
Approximating Representations for Large Numerical Databases

Szymon Jaroszewicz∗ Marcin Korzeń †

Abstract

The paper introduces a notion of support for real-
valued functions. It is shown how to approximate
supports of a large class of functions based on supports
of so called polynomial itemsets, which can efficiently
be mined using an Apriori-style algorithm. An upper
bound for the error of such an approximation can be
reliably computed. The concept of an approximating
representation was introduced, which extends the idea
of concise representations to numerical data. It has
been shown that many standard statistical modelling
tasks such as nonlinear regression and least squares
curve fitting can efficiently be solved using only the
approximating representation, without accessing the
original data at all. Since many of those methods
traditionally require several passes over the data, our
approach makes it possible to use such methods with
huge datasets and data streams where several repeated
scans are very costly or outright impossible.

1 Introduction and notation

Association rule mining [1] is primarily concerned with
discrete data. The prevalent approach to numerical at-
tributes is discretization, see for example [7]. Unfortu-
nately discretization always leads to information loss,
and has other problems such as difficulty in selecting
appropriate interval widths. In [8] a definition of sup-
port capable of handling numerical data without dis-
cretization has been presented. Further work in this
area includes [3] where rank methods have been used
and [4] where the notion of support has been defined
for polynomials.

This work significantly extends [4] by defining sup-
port of arbitrary real-valued functions. Furthermore,
we show how to approximate support for a large class
of functions using supports of so called polynomial item-
sets introduced in [4], thus extending the notion of con-
cise representations to numerical data. Approximation
error can also be computed based on supports of poly-
nomial itemsets. We describe a modification of the well
known Apriori algorithm [1] which is capable of finding a

∗National Institute of Telecommunications, Warsaw, Poland,

sj@cs.umb.edu
†Szczecin University of Technology, Poland, mkorzen@wi.ps.pl

collection of frequent polynomial itemsets together with
so called extended border, which is required to estimate
approximation error.

We evaluate the performance and accuracy of our
approach experimentally and show potential applica-
tions to nonlinear regression and curve fitting. We show
that those tasks can often be expressed in terms of sup-
ports of functions on a given dataset, thus supports of
a collection of polynomial itemsets can be used to build
approximate models quickly without accessing the orig-
inal dataset at all. All information needed to build the
model is taken from the precomputed supports. The
performance gain is especially visible when several mod-
els are built from a single dataset or when building a
model requires several scans of the dataset.

Let D be a dataset with the set of attributes H =
{X1, . . . , Xn}. Elements of D are called transactions,
following data-mining conventions. Sets of attributes
will be denoted with uppercase letters I, J . Vectors of
variable values from the domain of a set of attributes
will be denoted with boldface letter x = (x1, . . . , xr).
We further define 0 = (0, . . . , 0) as a vector of zeros.

Let I = {Xi1 , . . . , Xir
} ⊆ H be a set of attributes

and t a transaction. Define t[I] = (t.Xi1 , . . . , t.Xir
),

where t.X denotes the value of attribute X in t.
We will make heavy use of the so called multi-index

notation. A multi-index α is a sequence of integers
α = (α1, . . . , αr). We define the following expressions:

|α| = α1 + α2 + . . . + αr,
α! = α1!α2! · · ·αr!,
xα = xα1

1 xα2

2 · · ·x
αr
r ,

Iα = Xα1

i1
Xα2

i2
· · ·Xαr

ir
,

Dα
I = ∂|α|

∂X
α1
i1

∂X
α2
i2

···∂X
αr
ir

.

We will now make a crucial assumption that all
attributes in H are numerical (real-valued) and their
values are always in the interval [−1, 1]. If the data
does not meet this assumption, it is converted as fol-
lows: numerical attributes are scaled appropriately, i.e.
an attribute Xi is multiplied by a positive constant
ci = (maxt∈D |t.Xi|)−1. Binary attributes are treated
as real-valued attributes with domain {0, 1}. Categor-
ical attributes are converted into a number of binary
attributes (one binary attribute per category).

2 Support of real-valued functions, polynomial

itemsets

In this section we introduce key notions of the paper, the
definition of support for arbitrary real valued functions
and review the concept of polynomial itemsets from [4].

Definition 2.1. Let I ⊆ H be a set of attributes, and
let f(I) be a function of I. Define support and absolute
support of f in dataset D respectively as suppD(f) =
∑

t∈D f(t[I]), and suppD(|f |) =
∑

t∈D |f(t[I])|.

Definition 2.2. Let I = {Xi1 , . . . , Xir
} ⊆ H be a set

of attributes. A polynomial itemset of degree |α| is an
expression of the form Iα = Xα1

i1
Xα2

i2
· · ·Xαr

ir
.

Since a polynomial itemset is a real-valued function,
the definitions of support apply to it automatically.

Let Iα, Iβ, where α = (α1, . . . , αr), β =
(β1, . . . , βr), be two polynomial itemsets. We say that
Iα is a subset of Iβ, denoted Iα ⊑ Iβ, if αi ≤ βi for
all i ∈ {1, . . . , r}. Similarly we say that Iα is a strict
subset of Iβ, denoted Iα

⊏ Iβ if in addition αi < βi

for some i ∈ {1, . . . , r}. Neither support of polynomial
itemsets, nor its absolute value are monotone w.r.t. in-
clusion. Fortunately, this is true for absolute support.

Theorem 2.3. Absolute support of polynomial itemsets
is monotone w.r.t. inclusion, that is Iα ⊑ Jβ implies
suppD(Iα) ≥ suppD(Jβ).

Thus, to find all itemsets with absolute value of sup-
port greater than or equal to ε, we can first use an Apri-
ori style algorithm (see below) to find all polynomial
itemsets whose absolute support is greater than or equal
to ε. Next we compute the support of all itemsets found,
and prune those whose support’s absolute value is below
ε based on the fact that suppD(f) ≤ suppD(|f |).

Several properties of absolute support for polyno-
mial itemsets justifying the definition and giving it some
intuitive interpretation have been given [4].

The algorithm for finding all polynomial itemsets
with given minimum absolute support is given in Fig-
ure 1. This is a modified version of the algorithm pre-
sented in [4]. The algorithm is similar to the well known
Apriori algorithm [1], but has some important modifica-
tions. Itemsets are generated in the order of increasing
degree. Support counting in steps 3, 5 is done by a
simple database scan. Candidate generation is done in
steps 7 to 11. Note step 8, which increases the expo-
nent of the last attribute in the itemset or adds a new
attribute with exponent 1. Unlike the Apriori candi-
date generation, an attribute can be added to the same
itemset more than once to allow for higher exponents.

Another difference is that instead of combining two
frequent itemsets to produce a new candidate we simply

Input: dataset D with set of attributes H , minimum
support threshold ε

Output: all frequent polynomial itemsets with abso-
lute support ≥ ε

1: k ← 1; C0 ← {1}; F0 ← {1}; C1 ← {X1
i : Xi ∈ H}

2: loop

3: compute absolute support of all itemsets in Ck

4: Fk ← {Iα ∈ Ck : suppD(|Iα|) ≥ ε}
5: compute support of all itemsets in Fk

6: Ck+1 ← ∅
7: for all Iα = Xα1

i1
. . . Xαr

ir
∈ Fk do

8: for all j ≥ ir do

9: Ck+1 ← Ck+1 ∪ {Iα ·Xj}
10: end for

11: end for

12: k ← k + 1
13: end loop

Figure 1: The PolyApriori algorithm

add single attributes to them, and we don’t prune
itemsets with infrequent subsets. We thus compute
absolute support for a larger collection of itemsets than
it first seems necessary. However, as we shall see in
the next section, those supports will be very useful for
computing approximation accuracy.

Let us now examine the collection of itemsets whose
supports are computed by the PolyApriori algorithm.
Let F be a downward closed (i.e. Iα ∈ F implies
Jβ ∈ F for all Jβ ⊑ Iα) collection of polynomial
itemsets and let I be a set of attributes. Define

F ∩ I = {Jβ ∈ F : J ⊆ I}.

It is the set of those polynomial itemsets in F whose
bases are subsets of I. Let J = {Xl1 , . . . , Xlk} be a set
of attributes. Define an I-extension of Jβ as

extI(J
β) = {Jβ ·Xij

for all Xij
∈ I such that ij ≥ lk}.

For a downward closed collection of itemsets F , define
its I-extended border as

Bext
I (F) =

⋃

{extI(J
α) : Jα ∈ F} \ F .

Theorem 2.4. Let F = {Iα : supp(|Iα|) ≥ ε}. After
the PolyApriori algorithm (with minimum support ε)
terminates, F =

⋃

Fk = F , and
⋃

Ck = F ∪ Bext
H (F).

3 Approximating supports of functions

through polynomial expansions

In this section we restrict ourselves to a set of attributes
I = {Xi1 , . . . , Xir

} ⊆ H . We assume that multi-
indices α, β have r elements. We will show how to

obtain approximations of support of a function based
on supports of polynomial itemsets using the function’s
polynomial expansion.

Theorem 3.1. Let f(I) be a function expressible by a
power series f(I) =

∑∞
i=0

∑

{α:|α|=i} cαIα. Then

suppD(f) =
∞
∑

i=0

∑

{α:|α|=i}

cαsupp(Iα).

Since a large family of functions can be approxi-
mated by polynomials, the Theorem tells us that sup-
ports of those functions can be approximated using sup-
ports of polynomial itemsets. We now present a theo-
rem about computing support of a function based on
its Taylor expansion and estimating the approximation
error. Denote by

∑

α∈F , the sum over all exponents of
polynomial itemsets in F .

Theorem 3.2. Let F be a downward closed collection
of polynomial itemsets, and n = maxα∈F |α|. Let f(I)
be a function with has continuous partial derivatives of
order up to n + 1 at every point in [−1, 1]r. Then

suppD(f) =
∑

α∈F∩I

Dα
I f(I)|

I=0

α!
suppD(Iα) + R,

where |R| ≤
∑

α∈Bext
I

(F∩I)

Mα

α!
suppD(|Iα|), and

Mα = max
x∈{0}(jα−1)×[−1,1](r−jα+1)

|Dα
I f(x)|, and jα, is

the largest integer such that αjα
> 0.

The proof is omitted but below we give an example
illustrating the way it proceeds.

Example 3.3. Let I = {X, Y }, and the collection
of frequent itemsets F ∩ I = {1, X1, X2, Y 1, X1Y 1}.
We want to approximate the support of a function
f(X, Y). We first treat f as a function of X and
apply Taylor’s Theorem on X . For every Y ∈

[−1, 1] we have f(X, Y) = f(0, Y) + X1

1!
∂f

∂X1

∣

∣

∣

X=0
+

X2

2!
∂2f
∂X2

∣

∣

∣

X=0
+ R(3,0), where, for some ξ ∈ (−1, 1),

R(3,0) = X3

3!
∂3f(X,Y)

∂X3

∣

∣

∣

X=ξ
≤ |I(3,0)|

(3,0)! M (3,0).

We stopped the expansion at X2 because X3

is not in F ∩ I. Apply now Taylor’s Theorem
to every term, except R(3,0). Each time expand
till the highest available power of Y : f(X, Y) =

f(0, 0) + Y 1

1!
∂f

∂Y 1

∣

∣

∣ X = 0
Y = 0

+ R(0,2) + X1

1!
∂f

∂X1

∣

∣

∣ X = 0
Y = 0

+

X1

1!
Y 1

1!
∂2f

∂X∂Y

∣

∣

∣ X = 0
Y = 0

+R(1,2)+
X2

2!
∂2f
∂X2

∣

∣

∣ X = 0
Y = 0

+R(2,1)+

R(3,0) =
∑

α∈F∩I
Iα

α! Dα
I f(I)|

I=0
+ R.

The derivation of other remainders is analogous
to the case of R(3,0) and is omitted. We have R =
R(3,0) + R(0,2) + R(1,2) + R(2,1), and |R| ≤ |R(3,0)| +
|R(0,2)| + |R(1,2)| + |R(2,1)|. Note that Bext

I (F ∩ I) =
{X3, Y 2, X1Y 2, X2Y 1}, so the remainders are indeed
computed over the extended border of F ∩ I. To go
from variables to supports we sum over all t ∈ D.

+

+

R
(0,2)

+

+

R
(1,2)

+

+

+

R
(2,1)

+

R
(3,0)

 f(0,0)

Y⋅∂f(0,0)/∂Y X⋅∂f(0,0)/∂X

XY⋅∂f(0,0)/∂XY X2/2!⋅∂f(0,0)/∂X2

Figure 2: Graphical illustration of the Taylor expansion
in Example 3.3

The example is depicted graphically in Figure 2,
which shows the tree of polynomial itemsets as it would
be visited by the PolyApriori algorithm. It can be
seen that the tree coincides with the Taylor expansion
presented above. Every node in the tree corresponds to
one term of the expansion. Leaves are the remainder
terms which form the extended border Bext

I (F ∩ I).

Let us now discuss the consequences of the above
Theorem. It is possible to first find all polynomial item-
sets with a given value of minimum absolute support ε,
and then estimate the support of arbitrary (sufficiently
differentiable) function from the supports of the poly-
nomial itemsets without using the data at all. The es-
timation error may be large for some functions but it
can be reliably estimated, without accessing the orig-
inal dataset. Notice that the PolyApriori algorithm
computes supports of all polynomial itemsets in the ex-
tended border of the collection of frequent itemsets in-
cluding Bext

I (F∩I) needed to compute the error in The-
orem 3.2. It is thus always possible to compute the Tay-
lor sum over F ∩ I and estimate the error by summing
over Bext

I (F ∩ I).
Of course to find support of a function we need

to obtain its Taylor coefficients and upper bound its
derivatives. Those tasks may be time consuming, but
do not require accessing the data, and thus will pay off
for large databases. One option is to compute func-
tion’s derivatives symbolically and thus obtain the ex-
pansion. Symbolic derivation is fully automatic for all
elementary functions and their combinations so obtain-
ing the coefficients is straightforward. Another option
is to obtain expansions for all elementary functions in-
volved and combine them using operations on series. We

found the second approach to be much more efficient,
so we adopted it in the experiments.

Approximating representations. We have thus
obtained an analogue of concise representations [2, 6, 5]
for numerical data. We prefer to use the name approx-
imating representation since our aim is to approximate
supports of arbitrary functions, not just of unknown
itemsets.

4 Experimental Evaluation and Applications

In this section we evaluate our method experimentally.
For performance reasons, it is often necessary to limit
the maximum number of attributes in polynomial item-
sets (denoted maxr) and their maximum degree (de-
noted maxk). The value of maxr depends on the func-
tions we want to approximate. Elementary functions of
l arguments require maxr ≥ l. To approximate a sum
of functions, maxr needs to be at least the largest maxr

needed for any of the summed functions. For a prod-
uct of functions we need maxr of at least the sum of
their required maxr’s. Useful results require maxk to
be greater than maxr.

Performance evaluation of the PolyApriori

algorithm. The PolyApriori algorithm was imple-
mented in Python on a 1.7GHz Pentium machine. Fig-
ure 3 shows computation time and the number of fre-
quent itemsets (including the extended border) for vari-
ous datasets and support thresholds. The value of maxk

was 9 and of maxr 4. We found that such value of maxk

allows for very accurate approximations (see below).
It can be seen that the algorithm allows for mining

large, realistic datasets. Large number of frequent
polynomial itemsets can be a problem in some cases.

Accuracy of approximation. We will now show
estimated approximation accuracy for various mini-
mum support thresholds for the KDD Cup’04 physics

dataset. The charts show upper bounds on relative
support approximation accuracy obtained using The-
orem 3.2; the actual errors were in fact much smaller.
We computed the upper bounds for functions of 1, 2 and
3 variables, for each possible attribute, pair and triple
of attributes respectively for various levels of minimum
support. Figure 4 shows box plots for each function
and level of minimum support. The plots show the mini-
mum, maximum, median and the first and third quartile
of the error bounds taken over all single attributes, pairs
or triples of attributes respectively. For example the up-
per left figure shows that for 2% minimum support the
median of the upper bound of the relative approxima-
tion error of support of exp(Xi) is about 3.16 · 10−5%.

It should be noted that the error estimates show
relative upper bounds on errors, which are naturally
high when support is low. This explains high errors for

some sets of attributes. Also note, that the charts show
an upper bound and the true errors are in fact much
lower. Also note that the KDD Cup’04 physics dataset
has very skewed distributions on some variables. When
going from minimum support 5% to 2% this causes a
jump in accuracy for one variable functions, since a
number of new frequent polynomial itemsets become
available.

It can be seen that the estimation error decreases
rapidly with the decrease of minimum support, and very
accurate approximations are possible in most cases.

We will now present some illustrative examples of
applications of our representation to standard statistical
modelling tasks. These are not meant to be industrial
quality statistical applications.

Nonlinear regression. In [4] an application of
polynomial itemsets to picking terms of polynomial re-
gression has been presented, but regression coefficients
were still calculated from the data. In this work, regres-
sion coefficients are calculated from the approximating
representation without accessing the data at all.

Suppose we want to construct a nonlinear regression
model Y = w0 +

∑n
i=1 wifi(Xi), where fi are arbitrary

functions, and the weights vector w = (w0, w1, . . . , wn)
is found using the least squares method. The sought
vector w satisfies the matrix equation Aw = b, where
A is a matrix s.t. (A)ij = suppD(fi(Xi) · fj(Xj)) , and
b is a column vector with bi = suppD(fi(Xi) · Y). We
can thus find Taylor expansions of fi(Xi) · fj(Xj) and
fi(Xi) · Y , use them to approximate the matrix A and
vector b from a collection of polynomial itemsets, and
solve the matrix equation to find approximate w.

In our experiment we took f1 = sin(2.5X1),
f2 = cos(0.5X2), f3 = sin2(1.1X3), f4 = exp(0.7X4),
f5 = sin(3.1X5). We generated an artificial dataset
with attributes X1, . . . , X5 and an attribute Y =
0 − 1.5f1(X1) + 1.0f2(X2) − 2.5f3(X3) + 1.0f4(X4) −
1.5f5(X5) + N(0, 0.03), where N(0, 0.03) is a normally
distributed noise term. The data values were generated
independently for each variable from a normal distribu-
tion N(0, 1). There were 200000 records.

We built a nonlinear regression model Y = w0 +
∑5

i=1 wifi(Xi) based on the whole dataset and the ap-
proximation procedure described above. The table be-
low shows the root mean square errors of the model
fitted directly from data and based on polynomial ap-
proximations for different values of minimum support.

minsupp [%] 1.58 0.86 0.46 0.25 0.14
itemsets 40 64 94 157 313
approx. 0.094 8.7e2 0.095 0.034 0.023
full data 0.027 0.028 0.028 0.015 0.017

It can be seen that for higher values of minimum

100 101 102

min. support [%]

100

101

102

103

104

105

106

107

108

109

n
o
.

o
f
fr

e
q
u
e
n
t

it
e
m

s
e
ts

waveform-5000
sonar
iris
ionosphere

KDD Cup’04

Figure 3: Runtime and number of frequent polynomial itemsets counted for the PolyApriori algorithm for various
datasets and minimum support thresholds. maxk = 9, maxr = 4

exp(X)

20 10 5 2 1 0.5 0.2

minimum support [%]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

re
la

ti
v
e
 e

rr
o
r

b
o
u
n
d
 [

%
]

exp(X+Y)

20 10 5 2 1 0.5 0.2

minimum support [%]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

exp(X+Y+Z)

20 10 5 2 1 0.5 0.2

minimum support [%]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Figure 4: Upper bounds on relative estimation error for functions of 1, 2 and 3 variables for KDD Cup’04 physics

dataset at different levels of minimum support and maxk = 9.

support the error of approximated model can be very
high, but as the minimum support decreases, the error
converges to that of the model built on full data. High
error values for low supports resulted in this case from
the fact that large errors caused the regression matrix
to become ill-conditioned.

Also note, that since upper bound on approximation
error is known, we are able to detect cases when the
error is too high so the procedure is reliable.

Notice that if we decide to build a new model for
different functions fi we can do it without accessing the
data at all. When a large number of models is built this
can give huge savings.

Curve fitting. We can extend the approach to
arbitrary nonlinear curve fitting, where we approximate
the value of an attribute Y using a function fw(I) of
attributes I = {Xi1 , . . . , Xir

} with parameters w, using
the least squares criterion. We want to find w such that
E(w) =

∑

t∈D(t.Y −fw(t[I]))2 = suppD

(

(Y −fw(I))2
)

is minimized. In this case E(w) has to be minimized
directly. Notice that E(w) can be estimated based on a
collection of polynomial itemsets, and we can apply any

minimization algorithm to this approximation.
Our approximation was fast enough to allow for

estimation of the gradient of the error function, and as
a result for using a more efficient minimization routine
based on conjugate gradient descent.

We tested the approach on the KDD Cup’04 physics
dataset (training part). To this end we added an extra
attribute Y computed as (after scaling all X ’s to the

interval [−1, 1]): Y =
∑78

i=1 0.3 exp(Xi). We then fitted

a function Y = a +
∑78

i=1 bi exp(ciXi) to that data.
We used maxk = 9 and minimum support of 0.5%.

Notice that in for this particular problem the series
expansion of the squared error only contains terms of
up to two variables. We took advantage of this, setting
maxr = 2 which allowed us to raise maxk to 12 and
use no minimum support at all. We performed the
experiments for various sizes of samples drawn from
the dataset to illustrate how algorithms’ performance
depends on the number of records.

Performance and accuracy of approximate curve
fitting for maxk of 9 and 12 as well as analogous results
for Matlab’s curve fitting are shown in Figure 5.

3
01

4
01

Number of records

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e
 [

s
]

x1e4

full data scan
approx, maxk=9

approx, maxk=12

Figure 5: Performance and accuracy of nonlinear least-squares curve fitting on the physics dataset using standard
curve-fitting and polynomial approximations.

It can be seen that the Mean Squared Error of
approximated curve fitting is higher than Matlab’s. It
should however be noted that the variance of Y is 7.3,
which is much higher than the MSE of around 0.3 of our
fit for maxk = 9 and which dwarfs the 0.0049 MSE for
maxk = 12. We thus managed to obtain a successful fit
at a fraction of the cost of using traditional methods.

Notice that in Figure 5 the time of mining frequent
itemsets is included. In practice frequent polynomial
itemsets would have been mined beforehand, and the
speed advantage would have been even greater.

Application to data streams. A potential appli-
cation area are data streams. Data in a data stream can
be looked at only once so multi-pass algorithms cannot
be applied. A solution would be to continuously update
a collection of polynomial itemsets based on the data
stream. The collection would serve as the approximat-
ing representation. Some early results can be found in
the full version of the paper.

5 Discussion and Future Research

In the paper, a definition of support for arbitrary real-
valued functions has been presented, and shown how
supports of large a family of functions can effectively
be approximated based on supports of polynomial item-
sets. Experiments have shown that polynomial itemsets
with given minimum absolute support can efficiently
be mined by an Apriori like procedure, and that ac-
curate approximations of supports of many important
functions can be obtained.

We have shown that a number of real-life tasks such
as nonlinear regression and curve fitting can be per-
formed based only on the collection of frequent poly-
nomial itemsets without accessing the data at all. In
many cases significant performance gains over standard

procedures have been demonstrated. In fact we have
moved the difficulty related to numerical computations
on large datasets to the domain of symbolic computa-
tions related to computing series expansions of func-
tions, which is independent of database size.

Future work includes trying other approximation
methods, such as Chebyshev expansion, convergence
analysis of the expansion with decreasing minimum
support and detailed analysis of how approximation
error influences accuracy of tasks such as nonlinear
regression and curve fitting.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining asso-
ciation rules between sets of items in large databases.
In ACM SIGMOD, pages 207–216, 1993.

[2] T. Calders and B. Goethals. Depth-first non-derivable
itemset mining. In SIAM Int. Conf. on Data Mining
(SDM’05), 2005.

[3] T. Calders, B. Goethals, and S. Jaroszewicz. Min-
ing rank-correlated sets of numerical attributes. In
KDD’06, 2006.

[4] S. Jaroszewicz. Polynomial association rules with
applications to logistic regression. In KDD’06, 2006.

[5] M. Kryszkiewicz. Concise representation of frequent
patterns based on disjunction-free generators. In Proc.
ICDM, pages 305–312, 2001.

[6] H. Mannila and H. Toivonen. Multiple uses of frequent
sets and condensed representations. In KDD’96, pages
189–194, Portland, OR, August 1996. AAAI Press.

[7] R. Srikant and R. Agrawal. Mining quantitative
association rules in large relational tables. In ACM
SIGMOD, pages 1–12, 1996.

[8] M. Steinbach, P.-N. Tan, H. Xiong, and V. Kumar.
Generalizing the notion of support. In KDD’04, pages
689–694, Seattle, WA, August 2004.

