An Inclusion-Exclusion Result for Boolean Polynomials and Its Applications in Data Mining

Szymon Jaroszewicz*, Dan A. Simovici*, and Ivo Rosenberg**

*University of Massachusetts at Boston

** Université de Montréal

Market Basket Data

customer ID	beer	bread	 diapers
101	1	0	 1
103	0	1	 1
107	1	1	 1
		•••	

- Items: binary attributes
- Itemsets: sets of items

Frequent Itemsets

• Support of an itemset I in relation ρ :

$$\mathrm{supp}_{\rho}(I) = \frac{|\{t \in \rho: t[I] = (1, \dots, 1)\}|}{|\rho|}$$

(essentially the same as probability)

• Itemset *I* is frequent if

 $\mathtt{supp}(I) > \mathtt{minsupp}$

• Apriori algorithm efficiently finds all frequent itemsets

Inspiration

H. Manilla et al. [1996,2001]: Use frequent itemsets to get support of arbitrary queries, e.g.:

 $\operatorname{supp}(\bar{A}\bar{B}) = 1 - \operatorname{supp}(A) - \operatorname{supp}(B) + \operatorname{supp}(AB)$

(inclusion-exclusion principle)

Questions:

- How to obtain such a formula for arbitrary function?
- Guarantee of accuracy if some supports are unknown?

A more general statement

- Boolean Algebra: = $(B, , , -, \lor, \land)$
- Set of variables: $A = \{a_1, \ldots, a_n\}$
- (A) the free Boolean algebra on A consists of polynomials:
 - , , and each a_i belong to (A);
 - if $p, q \in (A)$, then $\overline{p}, (p \lor q), (p \land q) \in (A)$.

Measures on Boolean Algebras

A measure on a Boolean Algebra $(B, ,, -, \vee, \wedge)$: $\mu : B[0, \infty]$ s.t.

$$\mu(x \lor y) = \mu(x) + \mu(y)$$

if
$$x \land y =$$
.
Example:
Support supp is a measure on (A)

Representation result Theorem: A function μ : (A) is a measure if and only if there exists a binary relation ρ , such that $\mu(p) =$ $\operatorname{supp}_{\rho}(p)$ for all $p \in (A)$.

Question 1 rephrased

For any $p \in (A)$ and some measure μ express $\mu(p)$ in terms of measures of positive conjunctions

Examples:

$$\mu(a_1 \oplus a_2) = \mu(a_1) + \mu(a_2) - 2\mu(a_1 \wedge a_2)$$

$$\mu(\bar{a_1} \wedge \bar{a_2}) = \mu() - \mu(a_1) - \mu(a_2) + \mu(a_1 \wedge a_2)$$

Inclusion-exclusion type result for Exclusive-or

- p_1, p_2, \ldots, p_m are Boolean polynomials
- Let

$$S_k = \sum_{i_1 \le \dots \le i_k} \mu(p_{i_1} \land p_{i_2} \land \dots \land p_{i_k})$$

• Then,

$$\mu(p_1 \oplus \cdots \oplus p_m) = \sum_{k=1}^m (-2)^{k-1} S_k$$

Example

Parity function: $a_1 \oplus a_2 \oplus a_3$

- $S_1 = \mu(a_1) + \mu(a_2) + \mu(a_3)$
- $S_2 = \mu(a_1 \wedge a_2) + \mu(a_2 \wedge a_3) + \mu(a_1 \wedge a_3)$

•
$$S_3 = \mu(a_1 \wedge a_2 \wedge a_3)$$

giving

 $\mu(a_1 \oplus a_2 \oplus a_3) = S_1 - 2S_2 + 4S_3$

Every Boolean polynomial can be represented as exclusive-or of positive conjunctions We can express a measure of any boolean polynomial in terms of measures of positive conjunctions of its variables

Bounds

Dropping terms from inclusion-exclusion we get bounds on the measure: Bonferroni Inequalities:

2r2s+1 $\sum (-2)^{k-1} S_k^{\mu} \le \mu(p_1 \oplus \ldots \oplus p_m) \le \sum (-2)^{k-1} S_k^{\mu},$ k = 1k = 1

for any $r, s \in$

Example

• Upper bound:

 $\mu(a_1 \oplus a_2 \oplus a_3) \le \mu(a_1) + \mu(a_2) + \mu(a_3)$

• Lower bound:

$$\mu(a_1 \oplus a_2 \oplus a_3) \ge \mu(a_1) + \mu(a_2) + \mu(a_3) - 2\mu(a_1 \wedge a_2) - 2\mu(a_2 \wedge a_3) - 2\mu(a_1 \wedge a_3)$$

We can thus obtain bounds for support of any database query

There are queries which cannot be approximated

Parity polynomial: $p_{par} = a_1 \oplus a_2 \oplus \ldots \oplus a_n$

Two relations over $A = (a_1, a_2, \ldots, a_n)$:

$$\rho_{odd} = \{t \in (A) : n_1(t) \text{ is odd}\},\$$

$$\rho_{even} = \{t \in (A) : n_1(t) \text{ is even}\}$$

There are queries which cannot
be approximated
We have:
$$supp_{\rho_{odd}}(K) = supp_{\rho_{even}}(K)$$
 for all $K \subset A$,
but
 $supp_{\rho_{odd}}(p_{par}) = 1$, $supp_{\rho_{even}}(p_{par}) = 0$
One unknown itemset A can result in huge inac-
curacy of $supp(p_{par})$

•••

• • •

• • •

• •

Tables with missing values

Allow missing values $(a_i) = \{,,\}$ Define μ generalizing support to such tables

- With each attribute a_i associate a value $\alpha_i \in [0, 1]$
- If only one attribute i is missing, multiply tuple's support by α_i
- If more attributes are missing, use independence assumption

Example

$$\mu^{(\bar{a_1} \wedge a_2)} = \operatorname{supp}(a_1 = \wedge a_2 =) + (1 - \alpha_1) \operatorname{supp}(a_1 = \wedge a_2 =) + \alpha_2 \operatorname{supp}(a_1 = \wedge a_2 =) + (1 - \alpha_1) \alpha_2 \operatorname{supp}(a_1 = a_2 =)$$

Properties of μ

Theorem: μ is a measure.

Consequences:

- μ gives probabilistically consistent results.
- All previous results apply to μ

Example

[Ragel, Crémilleux 98]: count each itemset where it is defined

 $\operatorname{supp}(a_1) = 0.5 \quad < \quad \operatorname{supp}(a_1 \wedge a_2) = 1$

[Nayak, Cook 01]: weighted sum of attributes in a row

 $supp(a_1) = 0.5 < supp(a_1 \land a_2) = 0.75$

but

$$\mu^{(a_1)} = 0.5 \quad \mu^{(a_2)} = 1 \quad \mu^{(a_1 \wedge a_2)} = 0.5$$

Further research

- More applications in datamining
- Tighter bounds for specific queries
- Case when complete S_k are not known [submitted PKDD'02]

Estimates with incomplete S_k 's

Main idea: Apply Bonferroni inequalities recursively Example:

- Known supports: A, B, C, AC, BC
- Want: supp(ABC)
- **1. Estimate** supp(AB)
- 2. Use bounds for supp(AB) to compute S_2
- **3.** Compute supp(ABC)

Bonferroni-type inequalities for
supports
The following inequalities hold for any
$$t \in$$
:
 $\sup(a_1a_2...a_m) \leq \sum_{k=0}^{2t} (-1)^k m - k - 12t - kS_k$
 $\sup(a_1a_2...a_m) \geq \sum_{k=0}^{2t+1} (-1)^{k+1} m - k - 12t + 1 - kS_k$