term (365
days bug survival) support - the most important attribute is the number of
branches, which is negatively correlated with bug survival. This means that a
large number of branches has a positive influence on the project. Since a typical
git workflow for fixing a bug involves creating a branch, making the changes and
merging the branch back, this correlation is logical.

Unfortunately, the number of branches is correlated with general project ac-
tivity and thus, as was the case with project popularity, we removed this and
correlated attributes before further analysis. Those attributes are commit count,
contributor count, releases count, branches count and network count. Another
pair of mutually correlated attributes, repo.updated at and repo.pushed at.

The model was then rebuilt. Table no. 2 shows the significant regression coef-
ficients for both short and long term bug survival. Note that negative values of
the coefficients are desired here as they translate to lower numbers of surviving
bugs.

Table 2. Regression coefficients for short and long term bug survival

3 day bug survival
attribute coefficient p-value

repo.created at −0.014 p = 0.049
is fork −0.926 p = 0.017
has downloads −0.055 p = 0.021
average.developer following 2.158 p = 0.002
average.developer contributions 1.787 p < 2.0 · 10−16

average.developer hireable −1.598 p = 5.7 · 10−7

average.developer total public repos 0.235 p = 0.009
average.developers works period 0.314 p = 0.004

365 day bug survival
attribute coefficient p-value

organization.specified 0.079 p = 0.005
average.dev name given −0.182 p = 0.031
average.developer following −1.194 p = 0.001
average.developer contributions 1.337 p < 2.0 · 10−16

average.developer hireable 2.317 p = 0.002
average.developer works during bd 0.329 p = 0.029
average.public gists 0.391 p = 0.022

Let us now comment on the significant attributes. First of all, it can be seen
that having developers making many contributions (including other projects)
and owning many repositories negatively influences the number of bugs fixed.



GitHub Projects. Quality Analysis of Open-Source Software 93

The same advice can be offered as in the case of project popularity - try getting
into the project focused developers who will concentrate all their efforts on it.

The number of projects/developers followed by team members is again an
important factor. However, surprisingly, it has a positive effect only on fixing
bugs in long term, not on ‘rapid response’ to user issues. This issue needs to be
investigated further.

The effect of projects being run by employed developers (attributes ‘organiza-
tion.specified’ and ‘average.developer works during bd’) is significantly negative
towards addressing longstanding bugs. The probable reason is that organizations
are unwilling to commit resources to fixing user issues and prefer to concentrate
on aspects of the project which are important to them.

6 Conclusions and Future Research

Our paper presented two measures of quality for GitHub Open-Source Software
projects. One is based on a project popularity, the other one is based on how
fast the project’s team solves issues reported by users. We have also collected
several attributes describing projects and their developers and analyzed their
influence on those quality measures. Together, it resulted in making several in-
teresting discoveries. For example, it is better for a software project to have
focused developers involved in the community rather than having in the team
popular, often followed developers. Future work will focus on detailed studies of
what aspects of a team collaboration affect a project quality.

Acknowledgements. This work is supported by Polish National Science Centre
grant 2012/05/B/ST6/03364

References

1. Cleveland, W.S., Devlin, S.J.: Journal of the American Statistical Associa-
tion 83(403), 596–610 (1988)

2. Crowston, K., Wei, K., Howison, J., Wiggins, A.: Free/libre open-source software
development: What we know and what we do not know. ACM Comput. Surv. 44(2),
7:1–7:35 (2008)

3. Dabbish, L., Stuart, C., Tsay, J., Herbsleb, J.: Social coding in github: Trans-
parency and collaboration in an open software repository. In: Proceedings of the
ACM 2012 Conference on Computer Supported Cooperative Work, CSCW 2012,
pp. 1277–1286. ACM, New York (2012)

4. Farah, G., Tejada, J.S., Correal, D.: Openhub: a scalable architecture for the anal-
ysis of software quality attributes. In: Proceedings of the 11th Working Conference
on Mining Software Repositories, pp. 420–423. ACM (2014)

5. Ferenc, R., Hegedus, P., Gyimothy, T.: Software product quality models. In:
Mens, T., Serebrenik, A., Cleve, A. (eds.) Evolving Software Systems, pp. 65–100.
Springer, Heidelberg (2014)

6. Fischer, M., Pinzger, M., Gall, H.: Analyzing and relating bug report data for fea-
ture tracking. In: 2013 20th Working Conference on Reverse Engineering (WCRE),
p. 90. IEEE Computer Society (2003)



94 O. Jarczyk et al.

7. Hosmer, D.W., Lemeshow, S.: Applied logistic regression. Wiley-Interscience
Publication (2000)

8. Hupa, A., Rzadca, K., Wierzbicki, A., Datta, A.: Interdisciplinary matchmaking:
Choosing collaborators by skill, acquaintance and trust. In: Abraham, A., Has-
sanien, A., Snášel, V. (eds.) Computational Social Network Analysis. Computer
Communications and Networks, pp. 319–347. Springer, London (2010)

9. Kalbfleisch, J.D., Prentice, R.L.: The statistical analysis of failure time data.
John Wiley & Sons (2002)

10. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian,
D.: The promises and perils of mining github. In: Proceedings of the 11th Work-
ing Conference on Mining Software Repositories, MSR 2014, pp. 92–101. ACM,
New York (2014)

11. Khondhu, J., Capiluppi, A., Stol, K.-J.: Is it all lost? a study of inactive open source
projects. In: Open Source Software: Quality Verification, pp. 61–79. Springer (2013)

12. McDonald, N., Goggins, S.: Performance and participation in open source software
on github. In: CHI 2013 Extended Abstracts on Human Factors in Computing
Systems, CHI EA 2013, pp. 139–144. ACM, New York (2013)

13. Michlmayr, M., Senyard, A.: A statistical analysis of defects in debian and strate-
gies for improving quality in free software projects. The Economics of Open Source
Software Development, 131–148 (2006)

14. O’Mahony, S., Ferraro, F.: The emergence of governance in an open source com-
munity. Academy of Management Journal 50(5), 1079–1106 (2007)

15. Oram, A., Wilson, G.: Making Software: What Really Works, and Why We Believe
It. O’Reilly Media (2010)

16. Rahmani, C., Khazanchi, D.: A study on defect density of open source software.
In: 2010 IEEE/ACIS 9th International Conference on Computer and Information
Science (ICIS), pp. 679–683. IEEE (2010)

17. Turek, P.: Wikiteams: How do they achieve success? IEEE Potentials 30(5), 15–20
(September 2011)

18. Turek, P., Wierzbicki, A., Nielek, R., Hupa, A., Datta, A.: Learning about the qual-
ity of teamwork from wikiteams. In: 2010 IEEE Second International Conference
on Social Computing (SocialCom), pp. 17–24 (August 2010)

19. Wierzbicki, A., Turek, P., Nielek, R.: Learning about team collaboration from
wikipedia edit history. In: Proceedings of the 6th International Symposium on
Wikis and Open Collaboration, WikiSym 2010, pp. 27:1–27:2. ACM, New York
(2010)

20. Zimmermann, T., Weissgerber, P.: Mining version histories to guide software
changes. In: 26th International Conference on Software Engineering (ICSE 2004),
pp. 563–572 (2004)


	GitHub Projects. Quality Analysis of Open-Source Software
	Introduction
	Problem Definition

	Related Work
	Dataset
	Predictor Variables
	Repositories Issues
	Data Preprocessing

	Measures of Project's Quality
	Attractiveness and Popularity – Stargazers
	Quality of Support – Survival of Issues

	What Makes a Good GitHub Project?
	What Affects the Project Popularity?
	Programming Language
	What Affects the Quality of a Support?

	Conclusions and Future Research


