An Inclusion-Exclusion Result for Boolean Polynomials and Its Applications in Data Mining

Szymon Jaroszewicz*, Dan A. Simovici*, and Ivo Rosenberg**

*University of Massachusetts at Boston
** Université de Montréal

Market Basket Data

customer ID	beer	bread	\ldots	diapers
101	1	0	\ldots	1
103	0	1	\ldots	1
107	1	1	\ldots	1
\ldots	\ldots	\ldots	\ldots	\ldots

- Items: binary attributes
- Itemsets: sets of items

Frequent Itemsets

- Support of an itemset I in relation ρ :

$$
\operatorname{supp}_{\rho}(I)=\frac{|\{t \in \rho: t[I]=(1, \ldots, 1)\}|}{|\rho|}
$$

(essentially the same as probability)

- Itemset I is frequent if

$$
\operatorname{supp}(I)>\text { minsupp }
$$

- Apriori algorithm efficiently finds all frequent itemsets

Inspiration

H. Manilla et al. [1996,2001]: Use frequent itemsets to get support of arbitrary queries, e.g.:

$$
\operatorname{supp}(\bar{A} \bar{B})=1-\operatorname{supp}(A)-\operatorname{supp}(B)+\operatorname{supp}(A B)
$$

(inclusion-exclusion principle)
Questions:

- How to obtain such a formula for arbitrary function?
- Guarantee of accuracy if some supports are unknown?

A more general statement

- Boolean Algebra: $=\left(B,,,^{-}, \vee, \wedge\right)$
- Set of variables: $A=\left\{a_{1}, \ldots, a_{n}\right\}$
- (A) the free Boolean algebra on A consists of polynomials:
- , , and each a_{i} belong to (A);
- if $p, q \in(A)$, then $\bar{p},(p \vee q),(p \wedge q) \in(A)$.

Measures on Boolean Algebras

A measure on a Boolean Algebra $\left(B,,,^{-}, \vee, \wedge\right)$: $\mu: B[0, \infty]$ s.t.

$$
\mu(x \vee y)=\mu(x)+\mu(y)
$$

if $x \wedge y=$.
Example:
Support supp is a measure on (A)

Representation result

Theorem:
A function $\mu:(A)$ is a measure if and only if
there exists a binary relation ρ, such that $\mu(p)=$ $\operatorname{supp}_{\rho}(p)$ for all $p \in(A)$.

Question 1 rephrased

For any $p \in(A)$ and some measure μ express $\mu(p)$ in terms of measures of positive conjunctions

Examples:

$$
\begin{gathered}
\mu\left(a_{1} \oplus a_{2}\right)=\mu\left(a_{1}\right)+\mu\left(a_{2}\right)-2 \mu\left(a_{1} \wedge a_{2}\right) \\
\mu\left(\overline{a_{1}} \wedge \overline{a_{2}}\right)=\mu()-\mu\left(a_{1}\right)-\mu\left(a_{2}\right)+\mu\left(a_{1} \wedge a_{2}\right)
\end{gathered}
$$

Inclusion-exclusion type result for Exclusive-or

- $p_{1}, p_{2}, \ldots, p_{m}$ are Boolean polynomials
- Let

$$
S_{k}=\sum_{i_{1} \leq \ldots \leq i_{k}} \mu\left(p_{i_{1}} \wedge p_{i_{2}} \wedge \ldots \wedge p_{i_{k}}\right)
$$

- Then,

$$
\mu\left(p_{1} \oplus \cdots \oplus p_{m}\right)=\sum_{k=1}^{m}(-2)^{k-1} S_{k}
$$

Example

Parity function: $a_{1} \oplus a_{2} \oplus a_{3}$

- $S_{1}=\mu\left(a_{1}\right)+\mu\left(a_{2}\right)+\mu\left(a_{3}\right)$
- $S_{2}=\mu\left(a_{1} \wedge a_{2}\right)+\mu\left(a_{2} \wedge a_{3}\right)+\mu\left(a_{1} \wedge a_{3}\right)$
- $S_{3}=\mu\left(a_{1} \wedge a_{2} \wedge a_{3}\right)$
- giving

$$
\mu\left(a_{1} \oplus a_{2} \oplus a_{3}\right)=S_{1}-2 S_{2}+4 S_{3}
$$

Every Boolean polynomial can be

 represented as exclusive-or of positive conjunctionsWe can express a measure of any boolean polynomial in terms of measures of positive conjunctions of its variables

Bounds

Dropping terms from inclusion-exclusion we get bounds on the measure: Bonferroni Inequalities:
$\sum_{k=1}^{2 r}(-2)^{k-1} S_{k}^{\mu} \leq \mu\left(p_{1} \oplus \ldots \oplus p_{m}\right) \leq \sum_{k=1}^{2 s+1}(-2)^{k-1} S_{k}^{\mu}$,
for any $r, s \in$

Example

- Upper bound:

$$
\mu\left(a_{1} \oplus a_{2} \oplus a_{3}\right) \leq \mu\left(a_{1}\right)+\mu\left(a_{2}\right)+\mu\left(a_{3}\right)
$$

- Lower bound:

$$
\begin{aligned}
& \mu\left(a_{1} \oplus a_{2} \oplus a_{3}\right) \geq \mu\left(a_{1}\right)+\mu\left(a_{2}\right)+\mu\left(a_{3}\right) \\
& \quad-2 \mu\left(a_{1} \wedge a_{2}\right)-2 \mu\left(a_{2} \wedge a_{3}\right)-2 \mu\left(a_{1} \wedge a_{3}\right)
\end{aligned}
$$

We can thus obtain bounds for support of any database query

There are queries which cannot be approximated

Parity polynomial: $p_{p a r}=a_{1} \oplus a_{2} \oplus \ldots \oplus a_{n}$
Two relations over $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$:

$$
\begin{aligned}
\rho_{\text {odd }} & =\left\{t \in(A): n_{1}(t) \text { is odd }\right\}, \\
\rho_{\text {even }} & =\left\{t \in(A): n_{1}(t) \text { is even }\right\},
\end{aligned}
$$

There are queries which cannot be approximated

We have:

$$
\operatorname{supp}_{\rho_{\text {odd }}}(K)=\operatorname{supp}_{\rho_{\text {even }}}(K) \text { for all } K \subset A
$$

but

$$
\operatorname{supp}_{\rho_{\text {odd }}}\left(p_{\text {par }}\right)=1, \operatorname{supp}_{\rho_{\text {even }}}\left(p_{\text {par }}\right)=0
$$

One unknown itemset A can result in huge inaccuracy of $\operatorname{supp}\left(p_{p a r}\right)$

Tables with missing values

Allow missing values $\left(a_{i}\right)=\{,$,
Define μ generalizing support to such tables

- With each attribute a_{i} associate a value $\alpha_{i} \in[0,1]$
- If only one attribute i is missing, multiply tuple's support by α_{i}
- If more attributes are missing, use independence assumption

Example

$$
\begin{aligned}
\mu^{\left(\overline{a_{1}} \wedge a_{2}\right)}= & \operatorname{supp}\left(a_{1}=\wedge a_{2}=\right) \\
& +\left(1-\alpha_{1}\right) \operatorname{supp}\left(a_{1}=\wedge a_{2}=\right) \\
& +\alpha_{2} \operatorname{supp}\left(a_{1}=\wedge a_{2}=\right) \\
& +\left(1-\alpha_{1}\right) \alpha_{2} \operatorname{supp}\left(a_{1}=a_{2}=\right)
\end{aligned}
$$

Properties of μ

Theorem: μ is a measure.

Consequences:

- μ gives probabilistically consistent results.
- All previous results apply to μ

Example

a_{1}	a_{2}

$$
\alpha_{2}=1
$$

Example

[Ragel, Crémilleux 98]: count each itemset where it is defined

$$
\operatorname{supp}\left(a_{1}\right)=0.5<\operatorname{supp}\left(a_{1} \wedge a_{2}\right)=1
$$

[Nayak, Cook 01]: weighted sum of attributes in a row

$$
\operatorname{supp}\left(a_{1}\right)=0.5<\operatorname{supp}\left(a_{1} \wedge a_{2}\right)=0.75
$$

but

$$
\mu\left(a_{1}\right)=0.5 \quad \mu\left(a_{2}\right)=1 \quad \mu\left(a_{1} \wedge a_{2}\right)=0.5
$$

Further research

- More applications in datamining
- Tighter bounds for specific queries
- Case when complete S_{k} are not known [submitted PKDD'02]

Estimates with incomplete S_{k} 's

Main idea: Apply Bonferroni inequalities recursively
Example:

- Known supports: $A, B, C, A C, B C$
- Want: $\operatorname{supp}(A B C)$

1. Estimate $\operatorname{supp}(A B)$
2. Use bounds for $\operatorname{supp}(A B)$ to compute S_{2}
3. Compute $\operatorname{supp}(A B C)$

Bonferroni-type inequalities for

 supportsThe following inequalities hold for any $t \in$:

$$
\begin{aligned}
& \operatorname{supp}\left(a_{1} a_{2} \ldots a_{m}\right) \leq \sum_{k=0}^{2 t}(-1)^{k} m-k-12 t-k S_{k} \\
& \operatorname{supp}\left(a_{1} a_{2} \ldots a_{m}\right) \geq \sum_{k=0}^{2 t+1}(-1)^{k+1} m-k-12 t+1-k
\end{aligned}
$$

